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A quantum cosmological model of the inflationary universe is investigated by solving the
Wheeler-DeWitt equation. We consider a model with a minimally coupled scalar field, the potential
of which is a simple double well. By applying the boundary condition of "no boundary, "we calcu-
late the wave function of our model universe. We find that in a certain parameter range a big peak
is formed near the maximum of the double-well potential of the scalar field, accompanied by a re-.
cession of the exponential b'ehavior of the wave function. We show that this peak can be consistent-
ly interpreted as representing-a high density of classical paths of generalized oscillating universes,
and as a consequence of the constructive interference of quantum states corresponding to these clas-
sical paths by the WKB approximation. The cosmological scenario with nonvanishing, nearly criti-
cal "velocity" of the vacuum expectation value in the early universe, which is suggested by the
behavior of the wave function, is discussed.

I. INTRODUCTION

A well-known difficult problem in cosmology is to find
a principle with which we can specify the initial condi-
tions of our universe, i.e., the initial conditions at the big
bang. The inflationary scenario could improve the under-
standing of the very early universe however the ques-
tion of the initial values is still open. To study this
initial-value problem and also the initial-singularity prob-
lem, recently, the quantum origin or quantum creation of
the inflationary universe has been discussed by several au-
thors.

The attempt to formulate a quantum model of cosmolo-

gy is also interesting from the point of view of the quan-
tum theory of gravity, since it sets up a different approach
to quantum gravity and reveals a different aspect of this
theory

One of the ways to study quantum cosmology, inau-
gurated by DeWitt, is to investigate the wave function
which obeys the Wheeler-DeWitt equation. ' In this for-
mulation of quantum gravity, the initial-condition prob-
lem appears as the problem of the boundary conditions of
the wave function. Recently, Hawking proposed a quite
appealing specification of the boundary conditions of the
universe. ' The boundary conditions in his proposal are
that the universe has no boundary. This idea has been
formulated by Hartle and Hawking describing the wave
function of the universe as a path integral over compact
Euclidean metrics and matter fields, which gives a rather
natural and self-contained model of quantum cosmolo-
gy

13, 14

Several different approaches to quantum cosmological
models, relating to the picture of the creation of the
universe from "nothing, " have been proposed, based on
different types of boundary conditions. "' However, the
self-contained picture of the universe obtained by the
boundary condition of "no boundary" is very attractive.
Therefore, we investigate the quantum state of the inAa-
tionary universe, applying these boundary conditions.

As for the inflationary model, a calculation of the wave
function was presented by Moss and Wright. ' Their
model includes a scalar field which is conformally cou-
pled to gravity. Generally, it is known that a scalar field
with a conformal coupling has the special feature that it
completely decouples from the gravitational field in the
minisuperspace. ' Although gravity and matter do not
decouple in the model by Moss and Wright owing to a
logarithmic term in the potential, the nonzero curvature
gives an effective scalar mass term through the conformal
coupling. This mass term becomes, as they pointed out,
effectively too large and therefore the resulting model is
not very satisfying.

The model with a minimally coupled massive scalar
field, which is the simplest case without decoupling of
matter from gravity in the minisuperspace, was investigat-
ed. ' ' The result led to the picture of an eternally oscil-
lating universe which could also describe inflation. ' 's
This type of model seems to give a rather promising ap-
proach on the way to construct a model of the very early
universe. The next ingredient on this line would be the
phenomenon of the spontaneous symmetry breaking,
which is considered to play an important role in particle
physics.

The purpose of this paper is to investigate the quantum
model of the universe with a minimally coupled scalar
field, requiring our potential to reflect the properties of
the spontaneous symmetry breaking. We shall discuss
here the simplest case of such a kind of model: The po-
tential of the scalar field consists of a negative mass term
and a N coupling, i.e., a double-well potential. The gen-
era1 features of the quantum states specified by the
boundary condition of "no boundary" and the cosmologi-
cal scenario which emerges from the wave function of this
theory are investigated.

