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Effects of quantum fields on singularities and particle horizons in the early universe.
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The behaviors of solutions to the semiclassical backreaction equations are investigated for confor-
mally invariant free quantum fields and a conformally coupled massive scalar field in spatially flat
homogeneous and isotropic spacetimes containing classical radiation. With one exception, only solu-
tions that begin with the scale factor equal to zero are considered. It is found that in the limit that
the scale factor vanishes the presence of the massive scalar field does not result in any new types of
solutions, nor does it eliminate any. Thus the results of the first paper of this series on the existence
of particle horizons are also valid for solutions beginning with zero scale factor if a conformally
coupled massive scalar field is present. For intermediate values of the scale factor the massive sca-
lar field can significantly affect the behaviors of specific solutions. Nevertheless, no new types of
behaviors are observed and no old ones are eliminated. For large values of the scale factor it is un-

certain what the behaviors of all solutions are, but asymptotically de Sitter solutions and asymptoti-
cally classical solutions continue to exist. Particle production causes the latter to expand like
classical-matter-dominated universes at late times.

I. INTRODUCTION

It is well established that quantum fields play a signifi-
cant role in most models of the early universe. Their pos-
sible dynamical effects include the damping of anisotro-

py,
' the removal of particle horizons and singulari-

ties, and inflation. " Through particle production
they can also account for the matter in the universe.

Because'quantum fields have such an important influ-
ence on models of the early universe it is important to
determine all of the effects which can occur and to deter-
mine under what circumstances they do occur. To date,
most of the work that has been done examines either the
effects of complicated fields such as interacting fields in a
given background spacetime or the backreaction of simple
fields such as free fields on the spacetime geometry. Even
for free fields in homogeneous and isotropic spacetimes,
the complete backreaction problem has only been solved
for conformally invariant fields. For conformally nonin-
variant fields simplifying assumptions have been made.
For example, Parker and Fulling investigated the effects
of a massive minimally coupled scalar field in an other-
wise empty universe while Hu and Parker' studied the ef-
fects of gravitons in a universe containing a perfect fluid
with equation of state p=yp. r In both calculations vac-
uum polarization effects were assumed small. Hartle'
considered a massless scalar field- in a universe containing
classical radiation and dust. He assumed that the field
was nearly conformally invariant.

In this paper, we investigate the backreaction problem
for a conformally coupled massive scalar field along with
conformally invariant free fields in spatially flat homo-
geneous and isotropic spacetimes containing classical radi-
ation. Unlike previous calculations, we take all quantum
effects, that is, both vacuum polarization and particle pro-

duction, into account and we do not assume the confor-
mal noninvariance to be small. One of our main limita-
tions is that, with one exception, we only consider solu-
tions which begin with the scale factor equal to zero.
However, this limitation has more to do with the difficul-
ty involved in determining starting values for the variables
in our numerical computations than anything else. Given
these starting values, our numerical methods would work
for all solutions to the equations.

We investigate effects due to the conformally coupled
massive scalar field because the conformal coupling
makes it easier to work with than other conformally
noninvariant fields. There is also a similarity between this
field and massive spinor fields in that both become con-
formally invariant in the limit that the mass or the scale
factor vanishes. Thus, study of the massive scalar field
should provide insight into the effects of massive spinor
fields in the early universe.

The neglect of minimally coupled scalar fields and thus
gravitons' is perhaps our primary 1imitation. Prelimi-
nary work shows that many of the initial behaviors found
for solutions in Ref. 7 cannot occur if minimally coupled
scalar fields are present. ' It is not known what behaviors
they are replaced with. We hope that this work may be a
step towards the very difficult problem of solving the
semiclassical backreaction equations when minimally cou-
pled scalar fields are present.

We choose spatially flat homogeneous and isotropic
spacetimes for their simplicity and because in Ref. 8 it
was shown that, for the most part, the spatial curvature
has little effect on the early-time behaviors of solutions
when conformally invariant fields are present.

We include classical radiation to support the expansion
at late times. Since particle production does occur for the
massive scalar field it is possible that the produced parti-
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cles can support the expansion at late times without the
help of classical radiation. We shall investigate this in-
teresting question in the next paper of this series.

In Refs. 7 and 8, hereafter referred to as Papers I and
II, we saw that the study of conformally invariant quan-
tum fields in homogeneous and isotropic spacetimes al-
lows one to address the questions of whether the universe
began with an initial singularity and whether it has parti-
cle horizons. It was found that solutions both with and
without particle horizons and singularities exist for vari-
ous values of the regularization parameters a and P. The
results are summarized in Table I of each paper. All
values of a and /3 were considered in Paper I and most
values were considered in Paper II because a and 13 for the
early universe are unknown. This, in turn, is because their
values depend on the number and types of fields present
and, for spin-1 fields, on the regularization scheme used.

The massive scalar field makes a positive contribution
to both a and P and adds new mass-dependent terms to
the backreaction equations. Since the behaviors of solu-
tions for all a and P are known when the mass-dependent
terms are absent, it is the effects of these terms we shall be
concerned with in this paper.

We show that, for universes which begin with the scale
factor equal to zero, all of the initial behaviors found in
Paper I still occur when a conformally coupled massive
field is present and no new types of initial behaviors
occur. Thus those results having to do with particle hor-
izons go over unchanged. Since, with one exception, we
consider only solutions which begin with the scale factor
equal to zero and since the energy density of the classical
radiation diverges in this limit, the solutions we investi-
gate begin with initial singularities. The exception also
begins with an initial singularity.

For intermediate values of the scale factor we find that
the massive field can affect the behavior of solutions al-
though it does not always do so. However, all of the
behaviors found for m =0 still occur and no new types of
behaviors have been observed.

For large values of the scale factor, when only confor-
mally invariant fields are present, various authors have
found several types of behaviors. Fischetti, Hartle, and
Hu found that asymptotically classical solutions (ACS)
exist, for all a and P, which at late times expand like
radiation-dominated universes. However, these are unsta-
ble to small perturbations in their initial conditions. In
Paper I it was shown that if a,P&0 then asymptotically
de Sitter solutions which are stable to perturbations in
their initial conditions occur. Starobinski showed that
for a (0, P & 0 unstable asymptotically de Sitter solutions
exist along with stable solutions which at late times ex-
pand like matter-dominated universes and stable solutions
which expand so fast that the scale factor becomes infinite
in a finite amount of proper time.

Our results for the massive field are less certain in the
limit that the scale factor becomes large than they are for
small and intermediate values. Nevertheless, we find that
the ACS still exist, and that for a) 0 they are still unsta-
ble. However for a (0 they are stable. It has been specu-
lated' that particle production may prevent "runaway"
solutions such as asymptotically de Sitter solutions from

occurring. We find that such solutions still occur and
that for a, I3&0 they are probably still asymptotically de
Sitter.

