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The outstanding cosmological problems (horizon, flatness, . . .) which may be solved by the usual
inflationary models may also find a solution in the frame of a “generalized” inflationary cosmology
which is characterized by a suitable phase of accelerated expansion. The usual exponential growth
of the scale factor S is just a particular case of such a general idea. Following this line of thought,
we study in some detail a simple inflationary model characterized by a scale factor which grows like
S ~ P, with p a constant greater than one, which we call power-law inflation (PLI). Some properties
of PLI have been analyzed, in different contexts, also by other authors. We consider the constraints
on this model coming from the requirement of solving the horizon, flatness, “good” reheating, and
“convenient” perturbation-spectrum problems. In order to obtain the perturbation spectrum when
re-entering the horizon during the Friedmann phase, we extend to PLI the gauge-invariant approach
developed by Bardeen et al. for the usual inflationary models. We find that the above constraints
can be suitably satisfied. Finally, we outline possible connections between PLI and particular infla-
tionary models which have recently been proposed.
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I. INTRODUCTION

It is well known that many long-standing problems of
the standard hot big-band model (horizon, flatness,. . .)
may find a natural solution in the frame of the
inflationary-universe model, initially proposed by Guth!
(see, for example, the review paper by Linde?).

The inflationary picture also yields the (Peebles-
Harrison-) Zel’dovich spectrum® of primordial density
perturbations in a natural way: it is well known that such
a spectrum, with a suitable amplitude, gives the “less un-
satisfactory” picture for the birth of cosmic structures.
This result was first obtained in the frame of the “new-
inflationary” model,* which predicts the Zel’dovich spec-
trum but with an amplitude 4—5 orders of magnitude too
large.’ Such a difficulty was later overcome by inflation-
ary models based on supersymmetric theories,® which
however, in the first attempts, were unable to give a good
reheating after inflation.’

Inflationary models are characterized by an exponential
growth of the Robertson-Walker scale factor S (de Sitter
phase), since in the total energy density p a constant con-
tribution of the vacuum energy prevails. However, even a
nonexponential accelerated phase of expansion

S2/8S+8>0

(a dot indicates differentiation with respect to the proper
time 7) may work in some respects as well as the phase of
standard (exponential) inflation (hereafter SI); this has
been recently analyzed in part by Abbott and Wise.? Ac-
tually, the total energy density is not strictly a constant
even in the usual inflationary models during the slow
“rolling down” of the order parameter ® (the vacuum ex-
pectation value of a suitable scalar field) and near the

(L.1)
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reheating: the nonconstancy of p and the related devia-
tion from exponential expansion depends upon the shape
of the effective potential ¥(®) driving the inflation.

The aim of this paper is to analyze in some detail a
simple inflationary model characterized by a period in
which S ~1t?, with p a constant greater than one (power-
law inflation, hereafter PLI). PLI models have been re-
cently studied by many authors: Abbott and Wise® con-
sidered the imprints on the cosmic background radiation
due to the primordial perturbations originated in a PLI;
Seckel’ analyzed the properties of a “wall-dominated” in-
flation, in which S ~¢2 A period of approximately PLI
is also found in a model of Kaluza-Klein cosmology pro-
posed by Abbott, Barr, and Ellis,'° where the inflation is
driven by the compactification of the extra dimensions
and in a model based on a broken-symmetric theory of
gravity proposed by Spokoiny,!! where p is only logarith-
mically dependent on time.

By using a simple toy model we find the effective po-
tential which drives PLI; in this frame we consider the
possibility of solving the horizon, flatness, and primordial
spectrum problems. With a suitable choice of parameters
in the model, we find that the horizon and flatness prob-
lems can be easily solved. These problems in some cases
can be solved in a less radical way than in known models
of SI. A good reheating and a convenient spectrum of
perturbations at horizon crossing in the Friedmann phase
require some restrictions on the parameters of the model
(e.g., the value of p).

To study the evolution of perturbations we use a
gauge-invariant approach by extending to our case the
Bardeen, Steinhardt, and Turner!? analysis for SI; the re-
sulting mass variance at the horizon is found to grow
weakly with the scale of the perturbation: this agrees with
the results of Abbott and Wise® who considered perturba-
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tions of the gravitational field. In a future work the spec-
trum of perturbations produced by a period of generic in-
flation (S > 0) will be considered.