In the following, we shall solve the Wheeler-DeWitt
equation numerically on a minisuperspace, "' ' the
degrees of freedom of which are the scale of the universe
and the time-dependent vacuum expectation value (VEV)
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of the scalar field. To determine the boundary condition
of no boundary in our model using the semiclassical ap-
proximation, we first examine the Euclidean paths. On
this level we find that in a certain parameter range all Eu-
clidean paths between the minima of the double-well po-
tential start to oscillate around the maximum and cross
each other. Applying the resulting boundary conditions,
we plot the wave function of our model. We shall see that
the structure of the wave function depends strongly on the
parameters of the potential. In particular, we shall ob-
serve the formation of a nontrivial peak in the oscillating
region of the wave function, accompanied by a recession
of the region with the exponential behavior. The recession
of the exponential behavior suggests bounce solutions with
nonvanishing "velocity" of the VEV at the bounce point.
An analysis of the Lorentzian equations of motion shows
that this class of bounce solutions gathers with a high
density at the place where the peak occurs. This leads us
to the interpretation of the peak as to be formed by the
constructive interference of the quantum states corre-
sponding to these types of classical Lorentzian paths.

This paper is organized in the following way. In Sec. II
we present our model. The solutions of the Euclidean
equations of motion are examined and the boundary con-
ditions are determined in Sec. III. In Sec. IV, integrating
the Wheeler-DeWitt equation, we derive the wave func-
tion and discuss its behavior. In Sec. V the cosmological
model which is suggested by the wave function is
analyzed. Section VI is devoted to discussions and con-
clusions.

II. THE MODEL

Our model is the Einstein theory with a minimally cou-
pled scalar field @ in four-dimensional space-time. The
action is given by

S(g„„,@)= d x v' —g R + (surface term)
1

16~6

——,
' [g~ a,ea,e+ W(e)]

(1)

where G is the gravitational constant, R is the scalar cur-
vature, g& is the metric, and g=detg& . Our signature is

( —,+, +,+). The surface term is added in order to can-
cel the second derivatives of the metric in the scalar cur-
vature. ' W(@) is the potential of the scalar field. In
order to deal with a more realistic model we require that
the cosmological constant is zero at the minimum. From
this it follows that W(C&) & 0.

We are going to apply the canonical quantization, so we
formulate our model in the Arnowitt-Deser-Misner
(ADM) parametrization. The Wheeler-DeWitt equation
resulting from our action (1) is a functional differential
equation on the superspace with an infinite number of de-

grees of freedom. ' To decrease this number to a finite
one, we restrict ourselves to a minisuperspace,
imposing the metric of R XS,

2 2

S(a,g) = —,
' I dt

a
a—+a + —V(a, g)

(3)

with

V(a, g) = —a +a "W(P), (4)

where an overdot denotes a time derivative. The scalar
potential is given by

W(P)= (P —M )

A, and M are constants defining the value of W(P) at the
maximum and the value of P at the minimum, respective-
ly. The equations of motion and the Hamiltonian H are

a= (a +1)—2a[P —W(P)],
2a

4

a 2 B(h

1 1H=—
2 a

—II, + Ilp +V(a, g)
a

where II, = —(a/X)a and II~——a P/X are the conjugate
momenta of a and P, respectively.

Canonical quantization leads us immediately to the
Wheeler-Dewitt equation for the wave function %(a,P) on
the minisuperspace:

p
Ba

p
Ba

1
2 2 + V(a, p) qi(a, p) =0 .

a B(h
(9)

The p indicates some ambiguity in the factor ordering but
we leave aside the ordering problem and choose, for con-
venience p =1. To get a simpler wave equation which al-
lows more insight into the "causal" structure, we intro-
duce new variables:

x =a sinhP, y =a cosh/ . (10)

In these variables the Wheeler-DeWitt equation (9) reads

a

Bg

a2
+ V(x,y) %(x,y) =0 .

Bx

The potential V(x,y) can be obtained immediately by sub-
stituting

where X is the lapse function, '
g;J is the metric of the

unit three-sphere (i,j =1,2,3), and a (t) is the scale of our
universe in units of V2G/3m. We also restrict the scalar
field into the time-dependent VEV P(t),

y( t) =~4~G/3& e(x&)),
being consistent with the metric (2).