To compute the backreaction of the quantum fields on
the spacetime geometry, which we treat as a classical
field, we use canonical quantization and the semiclassical
approximation to quantum gravity. To regularize the ex-
pectation value of the stress-energy tensor operator for the
massive scalar field we use adiabatic regularization.
These topics are reviewed in Sec. II. In Sec. III we derive
and discuss the semiclassical backreaction equations. In
Sec. IV we discuss solutions to the wave equation for the
massive scalar field as well as solutions to the semiclassi-
cal backreaction equations which begin with the scale fac-
tor equal to zero. The behaviors of solutions in the limits
that the scale factor vanishes, has intermediate values, and
has large values are discussed separately.

II. REVIEW OF CANONICAL QUANTIZATION
. AND ADIABATIC RECsUI.ARIZATION

In this section we present brief reviews of canonical
quantization in curved space and adiabatic regularization.
For more thorough reviews see Ref. 17 and references in-
cluded therein. %'e begin with canonical quantization and
tailor our remarks to the specific case of a conformally
coupled massive scalar field in a spatially flat homogene-
ous and isotropic spacetime.

The starting point for canonical quantization is the
wave equation which for the conformally coupled scalar
field is"

P —(m + —,R)/=0. (2 1)

Here m is the mass of the field and R is the scalar curva-
ture. In general, a complete set of mode solutions to (2.1)
can be found and the field P can be expanded in terms of
them.

For spatially flat homogeneous and isotropic spacetimes
the metric can be written

ds =a (g)( dpi +dx ), — (2.2)

where a(rI) is the scale factor. Then the mode solutions
of (2.1) are of the form

uq(g) =(2m. )
i e'"'"a '(q)g(g)

and the field is given by

(I)= fd k[agul, (g)+aguf, (g)] .

(2.3)

(2 4)

Substitution of (2.3) and (2.4) into (2.1) results in the fol-
lowing equation for g:

2+(k +m a )/=0. (2.5)
de

The modes u & are required to be orthonormal with
respect to the conserved scalar product

(Pi, $2) —= i fd x a —(ri)[giB&$2 —(B„gi)$2] . (2.6)

That is,

(ul„ul, )= —(u f„uf, )=6 (k —k')



1304 PAUL R. ANDERSON 32

is satisfied.
To quantize the field one imposes the commutation re-

lations

[ak ak']=[ak ak']=o

[ak ak'] =5 (k —k') .
(2.8)

and (uk, uk ) =0. These relations are satisfied by modes of
the form (2.3) so long as g is chosen so that the condition

(2.7)

Here G,b is the Einstein tensor and l—:(16m.G)' is the
Planck length. T,'b is the stress-energy tensor for any
classical fields and T,'P is the stress-energy tensor opera-
tor for the quantum fields. The expectation value is taken
with respect to whatever states the fields are in.

For the massive scalar field, T,P is formed by substi-
tuting (2.4) into the classical expression for T,b for a con-
formally coupled massive scalar field. If the field is in
some n particle state then

&TS &=&oI TRIO&+ fd k&kTabfuk ukl (214a)

The vacuum state is then defined as the state for which Io&=fd'k T.b[us uk] (2.14b)

a„l o& =o (2.9)

p= fd k[akuk(g)+aku k(g)] (2.10)

and the vacuum state is defined by ak I
0) =0 for all k.

Because of completeness, the two sets of modes uk and uk
are related by the Bogolubov transformation

uk(g) ~kuk( ))+Ikuk(9) (2.1 1)

where ak and 13k are constants. One can compare the two
vacuum states by noting that the number operator for the
barred states is N= f d k a kak. Taking its expectation
value with respect to the unbarred vacuum, one finds

for all k. Other states are built up from this state by act-
ing on it with various combinations of creation operators
a~.

In general, the field may be decomposed into many dif-
ferent complete sets of modes and each of these sets has
its own vacuum state. Suppose we label one such set of
modes as uk(g). Then, in terms of these modes the field
1S

Q = (2 W) ' exp i f W (g—')d ri'

This means that W must satisfy the equation

W2=cg2 ——'(W 'W ——W W )

(2.15)

(2.16)

where co =—k +m a and dots denote derivatives with
respect to r). For large values of co and/ or if a (g) is slow-
ly varying, Eq. (2.16) can be solved approximately by
iteration. The result is

where nk is the number of particles in the kth mode and
T,b [u k, u k ] is the classical expression for the stress-
energy tensor of the massive scalar field as a bilinear
function of u1, and u~.

The quantity (0
I
T,b I

0) is divergent and must be
regularized. There are several ways to do this, but the one
most amenable to numerical calculations is adiabatic regu-
larization. We shall review it next.

One starts by assuming a solution to the wave equation,
(2.5), of the form

& o
I
N

I
o & = fd'k

I
13k

I

' . (2.12)
W= co ——,'co m (aa'+a )+ —', co m a a +

Thus, the number of barred particles in the unbarred vac-
uum in the mode k is I/3k I

. Similarly, the number of
unbarred particles in the barred vacuum in the mode k is

There are two points which should be understood with
respect to vacuum states in curved space. The first is
that, in general, it is uncertain what criteria should be
used in choosing a vacuum state. The problem is that
many of the criteria used for Minkowski space such as
Lorentz invariance and positive frequency with respect to
a timelike Killing vector no longer apply in curved space.
Second, if there is some "natural" choice of.vacuum when
the spacetime begins it does not in general correspond to
the natural choice of vacuum when the spacetime ends.
That is, the "in" vacuum state and the "out" vacuum
state are different. This leads to particle production as
can be seen from Eq. (2.12).

Once the field has been quantized, one uses a semiclas-
sical approximation to quantum gravity to compute its
backreaction on the spacetirne geometry. ' The approxi-
mation we use keeps the geometry classical and modifies
Einstein's equations to read

G ( Tcl + ( TQM ) )0 2 0 (2.13)

(2.17)

«I T'olo&=(4~'a') 'f, dkk'(ill'+~'I&l'»

(O
I
T

I
O) =(2~'a')-'m' f dk k'

I g I

',
(2.18a)

(2.18b)

where the superscript QM has been dropped for simplici-
ty. Homogeneity and isotropy allow one to deduce the
other components of (0

I
T,b I

0) from these. By substi-
tuting (2.15) and (2.17) into (2.18), approximate expres-
sions for (0

I
T,b I

0) can be obtained. We shall denote
these by (0

I
T,'b I 0). Because (2.17) is exact in the limit

kazoo, all the divergences in (0
I T,b I

0) also occur in
(0

I
T,'b

I
0) so long as terms up to adiabatic order four

Clearly, each new iteration of (2.16) adds terms with two
extra derivatives in them to 8' . The number of deriva-
tives a term has gives its adiabatic order. Thus, in Eq.
(2.17) we have explicitly shown terms up to and including
adiabatic order two.