The plan of the paper is as follows: in Sec. II we study
the equation of motion for the ® field and the Friedmann
equations for the PLI phase: in Sec. III we follow the evo-
lution of perturbations inside and outside the horizon dur-
ing the PLI in the comoving gauge, and we find the spec-
trum of perturbations when they re-enter the horizon dur-
ing the following Friedmann phase; in Sec. IV we consider
the constraints on the model required by the solution of
the above cosmological problems (horizon, flatness,
“right” spectrum); in Sec. V future prospects and possible
applications of this work are briefly reviewed.

II. THE MODEL

We assume that the evolution of the universe during in-
flation is driven, as usual, by the time-varying vacuum ex-
pectation value of some scalar field ® (see, however, the
alternative approach by Hawking and Moss!3). We also
assume that, in the first stages of the expansion, the
universe is well approximated by a Robertson-Walker
model with zero spatial curvature. The total energy densi-
ty p(t) is given by

p(O=V(D())+ 3D +p, (1), @.1)

where V(®) is the effective potential of the field ®, the
second term represents the kinetic contribution of ®, and
pr is the ultrarelativistic particle contribution (radiation).
The total pressure is given by

p(t)=—V(®())+ 3D 2t)+ +p,(1) ; 2.2)

in (2.1) and (2.2) we assume that thermal corrections to
the effective potential are negligible [this is correct as long
as p, << V(®), as it will always be in our case] and that
the scalar field has minimal coupling with the geometry
(see, for example, Refs. 2 and 14).

The time evolution of the model is determined by the
equations

.%[.;_d>2+ V(®)]=—-3Hd2-§, (2.3a)
H? 8 Ly 2
=2 VP T4l (2.3c)

where H(t)=S/S (S is the scale factor), and
mp=G~1/2=1.22% 10" GeV is the Planck mass. The
quantity 8 accounts for the creation of the ultrarelativistic
particles due to the time variation of ®. Equations
(2.3a)—(2.3c) represent, respectively, the energy conserva-
tion equation for ® (which is equivalent to its equation of
motion), the energy conservation equation for radiation,
and the Friedmann equation.

For the term 8 we assumed (see, for example, Refs. 15
and 16)

§=Td?, (2.4)

where the constant quantity I'"!, which represents the
characteristic time for particle creation by ®, depends
upon the interactions of @ with other fields.
From (2.3) one easily gets
2

. 4 mp .

pr+3(C+3H)p,=———TH, (2.5a)

. mp .

d2=— o H—%p,, (2.5b)
mp2 . 1

V(<I>)=—81—T—(3H2+H)—'3—p, ; (2.5¢)

it is then clear that when S(#) is given, the set (2.5) allows
us to determine p,(¢), ®(¢), and V(P), provided V(P) de-
pends on ¢ only through ®.

From now on we shall only consider the solution of
(2.5) under the hypothesis

S=S*(t/t*P, (2.6)

where p>1 is a constant, $* and t* are arbitrary con-
stants whose value will not appear in any physical quanti-
ty. Furthermore, we shall only solve the set (2.5) during
the phase when particle creation is negligible, I" <<3H,
that is for times

t<<tr=3p/T. (2.7)

We assume that in the following phase the particle
creation process rapidly reheats the universe bringing it
back to the standard Friedmann phase. We begin to study
the evolution of the system from an initial time ¢; with
D(t;)=P;=40; the analysis of the mechanism that brought
@ to that value is beyond our purposes. At this time we
can also assume, without any loss of generality, that p, is
negligible with respect to both the kinetic and potential
contributions to p, since a short period of inflation is
enough to depress it. In this way from (2.5b) we find

2

. m
2L p1?, (2.8)
4
which gives
D( t)zq),-i‘aln(t/t,-) B (2.9)
where
172
= 4L mp . (2.10)

By putting the solution with the plus sign into (2.5¢c) we
get

D — P,

3p—1

V(®)~ 2

(o/t;)%exp (2.11)

o

(the solution with the minus sign gives a potential grow-
ing with ®). It is clear that the potential (2.11) has to be
considered just as an approximation of a more complex
potential for the interval ®; <® < ®(zr). Although with
a rather different meaning, potentials containing exponen-
tial terms are sometimes found in models of Kaluza-Klein
cosmology.!’
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One can easily verify that our solution of (2.5) is con-
sistent with the hypothesis given previously. If one fur-
ther assumes that a slow rolling down takes place, that is,

b «<3HD , (2.12)

then one gets p >>+. The above model, although being
oversimplified, will allow us, in the following sections, to
deal with the main cosmological properties of PLI. -