Under the ansatz given above our action becomes

ds = [ Ndt +a (t)g; dx'dxj—],2 (2)
a=(y —x )'~ and P= —,'ln

y —x
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F&G. 1. The potential zero line a=1/[W(P)]i~2 in (g, P)
variables.

into the previous definition of V(a, It ) in Eq. (4).
As is described by Hawking, we shall interpret the wave

function as corresponding to Euclidean or Lorentzian
geometry according to whether the wave function has ex-
ponential or oscillating behavior in a. ' ' - In the case
where the momentum of P is negligible, we can see ap-
proximately from the sign of the potential whether the
wave function is oscillating or has exponential behavior.
In the following we call, for convenience, the region where

V(a, g) ~0 the Euclidean and where V(a, g) ~0 the
Lorentzian area, respectively. The graph of V(a, g) =0 of
our model is shown in the variables (a, P) and (x,y) in

Figs. 1 and 2. The light cone of the origin y= ~x
~

in

Fig. 2 is the surface a =0, /=+ oo. The line which
separates the oscillating region from the exponential re-

gion will be shifted from the line V=O, if the momentum
of the scalar field is not negligible.

III. EUCLIDEAN PATHS AND BOUNDARY
CONDITIONS

%(h;J,@)= g Ajexp( IJ ) . — (13)

The exponents IJ are the actions of the solutions of the
Euclidean equations of motion deduced from the Euclide-
an action I(g&„4). The boundary condition of the wave
function can be estimated in this approximation by fixing
the initial conditions of these solutions, which can be de-
rived from the regularity required by the condition of no
boundary.

In the minisuperspace, we apply this semiclassical ap-
proximation to the wave function of the Euclidean area to
define the boundary conditions and hence, we need the in-
formation about the solutions of the Euclidean equations
of motion. The equations are derived from the Euclidean
minisuperspace action I(a,g), which is defined from the
Lorentzian action S(a,g) in Eq. (3) by rotating the time.
From the requirement of regularity, the boundary condi-
tions for the Euclidean paths which relate to our wave
function are

To solve the Wheeler-DeWitt equation-on the minisu-
perspace of our model, we must specify the boundary con-
ditions on the light cone. The direct application of the
boundary condition of no boundary on the light cone is
difficult to perform. Instead, we estimate the form of the
wave function which obeys these boundary conditions,
near the light cone (on lines of constant large positive or
negative P) and use the result to find the proper boundary
conditions.

Hawking's prescription of the wave function and the
boundary conditions is based on the Euclidean formula-
tion of the path integral. Using the Euclidean action
I(g„„,C&) which is obtained from the Lorentzian action
S(g&,&b) in Eq. (1) by a rotation of the time t= —ir, the
wave function is given by

%'(h,J,C&) = J [dgz„][d@]exp[—I(g„,C&)] . (12)

C is the domain over which the path integral has to be
evaluated, h;~ is the metric of a three-manifold, and 4
is the matter field configuration regular on it. The
boundary condition of no boundary is formulated by
specifying the domain C of the path integral as the class
of all regular, compact, and Euclidean four-manifolds
which possess the three-manifold given by h;~ as a boun-
dary and regular configurations of the matter fields on
these four-manifolds. In the WKB approximation, the
wave function is written as

dP =0 at &=0 .
d~

(14)

An analytical estimation of the solution of the equations
of motion shows that

FIG. 2. The potential zero line in (x,y) variables. The lines
/=const and a=const are shown by dashed lines. The physical
region is mapped into the area above the light cone y =

~

x ~,
i.e., a =0 and P= + oo. The area which includes the light cone
is called the Euclidean area, V(x,y) ~0.

a =r and P=Po+ 2 kr for r &&
1 1

8'(It 0)

with
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The prefactor A is giving the effect of the quantum Auc-
tuations around the classical solution and to connect it
with the above regular solution we have

A =Co(1 ——,'a ) (19)

(20)

where 8 is a slowly varying amplitude. This means that
we use the wave function of the de Sitter universe with the
cosmological constant W(P) on the whole line /=const
and large, i.e., along the light cone.

In the following calculation we used the numerical solu-
tion of the wave function of the de Sitter universe given
by Eq. (17) to formulate the boundary conditions near the
light cone. The boundary conditions of the wave function
for this de Sitter universe are V(a) =1 and (8/Ba)%(a) =0
at a =0.