In a spacetime with the metric (2.2), (0
I
T,b I

0) for the
massive scalar field is given by
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are kept. It is easy to show that all terms of higher adia-
batic order give finite contributions to (0

~
T,'b '

~

0).
Adiabatic regularization consists of truncating the ex-

pansion (2.17) at adiabatic order four, computing

(0
~
T,'b '

~

0) and subtracting it from (0
~
T,b ~

0). Al-
though this method may seem a bit ad hoc, Birrell has
shown that it is equivalent to point splitting. For the
metric (2.2) Bunch ' finds that

4 ~ 2 Ill a a Pl
(0~ To'"' ~0) =(4' a") ' f dk k co+ — (2a a ii a' a—

' +4aa a' —a )
0 8' 32'

7m 3. 2.. 2. 4 105m a a"
+ aa a'+aa

16' 128co"
(2.19a)

(Q~ T' '~Q) =(2~ a2) 'm f dk k
0

2 4 2

+ (a a+a a )— „a a + (a a'+4a aa'+3a a' )8' 16' 32co

4

+ 9 (28a "a ii +126a a a'+21a a +21a a )
64m

231m s 2" 4 ~ 4 1155~s
6 4(a'a 'a'+a4a ')+ a'a 4

64co" 256M'
(2.19b)

The first term on the right in each of these expressions
is divergent while the rest are finite. If the integration is
performed then it is seen that the second term on the right
in each expression is proportional to G 0 and —R, respec-
ts.vely. Such a term also occurs in the adiabatic stress ten-
sor for Bianchi type-I spacetimes. Fulling et al. suggest
that it corresponds to a finite renormalization of the grav-
itational constant. We shall treat it as such, and therefore
will leave this term out of the backreaction equations.

The other terms in Eqs. (2.19) are all independent of the
mass once the integration over k has been performed.
Thus, they are' exactly the same terms as occur for the
conformally invariant scalar field. This ends'our review
of canonical quantization and adiabatic regularization.

III. DERIVATION AND DISCUSSION
OF THE BACKREACTION EQUATIONS

The backreaction equations for the semiclassical ap-
proximation to quantum gravity are given by Eq. (2.13).
To find their specific form for universes with the metric
(2.2) which contain classical radiation, conformally invari-
ant free quantum fields, and the conformally coupled
massive scalar field one must find expressions for the
quantities on the right-hand side of (2.13).

The stress-energy tensor for classical radiation in space-
times with the metric (2.2) is

e —ikg

(2k)1/2 (3.2)

Finally, for the conformal vacuum in conformally flat
spacetimes the regularized expression for (0

~
T,b ~

0) is
well known to be

geneous and isotropic spacetimes the second piece has the
same form as T,b in (3.1). The proof of this 1s as fol-
lows: Homogeneity and isotropy require that in a comov-
ing frame T,'b' be diagonal and have the components—T o=p, T,=T z

——T 3 ——p, where p and p are func-0 I 2 3

tions only of time. Conformal invariance implies that
T', =0, so p= —,p. Conservation implies that T'.I, ——0
and this gives the relation (pa ) = —p(a ) . Together
these relations uniquely fix the form of T,'b' to be that
given in Eq. (3.1).

Thus without loss of generality, we can take the confor-
mally invariant fields to be in their vacuum states. The
preferred choice of vacuum for conformally invariant
fields in conformally flat spacetimes, such as those with
the metric (2.2), is the conformal vacuum. It is obtained
by conformally transforming the standard Minkowski-
space modes to the curved spacetime and using them to
define the vacuum state. For the conformally invariant
scalar field in our metric, these conformally transformed
modes are given by Eq. (2.3) with

T CR — —4( )d ( 1
& 1 (3.1)

where p„ is a constant. For conformally invariant fields
( T,b ) breaks up into two pieces for any n-particle state.
As in (2.14a) for the massive scalar field, one of these
pieces is (0

~
T,b ~

0) and the other, call it T,'b', depends
on the number and distribution of the particles. In homo-

(0
~

Tab
~
0)

3
(gabR;a R;ab+RRab 4 gabR ')

+P( —,RR,b R, 'Rb, —

1 cd+ z gabRcaR' 4gabR ) . — (3.3)
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Combining Eqs. (2.3), (2.5), (2.13), (2.14a), (2.18), (2.19),
(3.1), (3.3), and (3.4) and dropping the carets one arrives at
the following set of coupled equations which determine
the backreaction of the fields on the spacetime geometry:

g"+6(k +m l b )/=0,
b' 1 a b'"b'
b4 b4 3 2b6

b b' 1 b"
b7 4

2

(3.5a)

p b'

12 b2
(3.5b)

btl = CX
b3

b"" 1 b"'b'

12b 3 b
+—

2
1 b" 1 bb'
4 b' 2

4
p b' bb'

b2 b7
—I2, (3.5c)

Here g b is the metric tensor and R,b is the Ricci tensor.
For the scalar field p=a=(2880m ) ', for four-
component spinor fields

I3= —,a= 1 1(2880m )

and for the vector field dimensional regularization gives

P= ', —a=62(2880m )

while zeta-function regularization gives

P= ——,a=62(2880m )

Note that regularization breaks the conformal invariance
so (0

i
T

i
0)&0.

To obtain a regularized expression for (0
~
T,b ~

0) for
the conformally coupled massive scalar field, we can sub-
tract Eqs. (2.19) from (2.18). The resulting expression
along with the modes (2.3) can be substituted into (2.14a)
to give (T,b).

Before writing down the set of coupled equations that
we shall solve it is useful to define scale-invariant vari-
ables. As in Paper I these allow us to scale the amount of
classical radiation, p„, out of the equations. The variables
which accomplish this are

b I
—1——1/4

Pr a,
6—1/2 —1/4

Pr
(3.4)

k=p, '/ k,

the sum of a and p for each of the conformally invariant
fields plus a contribution of (2880m )

' to both from the
massive scalar field. Thus the massive scalar field adds
terms to the backreaction equations which are the same as
those contributed by a conformally invariant scalar field.
The massive field also contributes the terms I1 and I2. If
m =0, I2 ——0 and if nk ——0 as well, I~ ——0. If m =0 but
nk&0, I& ~b as was shown in the beginning of this
section.