III. EVOLUTION OF PERTURBATIONS
IN POWER-LAW INFLATION

In this section we shall consider the evolution of a
single-wavelength density perturbation using the gauge-
invariant method due to Bardeen'® and subsequently ap-
plied in Ref. 12 to the ‘“new-inflationary” model. We
shall follow (by using the same symbology as far as possi-
ble) the comoving-gauge analysis of Ref. 12, which we are
able to generalize to PLI. For this reason we shall only
give here the main points of our treatment.

- The equation that gives the evolution of density pertur-
bations is

Z—(y—DHZ —[y+3(1+w)|H?Z +(k/SP?Z =0,
(3.1
where the variable Z is given by
Z=(HS/k)%, , (3.2)

k is the comoving wave number, |€.| is the fractional
density perturbation §p/p, and

y=H"'E/E, E=p+p, w=p/p. (3.3)

The only contribution to 8p in the comoving gauge
|

ft' dt'%

t‘
Z~Z* ’. [cos cos

*1

ft' dt'%

1
+1

which matches at ¢; to the extrapolation of (3.6). For
times ¢ >>¢; one easily gets, after averaging over phases,

2 172
Z(1)/Z(t)) /3R FTP+1)
(p+1)
which is of order unity for any p greater than one: as in
SI the variable Z outside the horizon rapidly tends to a
constant value. This is a good approximation as far as
reheating effects are still negligible.
C. Reheating

) (3.9)

When t¢~tp, the characteristic time for particle
creation due to the variation of ® equals the expansion
time H~!. At this moment the reheating process should
be considered. However, this will not be done here since
our model only aims to describe an intermediate phase of
a more complex inflationary process; such a model, as al-
ready outlined, is not based on a given theory of particle

+p sin

comes from the kinetic term, as far as radiation is negligi-
ble; then

Sp=D5D . (3.4

A. Evolution of Z inside the horizon (k /SH >>1)

By using the results of the preceding section in (3.3),
Eq. (3.1) becomes

k

2
Z=0,
S

(3.5)

Z+(2+p)%+

which is solved by the WKB-approximated formula
21—1/4 .

S
kt

_p+2
4p

- 172 ‘
dt’' — . .
X cos l f t S ] (3.6)
The extrapolaﬁon of (3.6) up to the moment ¢,(k),

1/(p—1)
, (3.7)

*
zgz*it— (1

2
S

1_Pp+2
kt’

4p

when the perturbation leaves the horizon, gives
Z(t))~(t,/t*)Z', with |Z'|~Z*. Such an extrapola-
tion is also justified by the fact that | Z | stays approxi-
mately constant outside the horizon, as we shall see in a
moment.

B. Evolution of Z outside the horizon (k /SH <<1)

By neglecting the last term of (3.1) we get the approxi-
mated solution
" ] ]

physics, which would be necessary in order to give a phys-
ical description of the reheating. We make the assump-
tion that, at a certain time ¢y, > tr, the effective potential
Ve changes in such a way that our model S~t? no
longer holds and a rapid and successful reheating takes
place.

By following as before the line of Ref. 12 one can show
(see the Appendix) that ’

(E(1))

(3.8)

et

Z(t~z @ SEW) (3.10)
E@)
Zw~z@OHOZL _H(zZ(1) | (3.11)
E(7)

The above formulas generalize the analogous expressions
in Ref. 12 to the case when H varies with time; in (3.10)
and (3.11), ¢ >7, 7 being a suitable time such that, for ¢ <7,
our model works [in particular, relation (3.9)]. The mean-
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ing of the average symbol will be specified in the Appen-
dix.

For the reheating process to work, the created particles
are to be thermalized in a time

(At)y <<H(tg)7 L.

In this time interval the total energy density p switches
from being dominated by the potential to being radiation
dominated. After this transition, the well-known relation

11'2 4 sz
—T*~3
30 327t?

holds, where g*(T) is the effective number of helicity
states and is of order 10? for temperatures of interest here.
At the beginning of the radiation era it is p,~p(7)
~V(P(7)), where 7 can be assumed to be of the same or-
der as 7.