Before discussing the behaviors of solutions to Eqs.
(3.5) it is useful to say a few words about the number of
solutions we expect to find. Orthonormality of the modes
implies that 1l must satisfy Eq. (2.7). Since (3.5a) is a
second-order equation, this effectively leaves a one-
parameter family of solutions. The specification of this
parameter for each value of k corresponds to a choice of
vacuum state. The specification of nk in I

&
and Iz for

each k then gives the state that the field is in.
All three equations are explicitly independent of X so

that solutions are always invariant under the translation
7+70, where Xo is an arbitrary constant. The equa-

tions are also invariant under the transformation g~ —g,
although their solutions in general are not. Equation
(3.5c) is a fourth-order equation so one expects a four-
parameter family of solutions to it for a given choice of
vacuum and of nk. However, the constraint equation,
(3.5b), takes care of one of these parameters and the in-
variance of solutions under time translation takes care of
another. Thus, one effectively has a two-parameter fami-
ly of solutions to Eq. (3.5c). When we talk about families
of solutions in the next section, it is this effective two-
parameter family that we shall be referring to.

IV. SOLUTIONS
TO THE BACKREACTION EQUATIONS

In this section we discuss those solutions to the backre-
action equations, (3.5), which begin with b =0 for a&0.
We also discuss the solutions that occur for a=O, p&0;
these begin at nonzero values of b. Because different
techniques are used to analyze the behavior of solutions
for small, intermediate, and large values of b, we discuss
each of these cases separately. For intermediate and large
values of b, we restrict ourselves to solutions that occur if
p&0. This is because all regularization schemes for the
fields give p&0. For small values of b our results are
general.

where primes denote derivatives with respect to 7 and

Iq =(4mb") 'J d—kk I. [ —,
'

[@'/ +(k +m l b )/@/ ]

/(1+2/k) (k +m l2b } ~
]

m l
I2 —= I dkk [ ~gi (I+2nk)

4~ b

——'(k +m lb )
' ].

The values of u and p in these equations are equal to

A. Solutions in the limit b~o

The chief difficulty in finding solutions to Eqs. (3.5)
lies in the fact that analytical solutions to Eq. (3.5a) are
difficult to find for arbitrary functions of the scale factor
and when found tend to be nonlocal. Thus, one is led to
do background-field calculations or numerical computa-
tions. The limit b~O is an exception in that, for this
case, analytical solutions to (3.5a) can be found and the in-
itial behaviors of solutions to (3.5c) can be determined.
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From the initial behaviors one obtains starting values
which can be used for numerical integrations of the equa-
tions. We describe these numerical integrations and the
results obtained from them in the next subsection.

In the limit b ~0, Eq. (3.5a) has the general solution

g= 3 exp( i—6'~ kX)+B exp(i6'~ kX)

—m l 6'~ k ' j du b (u)sin[6'~ k(X —u)]g(u),

(4.2)

f=A exp( i 6'~—kX)+B exp(i6' kX), (4.1)

where b(w)=0. Substitution of (4.2) into (2.7) at X=w
gives the condition

[
A

[
—[B [

=(2k) (4.3)

where A and B are arbitrary constants. This allows (3.5a)
to be written as the Volterra equation:

Equation (4.2) can be solved iteratively with the result
that

11 = A exp( —i6'~ kX)+B exp(i6'~ kX)

( 1 )
n

( m i )
alt 6n /2k —II

n=1

X I dumb (u~)sin6' k(X —u~)
W

Q( Q

X du2b (u2)sin6' k(u~ —u2) . du„b (u„)sm6' k(u„~ —u„)
W N

X [3 exp( —i6' ku„)+B exp(i6'~ ku„)] . (4.4)

By bounding all of the sines and complex exponentials by unity we find that
x

i/i &2(iA i+iB i)exp m 1 6' k 'f dub (u) (4.5)

So the series in (4.4) converges if J du b (u) is finite. This is the case for all the solutions to Eq. (3.5) that begin with
b =0.

The vacuum state for the field is specified by choosing for each value of k values of A and B such that (4.3) is satis-
fied. In the limit b~0, the wave equation (2.1) is conformally invariant. Thus an obvious choice of vacuum is the one
which reduces to the conformal vacuum, (3.2), in the limit b ~0. It is given by

A =(2k) 'i, B =0 . (4.6)

This vacuum has several properties that make it particularly attractive as an 'in" vacuum state. First, it is the only
one which reduces to the conformal vacuum in the limit b ~0. Second, it is the only one for which the expectation value
of the stress tensor does not have a piece that behaves like classical radiation as b~O. To see this one can substitute
Eqs. (4.4), (2.3), and the difference of Eqs. (2.18a) and (2.19a) into Eq. (2.14a). The result is

—(T 0) =(4m l b ) '2 J dk k [[ ~

A
~

+ ~B
~

+AB'exp( i 24' kX—)+A*Bexp(i 24' kX)]

X(1+2nk) —(2k) '+O(m2l~b~)]+terms which are independent of m . (4.7)

Only if
~

A
~

=(2k) ' and B=nk ——0 is there no term
in (4.7) that is proportional to b . Thus for all other
states the stress energy of the field behaves as though par-
ticles were present in the limit 6~0.

There are two other reasons (4.6) is an attractive choice
of vacuum. First, for de Sitter space where
b cc (XD—X) ', (4.6) gives the standard de Sitter-invariant
vacuum. '7 Second, for spacetimes with b ~ e', one finds
that (4.6) is identical to the Chitre and Hartle vacuum de-
fined by computing the propagator using a path integral
and summing. over paths only to the future of the initial
singularity.

For all of these reasons, this is the vacuum state that we

chose for the numerical work described in the next subsec-
tion. However, the behavior of solutions in the limit
b~O is qualitatively the same regardless of what initial
state is chosen for the field, so long as ( T 0) is finite for
b ~ O. This is because, except for the terms which are in-
dependent of the mass, the most divergent terms in (4.7)
go like b . This means that the dominant effect of the
mass terms is to effectively change the amount of classical
radiation in the universe. This changes the quantitative
behavior of solutions in the limit b~O, but it does not
lead to new types of solutions as was shown in Paper II.
As already pointed out, the terms independent of the mass
simply increase the values of a and P in Eq. (3.5b).
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Thus the presence of the conformally coupled massive
scalar field does not lead to any new types of behaviors in
the limit b —+0 and it does not rule out any old ones, re-
gardless of what state the field is in. So all of the initial
behaviors found in Paper I for spacetimes beginning with
b =0 still occur. This means that the results of Paper I
on the numbers of solutions with and without particle
horizons that begin with b =0 are unchanged by the pres-
ence of a conformally coupled massive scalar field.

B. Intermediate values of b

0.20—

O. I 5—

O. I 0—

To determine what effects, if any, the mass terms in
(3.5) have on solutions for intermediate values of b, we
used the solutions in Paper I along with (4.4) and (4.6) to
obtain starting values for numerical integrations of Eqs.
(3.5a) and (3.5c) using (3.5b) as a constraint.

Because we were interested in particle production ef-
fects and because it is a case of obvious interest we as-
sumed the massive field was in the "in" vacuum state
given by (4.6). We assumed @~0 because all regulariza-
tion schemes give positive values of P for the fields we are
considering. For intermediate values of b, the mass terms
I~ and I2 tend to be small compared to other terms in
(3.5b) and (3.5c). To maximize the effects of these terms,
we limited ourselves to the values

~

a
~

=(2880m ) ', 0 be-
cause these are the smallest possible values for

~

a
~

that
any regularization scheme gives. Although smaller
masses were investigated, most of the numerical work
done was for ml = 100 because this was the smallest value
for which significant changes in the solutions were regu-
larly observed. We display some of our results in Figs.
1—5.

The structure of this subsection is as follows. First we
describe the numerical scheme used to solve Eqs. (3.5) and
estimate its accuracy. Then we discuss the solutions
which begin with b =0, for a&0, P&0. Finally we dis-
cuss the solutions for ct =0, P ~ 0.

0.05—

0.0
0.0 0.05 O. I 0 O. I 5 O.20

FIG. 2. This figure shows three typical solutions to Eqs. (3.5)
when /3=3a=3(28807r ) '. The dashed curves are solutions for
m =0 while the solid curves are solutions with the same initial
values for ml =100. The dashed curve on the top right is an
ACS.

b" are provided by the solutions found in Paper I. That
for b"' is supplied by Eq. (3.5b) and those for P and P' are
supplied by Eqs. (4.4) and (4.6) except for the case a=O
which will be discussed separately.

Given the starting values, one solves the equations in
the usual manner by breaking them up into a series of
first-order equations and numerically solving them. The
only difficulties lie in computing the integral I2. To com-
pute it numerically one must know g for several values of
k, which means that (3.5a) must be solved for several
values of k. Further, as kazoo, the f ~

term in I2
comes closer to canceling the (k +m l b )

'~ term, so
that for large k the value of

~ P ~

must be known very ac-

1. Description of the numerica1 methods

To solve Eqs. (3.5a) and (3.5c) one must have initial
conditions for X,P,g', b, b', b",b"'. Those for X, b, b', and

0.20—
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O.(0-
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0.0
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I
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I
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I
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I
I
I
I

I
I
I
I
I

I

0.6 0.8

O. l5—

O. IO—
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0.0 0.05 O. l 0 O. I 5 O.20

FICi. 1. This figure shows three typical solutions to Eqs. (3.5)
when P=6a=6(2880m ) '. The dashed curves are solutions for
m =0 while the solid curves are solutions with the same initial
values for m/=100. The dashed curve on the top right is an
ACS. Each solution undergoes an infinite number of multiple
bounces.

FIG. 3. This figure shows three typical solutions to Eqs. (3.5)
when )33=a=(2880~ ) '. The dashed curves are solutions for
m =0 while the solid curves are solutions with the same initial
values for ml =100. The solid curve on the top right is an ex-
ample of a solution for which, on the scale of this plot, the
m =0 and ml = 100 curves coincide.
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curately. Finally one must put some kind of ultraviolet
cutoff on I~ since a finite number of values for k must be
used.

These difficulties put severe restraints on solutions that
can be obtained numerically. First, one must simultane-
ously solve a large number of equations to get an accurate
value for Iz. Second, as can be seen by examination of
the wave equation (3.5a), only for k»mlb does the

~ g ~

term in I2 approximately cancel the (k +I 1 b )

term. Thus, if one wishes to evolve the spacetime to large
values of b or consider a large value of m, the cutoff must
be correspondingly large. However, a large cutoff means
that for small values of b, more equations must be used to
compute I2 accurately. A large cutoff also means that
the system must be evolved more slowly because the solu-
tions to the wave equation for large k oscillate with a fre-
quency of 6' k(2m) ' so smaller time steps must be
used. Thus, a factor of 10 increase in the mass or in the
maximum value of b that a solution is integrated out to
usually results in a factor of 100 increase in the comput-
ing time.

%'e were able to greatly improve the accuracy of Iz by
noting that for large k, the series in Eq. (4.4) is really an
expansion in powers of k '. By substituting the first few
terms of (3.5c) into I2 with a lower limit cutoff A, and an
upper limit cutoff of the form e ", one findsin the limit
0.~0 that

b
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FIG. 4. This figure shows three solutions to Eqs. (3.5) for
f'= —a=(2880+) '. The dashed curves are solutions for
m =0 while the solid curves are solutions with the same initial
values for ml =100. The solid curve on the left is an example of
a solution for which, on the scale of this plot, the m =0 and
ml = 100 curves coincide.

0.30
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O. I 5
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x
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FIG. 5. All solutions in this figure begin at +=0 with a finite value of b and b and an initial singularity. The plot on the left
shows two solutions to Eqs. (3.5) for a=0 which occur when the plus sign in Eq. (4.9) is chosen. The solution on the left is that for
m =0 and is asymptotically de Sitter. That on the right is for ml =72 and is probably also asymptotically de Sitter. For ml )75,
solutions end at finite values of b and b with a final singularity. The plot on the right shows three solutions to Eqs. (3.5) for a=0
which occur when the minus sign in Eq. (4.9) is chosen. From top to bottom the solutions are for ml =70, 50, 0. The solution for
ml =0 is an ACS and the solution for ml =50 is probably also an ACS. For ml =70 it is uncertain whether the solution is an ACS,
asymptotically de Sitter or something in between. For ml )80 solutions end at a finite value of b and b with a final singularity.
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Nl I ]y2 2I2,„, ,———
2

y+24' b f du in[24' A(X —u)][ 6 '/ b(u)b'(u)cos[24'/ A(g u—)]
16m W

+ 2Kb (u)sin[24'/ A(g —u)] j (4.8)

where y is Euler's constant. By bounding higher-order
terms in I2 „„„onecan also obtain an estimate of the er-
ror in I2.

To check the accuracy of our numerical scheme we
computed I2 for de Sitter space where the answer is
known. ' We found that without I2,„„„and with 20
equations, we could always come within an order of mag-
nitude of the correct answer and were often much closer.
Without Iq,„„„and with 100 equations we could come
within about 10%%uo of the correct answer and with 100
equations and I2,„„„wecould come within at least 5%
of the correct answer. Unfortunately, for more than 2000
time steps the integrals in I2 „„„require a great deal of
computer time since they must be evaluated at each time
step. So for the runs used for Figs. 1—4, I2,„„„wasnot
computed. Nevertheless, both runs with 20 values of k
and 100 or 200 values of k were done for each solution
plotted and with the exception of the solution on the top
left in Fig. 3 the differences are not apparent on the scale
of the plots.