By extrapolating (3.10) and (3.11) up to ¢, we obtain,
at the beginning of the radiation era,

(3.12)

pr=g*(T)

. Vit;) ,
Z(trh)z7Z(t1)E(tl)O(H(t,h)(At),h) , (3.13)
. ‘ V(t,)
Z(trh)’z'jZ(tl)H(trh) [1—O(H(t ) A)m)] ;
E(tl)

(3.14)

in (3.13) and (3.14) use has been made of the constancy of
the ratio V(¢)/E(t), when the parameter p is constant.

D. Spectrum of perturbations at the horizon

From the reheating up to the time t5(k), when a given
comoving scale A=2mk ~! re-enters the horizon during
the Friedmann phase, we follow Ref. 12. We get at re-
entering

Vity)

L]
lE(tl) ’

p
where b=4 if 24 <t,, (the equivalence time) or % if

Iy >t The quantity . Z, which appears in (3.15) is
evaluated from (3.4)

Z ~(D8D), /V(2)) .

~

k)

(3.15)

(3.16)

By studying the evolution of the fluctuation in the uni-
form Hubble-constant gauge, Bardeen et al.'? show that
8®P~HS®P; such a relation can be shown to hold in our
case too. The problem of evaluating the fluctuation 8§&
can be reduced to that of calculating zero-point quantum
fluctuations of a minimally coupled massless (this is
reasonable since H ~232V /3®*~1/p) scalar field;>* §®
is defined as

172
explik-x){ ®(x,2)P(0,t)) ,

3
S0k 0=k | [ 4

(3.17)

where (---) is the scalar-field two-point correlation
function. A detailed calculation of (3.17) for scales well
outside the horizon has been performed in Ref. 8. An
easy extrapolation of their results for the scale k =SH can
be nicely expressed by the formula

S®~H /27, (3.18)

even in our case in which H varies with time. By using
(3.18) and (3.16) in (3.13), we obtain the expression

b Hz(tl)
Op/p)ry =7~ YRSl
1

(3.19)

From (2.6), (2.8), and (3.7) one easily gets the final for-
mula

(3p—1)/2(p—1)(mpt* )—1

b
(8P/P)tH(k)2 77_1/2p

X (S* /t*)/p=Dp =1/p=1) (3.20)

which is the main result of this section.

IV. COSMOLOGICAL CONSTRAINTS
ON POWER-LAW INFLATION

A. Horizon, flatness, and reheating

By easily adapting the original procedure by Guth,! one
sees that, in order that the PLI period can solve the
cosmological horizon problem, one needs

ZP=DP 5 5% 10T, /mp , (4.1)
where, from now on, by Z we mean the inflation factor
ZES(t,h)/S(ti)’z(trh/ti)p ; ’ 4.2)

in (4.2) we assumed for simplicity S ~¢? to hold until the
reheating time fy. We define f,=atp (@>1), with
tp=mp~! (Planck time), and r=t,,/tp. From (4.1), (4.2),
and (3.12) for T=T,, we get

al=PrP—1/24 551028 , (4.3)
The flatness problem can be solved!!? if
ZP =D =35 10®(Ty, /mp)f (Q;,Q0) %, (4.4)

where f(Q;,Q0)=(Q;7'=1)/(Qy~'—1), Q;=Q(r;) and
Qo=Q(tg) (Q is the density parameter; ¢, is the age of the
universe). Contrary to what happens in SI, the exponent
of Z in (4.4) [and in (4.1)] is different from one, this being
due to the fact that in PLI p is no longer a constant, but it
is such that p(t4,)/p(t;)~Z ~2/P. The relation analogous
to (4.3) for the flatness problem is then

al=PrP—12=3%10%£(Q;,Q)' /2 . (4.5)

Let us now consider the reheating constraint. It is well
known that any primordial baryon asymmetry would be
washed out by the inflationary expansion. The observed
baryon-to-photon ratio n, /n,~10~ requires a reheating
temperature T, large enough to allow baryogenesis (see,
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for example, the review paper by Kolb and Turner®). If
such a process takes place, as it is usually supposed,
through the out of equilibrium decay of X bosons, then
we must have Ty, >10° GeV =Ty, min; there exist, how-
ever, less standard scenarios (see the discussion in Ref. 15)
for which Ty, can be even much less than 10° GeV. The
requirement Ty, > Ty min, can be written using (3.12), as

r<2.5x10'% . 4.6)