Having discussed the numerical scheme used to solve
Eqs. (3.5) we now discuss our results.

2. Solutions for a&0.

conditions, are shown in Figs. I—4.
From these figures, one can see that m &0 can cause a

solution to either diverge more quickly than it was or to
diverge less quickly and even turn over. This is dependent
on the sign of a and on whether I2 is positive or negative.
In the limit b~0, I2 is positive and it is observed to
remain so much of the time. Thus, for a & 0 solutions are
more likely to be turned over and for a &0 they are more
likely to be made to diverge more quickly.

3. a=0

I

As for the case a&0, we shall. only consider values of
p&0 in this case. To maximize the effects of I& and Iq
in Eqs. (3.5b) and (3.5c) we chose P=(2880m )

' for our
numerical work since this is the smallest value of /3 any
regularization scheme gives for any field.

When a=O, the higher derivative terms in (3.5b) and
(3.5c) vanish and one is left with two solutions rather than
a two-parameter family of solutions. To see this one sim-
ply solves (3.5b) algebraically for b' with the result:

As shown in Paper I, if a&0 then there is always a
two-parameter family of solutions which begin with
b =0. We showed in Sec. IV A that their behaviors in the
limit b~O are completely unaffected by the mass terms
in (3.5c) if the field is in the vacuum state specified by Eq.
(4.6).

For larger values of b, our numerical work shows that
I2 can be large enough to significantly affect the
behaviors of solutions, but that for most solutions it is
not. This is because for most solutions b"" is observed to
be relatively large and if it does pass through zero it does
so very quickly. However, solutions are significantly af-
fected if b"" is relatively small for some period of time or
if the solutions are unstable. In particular, for a&0 the
ACS are unstable and Iz changes their behaviors even for
relatively small values of m.

Even though the mass term in (3.5c) does change the
behavior of 'some solutions, the types of behaviors which
can occur are left unchanged. Thus, for /3& 3a & 0 solu-
tions beginning with b =0 still undergo multiple bounces.
For 0 & p & 3a, solutions continue to either expand mono-
tonically, reach a maximum and collapse to a singularity,
or reach one maximum followed by a minimum and then
expand monotonically. For a &0, p&0 solutions contin-
ue to either diverge quickly or undergo an infinite number
of phase plane oscillations while expanding monotoni-
cally. Some examples of the ways that particular m~O
solutions differ from m =0 solutions with the same initial

(6/P)1/2( 1+[1 (P/3)(b —4+I )]I/2j 1/2 (4 9)

For m =nk ——0, I] ——0 and the solutions begin at
b =(p/3)'/ with b'=(6/p)'/ . Substitution into (3.5c)
shows that

~

b"
~

is initially infinite so these somewhat
pathological solutions begin with an initial singularity.
By expanding (4.9) in powers of b ' it is seen that the
solution with the plus sign is asymptotically de Sitter
while that with the minus sign is an ACS. Thus, despite
the pathology of these solutions they give us an ideal
chance to see what effects the massive field has on ACS
and asymptotically de Sitter solutions when the instabili-
ties which result from the b"" and b"' terms in (3.5b) and
(3.5c) are not present. However, because of the square
roots in (4.9) one must be careful about the generalization
of these results to the case a&0. In particular, if enough
particle production occurs soon enough or if vacuum po-
larization effects get too large then I] becomes large caus-
ing b' to become imaginary. If this happens then b" be-
comes infinite and the solution ends at a finite value of b
and b' with a final singularity.

Examination of (4.9) shows that only if I»b as-
b ~0, do the solutions begin at b =0. In fact, in the limit
b~O, one can see from (4.7) that for most states I~ &0.
Thus the solutions begin at b=bo for some b0~0. For
such solutions Eq. (3.5a) can again be written as a Volter-
ra equation and solved iteratively with the result:
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C —s6'~'mx+D t6'~'ax

00
/2

X Q

+ g( —1)"(ml) "6"~ co "J du, . J du„{ [b (u)) b—p ] . . [b (u„)—bp j
n=1

~ sin6' co(X—u ~ ) . sin6' ro(u„~ —u„) J

—r6~ mu i6 mu
(4.10)

Here ~2 Q 2+~ 2$2b 2

The obvious choice of vacuum state is that which corre-
sponds to the Minkowski vacuum in the limit b~bo. It
is given by

C=(2')
(4.11)

If the field is in this state initially then at b =bo,
I~ ——I2 ——0, and the solution starts off at the same value of
bo as it does for m =0, with the same initial value of b'.

To maximize the effects of particle production and vac-
uum polarization due to the massive scalar field, we chose
the field to be in the vacuum state (4.11). The results of
our numerical work for P=(2880m. )

' are shown in Fig.
5. From that figure one can see that the asymptotically
de Sitter solution still expands rapidly for m&0, but the
expansion is slowed. For m/) 7S, b' decreases to the
point that it becomes imaginary and the solution ends
with a final singularity. In a less pathological situation
the solution would probably continue to slow its expan-
sion; however, if it reached the de Sitter phase, then as we
shall argue in the next subsection, it would probably still
be asymptotically de Sitter. For rnl &1, the solution is
essentiaHy unaffected and I2 is observed to always be
several orders of magnitude smaller than the leading
terms in (3.5c).

For the ACS, one sees from Fig. 5 that the mass terms
make the solution expand faster. For ml) 80, I& be-

. comes too large and the solution ends with a final singu-
larity. For ml -70, I2 quickly dominates the other terms
in (3.5c) and the expansion is faster than for a matter-
dominated universe, for which b =const(X —Xp), but
slower than for a de Sitter universe, for which
b =const(Xp —7) '. For smaller masses, the matter dom-
inates later and one has a situation such as occurs for the
ACS if a&0, where the universe smoothly goes from be-
ing radiation dominated to matter dominated. It becomes
matter dominated because of particle production due to
the massive scalar field.

C. Large values of b

%'e have seen that for intermediate values of b, the
massive scalar field can drastically alter the behavior of
individual solutions to Eqs. (3.5) but that it does not give
rise to any new types of behaviors. For large values of the
scale factor our results are not as conclusive, but we shall
argue that all of the large-b behaviors found for m =0

probably still occur for m &0 although they may be modi-
fied somewhat.

I. ACS

(bcbc ')'=bc '+~i .

We shall show that to leading order

(4.12b)

I =cb +m l (576m ) '(b'b ) (4.13)

for some positive constant c which depends on the state
the field is in and the past behavior of the solution. Thus
in the limit bazoo, b, is a solution to the backreaction
equation for a classical Friedmann universe containing ra-
diation and matter. This is why the solutions in (4.12a)
are ACS.