B. Primordial density fluctuation spectrum

For considerations of cosmological interest (microwave
background anisotropy and galaxy formation) it is useful
to express (3.20) in a different form. One needs to replace
the comoving wave-number k by the physical wave-
number Kk, (t)=k/S(z) [we also recall that
kon(tg)=H(tg)], where kyy, is connected with the mass
M of the fluctuation by the relation

M=4mp, (Dku(£)73, 4.7

Pm being the baryon density. A fluctuation of mass M
enters the baryon horizon during the Friedmann phase at
the time

tyeste(M /M),
if M <M,~10""M, (the horizon mass at ), or at
tp=teg(M /M) ,

if M>M.. We finally need to match the radiation-era
scale factor with the scale factor during inflation; this has
been roughly made by putting for ¢, <t <tq

(4.8a)

(4.8b)

S(8)=S* (14 /t* W(t /1) . (4.92)
For t.q <t <ty we put
S()S* (1 /t* W(teq /t) /(2 /eg)* (4.9b)

(in this relation we assumed Qy~1). By using (4.8) and
(4.9) in (3.20) we get

4b
(8p/p)yy, == 172P

(3p—1)/2(p—1)1027/(p —-1)

XT—-(Zp—l)/2(p -—1)(M/Meq)1/3(p —1) , (4.10)
where b'=1 for M <M, and b'=(3)"?~1/10 for
M>M,. In (4.10) t,, has been roughly computed
through (3.12) with g*(Teq) > 2 and T¢q=~107% GeV.

The spectrum in Eq. (4.10) is to be compared with the
one that can be obtained from (2.10) and (2.17) of Ref. 8.
The two spectra essentially coincide both in amplitude
and shape for small values of p, while for high values of
p, our amplitude is roughly a factor p3/? larger than the
one in Ref. 8: a factor p'/? depends on the different way
we compute the fluctuation and the extra factor p is there

because the formula (1.4) or Ref. 8 is an approximation

valid only for low values of p.

Concerning the microwave background radiation, the
requirement that the expected quadrupole moment does
not exceed the observed limits?! implies roughly
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(Sp/p)tH<\lO—4 on scales entering the horizon now

(M=~10"M eq)- Analyses of this type have been performed
by many authors.”> The possibility of forming cosmic
protostructures gives a further bound on ®p/p)y,; in this

respect, however, the situation is not well settled yet (for a
recent and wide discussion see, for example, Ref. 23).
Galaxies would originate in a universe dominated by dark
matter formed by “weakly” interacting particles,
such as massive neutrinos (“hot” scenario), or axions, pho-
tinos, ... (“cold” scenario); in both cases a fluctuation of
order (8p/p),, > 107 is required for a typical mass of say,
M :10_3Meq, so that, after growing since t.q, it reaches
at recombination® the value of 10~ needed to get the
nonlinear regime by now.

The isotropy of the cosmic background radiation then
implies

4 _ _ _ _ _
—510 1(%)1/(;: Dp(3p—1)/2(p ~1)1g27/(p ~1)
T
X 22=1/2p =173 =1 19—, 4.112)
the galaxy formation constraint yields
4 Gp—1/2p—1)127/(p—1)
Y A p=11027/p
o
XT"(ZP—I)/Z(P_1)10_1/(P—1)Z 10—5 . 4.11b)

Equations (4.11) are satisfied for any p > 1.9 provided

p P —1/(2p=D15t4p+31)/32p — 1)

< Tsp(Sp —1D/(2p =) ¥8p +33)/3(2p ~1) _

@.12)

Let us now see whether the constraints (4.3), (4.5), (4.6),
and (4.12) can be simultaneously satisfied for some values
of p (>1.9). This check has been performed in particular
for p =2 and 10.

The first case is interesting, for some recent inflationary
models do predict p~2; we shall come back to this point
in the Conclusions. The inequality (4.12) gives, for p =2,
r=10%, corresponding to a reheating temperature
T,~10% GeV, only marginally compatible with the usual
baryosynthesis constraint (this result agrees with that in
Ref. 8). The horizon and flatness problems, on the con-
trary, are safely solved, if we take a~1 (this corresponds
to a “primordial” PLI). It is however interesting to note
that a later beginning of the inflationary era (a < 10°—10%
allows the flatness problem to be solved in a “smooth”
way: namely, even values of )y not strictly equal to one
are permitted. One can verify that the latter possibility
exists only when p~2.