To compute I& one needs expressions for the modes f.
It might at first appear that the adiabatic approximation
can be used, but this is not correct. Writing Eq. (4.12a) as
b =b, +b &, one sees that although

so that the adiabatic approximation is not valid.

The one type of behavior that occurs for all values of a
and P if m =0 is that exhibited by the ACS. At late times
they expand like radiation-dominated universes, so
b =7+70, where Xo is an arbitrary constant.

If m&0 we shall show that for a &0 a one-parameter
family of ACS exist and' for a & 0 a two-parameter family
of ACS exist for a large number of states that the massive
scalar field can be in. Unfortunately, our argument gives
no insight into which initial behaviors and which initial
states result in ACS. It is possible, for example, that there
are ACS for all reasonable initial states that the massive
scalar field can be in. The numerical work described in
Sec. IVB indicates there are ACS for the vacuum state
given by (4.6) if a &0 and that there are likely to be ACS
for this state if a & 0 as well.

For a & 0 there is a one-parameter family of ACS with
the late-time behavior

x
b=b, +A~b, '~'exp —2r ' b, dX, (4.12a)

where A is an arbitrary constant and w—:
~

a/3
~

' . Sub-
stituting (4.12a) into (3.5b) and assuming that
b, »

~
b,

'
~

&&
~

b
~
&&, one finds that to leading or-

der the equation satisfied by b, is
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go+6(k +m l b, )/=0
and it is assumed that

(4.14)

However, expressions for the modes can be obtained in
the following way. Write /=$0(1+h ~ +hz+ ),
where Po is a solution to the equation

»& I~i I » I+z I
». . .

Then substitute this expression for p into (3.5a) and im-
pose the boundary conditions h;, h ~0 as b ~~. If only
terms of O(b& ) and O(h

&
) are kept then one has a linear

equation for h
&

which can be solved with the result

x —2 2"& =c~+ &utero (u~) cz —12 duz1to (uz)b, (uz)b, (uz) (4.15)

b, » i &,
'

i
»

i &,
"f»

the adiabatic approximation is valid for fo. Since tPO will not be in an adiabatic vacuum state one finds from Eqs. (2.11)
and (2.15) that, in general,

tto=(2W) '~ al, exp i 6' —f W dX +PI,exp i 6' f W ~X (4.16)

where c~ and cz are chosen so that the lower limits of the integrals are canceled, that is, so that h
&

and g', have no con-
stant pieces. Substituting this back into (3.5a) one next obtains an equation for hz and so on. Finally, the resulting ex-
pression for f is substituted into the expression for I I which appears below Eqs. (3.5).

One still needs an expression for otto, but since

where fV is given by Eq. (2.17) and Eq. (2.7) implies that
I
t ~ I

' —I)'-ll
I

'=I
Substituting (4.14) and (4.15) into I~ one can show that

to zeroth order in h& and b~ the leading-order contribu-
tions to I& are of the form

(2m b, )
' f dk k W~P»

~
+m I (576m)'(b, 'b,' .

)

After some calculation one finds that to first order in h
&

and b~, the leading-order term can be found by setting
PI, ——0 and can be bounded by ml (96m ) 'b, b,

' 6 &.

Thus, for large b, the zeroth-order terms dominate and I
&

is given by Eq. (4.13).
For a ~0, the ACS have the late-time behavior

xb=b, +BE, '~ cos 2r ' b,dX+6, (4.17a)

where B and 5 are arbitrary constants. Substitution of
(4.17a) into (3.5b) shows that to leading order b, is a solu-
tion of the equation

(blab, ) =b, +I]+4B b, (4.17b)

The calculation of I
&

is just the same as in the a & 0 case
with the same result, so in the limit b~00, b, is a solu-
tion to the backreaction equation for a classical Fried-
mann universe containing matter and radiation. Note
that in this case, however, the conformally invariant fields
add a term to this "classical" backreaction equation which
is of the same form as the energy density for classical
matter and which is present even if the massive scalar
field is not.

In Papers I and II we only found one ACS for a &0
rather than the two-parameter family shown in (4.17a).
This is because massive fields were not included in these
models so we restricted the definition of ACS to mean
solutions which at late times expand like classical

radiation-dominated Friedmann universes. If massive
fields are present then the ACS expand like classical
matter-dominated universes at late times.

If the ACS in Eqs. (4.12) and (4.17) were integrated
backwards in time one would find a variety of initial
behaviors and initial states even for solutions with the
same values of c. To determine if ACS occur for a given
type of initial behavior and state one can attempt to nu-
merically integrate solutions with that initial behavior and
state forward in time. For a ~ 0, the ACS are unstable so
this does not work very well. However, for ml & 1,
b &(ml) ', and the initial vacuum state (4.6) our numeri-
cal work shows that I& and I2 are usually not large
enough to significantly affect the behaviors of solutions.
Since for I=0 a one-parameter family of ACS exists for
a&0, we expect a one-parameter family of solutions to
begin expanding like ACS for ml (1. For solutions ex-
panding like ACS, the adiabatic approximation for gjo in
(4.14) is valid for b & 1. Thus, it is reasonable to assume
that these solutions will be ACS and thus that a one-
parameter family of ACS exists for a&0 when the mas-
sive field is in the initial vacuum state (4.6). For a&0,
the ACS are stable and our numerical work shows that a
two-parameter family exists when ml & 1 and the field is
in the vacuum state (4.6).

To get some idea of how much particle production
occurs for the ACS, we have computed the energy density
of the massive scalar field in a classical radiation-
dominated universe. %'e chose the initial state of the field
to be the "in" vacuum state given by Eq. (4.6). For inter-
mediate values of b, I&, which is equal to the energy den-
sity, p, when vacuum polarization effects are small, was
computed numericaHy for ml =1. Qur results are shown
in Fig. 6. For larger values of b it is shown in the Appen-
dix that



s QN. IIIPFFECTS 0 qUANTUM FIEI.D ]313

IO ml &1o—8r field must have mcleosyn
1 M fo
11 i 1 11or m theories, t e pa

1 ht t 1 th"" --.b"-unot occur.
sil account or e

f10"G Vu
' '

field has a mass ouniverse if the ie

0

'
n of the quantitys the time evolution o

ted
~ gFIG.