The value p =10 satisfies all the constraints with
7~10° (Ty~10'® GeV) and a~1; this result does not
change if we let a vary in a wide range.

For p >>10 all the constraints are well verified and, in
many respects (horizon, flatness, and shape of the spec-
trum), PLI reproduces the results of SI.
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V. CONCLUSIONS

We should like to stress again that the model we
presented in the previous sections only aims to describe
the properties of a cosmological period in which the
universe inflates with S ~#? and p > 1. Actually we did
not consider any “physics” underlying our model; in this
sense the potential V(®) that we found may be considered
as a way to mimic the source that produces the PLI for a
definite time interval. Nevertheless, as we already pointed
out, some particular physics do predict a period of PLI.

In the frame of Kaluza-Klein cosmology, for instance,
Abbott et al.'° (but, see also, Ref. 25) find that during the
compactification of the D extradimensions the scale fac-
tor of the ordinary spacetime inflates; from Ref. 10 one
can easily deduce that the inflation occurs for some time
(close to the time when the scale factor of the inner space
reaches its maximum value) with an approximated power
law in which

p~2(3+D)/(44-D), (5.1

(5.1), for large D (as in Ref. 10 is needed to get a satisfac-
tory cosmological picture), gives p~2. After some time
then, the scale factor of this model changes and grows
more than exponentially (i.e., H > 0; consequences of this
“super-inflationary” phase will be discussed elsewhere).

The exponent p =2 is also found in a model in which
inflation occurs in a “wall-dominated” universe,’ as first
noticed by Zel’dovich, Kobzarev, and Okun?® (it may be
worthwhile to point out that a possible epoch of string
dominance would not cause inflation, for it would be
p=1 in such a model?’). In any case fluctuations that
arise during wall® (string?®) dominance must be dealt with
in a different way: in fact the usual formula (3.16), which
refers to quantum fluctuations of a scalar field, cannot be
applied in this situation.

PLI, for low values of p, gives a perturbation spectrum
(4.12) whose shape is not completely satisfactory from a
cosmological point of view: in order to have power on
scales 1012—1014M@, able to form cosmic structures, we
get more power on higher scales, which mainly contribute
to the microwave background anisotropy. The ideal spec-
trum should not increase with M but should stay constant
(the well-known Zel’dovich spectrum) or decrease with M.
The last kind of spectrum may be obtained with a peculiar
inflationary model.> We shall show in a future paper that
this occurs in a super-inflationary model.
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APPENDIX

In this appendix we show how Egs. (3.10) and (3.11) are
obtained in the context of our model. This leads to an ex-
tension of the formulas (2.30) and (2.31) or Ref. 12.

Just as in SI the term ¥ +3(1+w) would be zero for
p=const; however, for times close to the reheating, one
can no longer assume it to vanish, since large variations of
E with time are expected [see Eq. (3.3)]. For scales well
outside the horizon (k /SH << 1), Eq. (3.1) can be written
in the general form

Z+(2H—H*Z~(E/E—H)Z+HZ) (A1)

that reduces to (2.27) of Ref. 12 under the approximation
]H | <<H?, which is valid during the phase when V(®)
still prevails over E (it must be noticed that even in stan-
dard inflationary cosmologies, H cannot be zero near

reheating, for otherwise @ itself would vanish). In this
approximation, (A1) admits the first integral

E =—

Z'+HZQ%—ZH , (A2)

where the overbar denotes the value of the function at
some moment 7. Integration of (A2) gives

Zin=Z lf;H(")exp [f,tlH(t”)dt”]—-Eg‘) dt'

+exp ’ (A3)

— [ HWar ]

the two terms in the square brackets can be understood as
a “growing” and “decaying” mode, respectively.?’ By
neglecting now the decaying mode in (A3), we easily get

Z(n=zED) (A4)
E
where the average symbol has the following meaning:
S(1) _
(Ea)y= [ E@)ds'/[S()-5]. (AS)

Equations (A2) and (A3) generalize (2.29) and (2.30) of
Ref. 12 to the case when H slowly changes with time.
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