I l W ic
0) fo h0 To

ause of partic e pro
o arization e ec swhen vacuum pola

'

)'"x-'+o(x-'), x-~ .1 =4.2X10 (mlPm

rison wi
' . h s that for large X, (4.18)rison with Fig. 6 shows

d i of h fi
'

ld1 times the energy en

1 1do i t thd. Further, these o
h th d itwhich from (3.1) as

de Sitter solutions2. Asymptotically de

(4.21)=7[6 ~(Xp

eff~stant and =
4

—3 ff, h e

' '( / )' '(Xp —X)

s shown in Pape r I that a

"""'"""""""""''"
ll h.....l. ...,ll de Sitter so u io . r a

g
po

0 F r a&0 it seems i
il of o1 to '

t
lik 1 hr a&0 we find it to e

f bl o i 11two-parameter a
'

y e 11 eamil o sta e
es to exist. ur re

which is~,h. „..d.,d .If the field is 1n
17

g iven by

i/2 (2) [61/2k (y y)]I/2 y)]

when

I4 y —4

b =X=2 X 10 (ml)

(4.19) s. .
'

limit b~ao if P&0. Fur-
h

lbo t fosolutions of interest,
lows one to write

l 'f =7x 10'(ml)
(4.20)

't -5X 10, so if theoy
t remain radiation ouniverse is to rem

'

(4.22)P=akA+&k d

from orthonormality
' g

(3.5b) and taking the limitsolution into

4I4 —' —v) —ln(3m /A, ff)]
' [q(-',+

64
eff

1 akPk(A')'+ 6
a—kPk(A" 'A,ff l (Xp —X— )4 dkk't ' +6

a* k(A*)']I—» '][2iPk
i i

'+akpq(gd)'+ak+[I + —,'m A, ff (Xp—

(4.23)

)' ". So the last
ma function.where

ry ~const(Xp —XI the limit g —+go, d ~cn
his limit w iterm in 0

11 o t1M dot occur fast enoug,
Sitter phase of the expans'

si nificantly affect the expansion.'ld' ', t t 11

. (3.5) t foq
question e
stable? The answer or sm



1314 PAUL R. ANDERSON

not be affected much by the mass terms in (3.5) before
reaching the de Sitter phase and upon reaching it they will
still not be affected much since A, tt is nearly the same as
for m =0. To see this, note that A,tt is given implicitly
by Eq. (4.23) with Pt, ——0. Thus for small m a two-
parameter family of stable asymptotically de Sitter solu-
tions should exist for a & 0 and a one-parameter family of
unstable asymptotically de Sitter solutions should exist for
a &0.

For large m we found in Sec. IV B2 that for intermedi-
ate values of b, all the types of behaviors found for m =0
still occur. Thus solutions exist which are divergent
enough to approach the de Sitter solution at large b.
Given that asymptotically de Sitter solutions can exist and
for small m do exist, it seems likely that for large m a
one-parameter family exists for a &0 and a two-parameter
family exists for a&0.

3. Other solutions for a & 0

For a &0, P& 0 we have shown that a two-parameter
family of ACS exist and we have argued that a one-
parameter family of asymptotically de Sitter solutions
probably exists. For m =0 Starobinski found a two-
parameter family of solutions with a third type of large-b
behavior of the form
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APPENDIX

In this appendix we compute the vacuum expectation
value of the energy density of a conformally coupled mas-
sive scalar field in a radiation-dominated universe in the
limit that the scale factor is large. We choose as our "in"
vacuum state that defined by Eq. (4.6).

For a radiation-dominated universe

(Al)

and Eq. (3.5a) becomes

b=(X —X) ', X X (4.24)
P"+6(k +m i g )/=0 . (A2)

where XD is an arbitrary constant and cr:—,
' (1——P/3cz) 1/2

These solutions end with a final curvature singularity at
b = ao as can be seen by evaluating the scalar curvature

R=/ b b" (4.25)

in the limit X~70.
Our numerical work shows that a two-parameter family

of solutions exists for m&0 which for intermediate values
of b, diverge just as rapidly as those solutions for m =0
which have the behavior (4.24) at late times. However, we
have not found a solution to the wave equation (3.5a) for
this behavior so we do not know what the contributions of
I& and I2 to the backreaction equations are for large b.
This, in turn, prevents us from knowing the late-time
behavior of these solutions for m&0. It seems likely that
it is some type of divergent behavior, though perhaps non-
singular at b = oo.

This finishes our discussion of the effects of a massive
scalar field on the dynamical evolution of the early
universe. We have seen that the mass terms in the backre-
action equations do not change the types of behaviors that
can occur in the limit b~0. For intermediate values of b
the mass terms can significantly affect the behaviors of
individual solutions but they do not eliminate any types of
behaviors, nor are they observed to create any new ones.

For large values of b the behaviors of solutions are less
well known. However, it is clear that the massive scalar
field can have a significant effect on these behaviors,
through both vacuum polarization effects, as occur for
asymptotically de Sitter solutions and particle production
as occurs for the ACS.

P(x) = 2 ~ k '~ (G3/G&)'~ [W(a,x)+ W(a, —x)]

+ i6' (k/mi)' 2 (Gi/Gg)'

X [W(a, x) —W(a, —x)],
D ~~q+;, [(I—i)x/2]= 2 ' exp( —

4 era i ,
' n i ,

' —P2)———

X[~ ' W(a, x)

+i~'~ W(a, —x)], (A3)

D &&2+;,[(1+i)x/2]= 2 ' exp(' —4 ~a+i ,
' ~+i 2 P2)—

X[~ ' W(ax)

i ~' W(a, ——x)],

where D&(z) is a parabolic cylinder function,

a = —6' 2g /2mi, x—:6&/4(2mi)&s2y

G =—
~

I ( —.'+i —,'a)
~

G3=
I
I ( —'+t —'a)

I

~—:(1+e ')'~ —e"', $2=arg[I ( —,
' +ia)] .

The solution to this equation which in the limit 7~0
reduces to Eq. (4.4) and (4.6) is
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Forx~&~a ~,

W(a, x) =(2'/x)' [ St(a,x)cos( —„' x —a lnx+ 4 m'+ —,Pq)

—Sz(a,x)sin( —,
' x —a lnx

+-.'~+-,'A)],
W(a, —x) =(2/tax)' [S&(a,x)sin( —„'x —a lnx+ —,'~

+ 202)

+S2(a,x)cos( —,
' x —a lnx

+-.' +-, A)1,

Substituting (A4) into (A3) one obtains an expression
for 1(t(X) at late times. Taking the derivative with respect
to g one then obtains an expression for tj/(X). Substitut-
ing .these expressions in (2.18a) and subtracting (2.19a)
gives to leading order in g:

p =(4 'X') ' dkk'[6 ' '(ml)' 'G, -'G, k-'
0

+6' (ml)' —,
' G, G, 'k]

X [1+exp( —6'~zm. k /ml)] .

S, (a,x)=1+ax +O(x ),
S2(a,x)=( —,a ——, )x +O(x ) .

(A4)

p =4.2X 10 (ml) X +O(X ) (A6)

The mass can be scaled out of the integral and the integral
can be computed numerically with the final result being
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