IV. THE WAVE FUNCTION

Using these boundary conditions we numerically in-
tegrate the Wheeler-DeWitt equation by a standard tech-
nique (see the Appendix). The result is shown in Figs.
4(a)—4(d) for various values of M. A remarkable feature
is the qualitative change in the behavior of the wave func-
tion around M=-M, when the parameter M is varied, as
we expected from the previous observation of the Euclide-
an paths. On the contrary, the wave function is rather in-
sensitive with respect to the variation of the value of A, in
the region under consideration, so we choose A, =1 in our
numerical examples.

We observe three typical properties of the wave func-
tion: One is the exponential behavior near the light cone.
Another feature is a recession of the exponential behavior
together with a formation of a peak near the potential
maximum in the oscillating region. The third observation
is that the phase of our wave function on the line x =0 is
comparable to the de Sitter universe, in a certain parame-
ter region.

To draw conclusions regarding the properties of our
model universe, we have to specify how the wave function
has to be understood. Our interpretation of the wave
function is the following. ' ' ' '

The wave function in the oscillating region is a super-

in the region a W(P) « 1. Co gives us the normalization
constant of the wave function and here we choose it to be
unity. Hence the value of the wave function on the light
cone is one.

In principle, all these considerations are sufficient to
determine the boundary condition of the wave function,
since the light cone lies entirely in the Euclidean area.
However, for the numerical calculation we have to esti-
mate the wave function in the Lorentzian area near the
light cone as well, for technical reasons (see the Appen-
dix). To estimate the wave function for large a,
a ~ 1/W(P) we use the solution which is the analytic
continuation of Eq. (18):

1 [a W(P) —1] ~ n.
3W($) 3W($) 4

position of quantum states peaked around a certain class
of classical paths. The class of these paths is selected by
the boundary conditions. The envelope of the square of
the wave function, ~%'(x,y) ~, in the superspace can be
interpreted as representing the relative probability of find-
ing a classical universe. Thus, if there is a peak in the
superspace, it means that the probability of finding a
universe evolving through this peak is high. Note that in
the superspace, a universe corresponds to a line. The defi-
nition of the classical universe can be given through the
WKB approximation of the wave function.

From this point of view, we can understand the
behavior of our wave function as follows.

A. Bounce solutions

We find generally that the wave function has an ex-
ponential behavior in the Euclidean area near the light
cone in the case of large M as well as of small M, which
is consistent with the semiclassical approximation in Sec.
III. We interpret this circumstance as follows: The class
of the classical Lorentzian paths mentioned above consists
of solutions which do not reach the light cone but bounce
before, in analogy with the de Sitter case. ' We shall see
in the next section that such a universe generally has a
maximal value of the scale a and contracts after reaching
its maximum. Therefore, in our model, we can under-
stand the behavior of our wave function described above
in a consistent way by using the picture of the oscillating
universes. ' '

In the Lorentzian area the wave function is oscillating
rapidly with a small amplitude. This gives us the possibil-
ity of applying the WKB approximation there as well.
The corresponding class of classical solutions of oscillat-
ing universes which forms the phase in this approxima-
tion should therefore exist. This will be confirmed in a
detailed analysis of the classical Lorentzian paths given in
the succeeding section.

B. Recession of the exponential behavior and formation
of the peak

Let us now consider the typical properties of the case
where M is bigger than M, [Fig. 4(a)]. The wave function
expands exponentially in the Euclidean area near the line
/=+M. This behavior can be interpreted as correspond-
ing to a flat Euclidean space. '

A completely new property arises when we decrease the
value of M below M„as we already expected from the
previous analysis of the Euclidean paths. The exponential
behavior recedes from the line V=O. Simultaneously a
large peak appears above the local maximum of 8'(P) on
the line x =0, inside the Lorentzian area, and its height
exceeds unity. This big peak is shifted towards the line
V=O accompanied by a receding exponential behavior.
Besides this, the global structure of the wave function ex-
periences a modification and a wavelet structure is form-
ing in the Lorentzian area which contains the peak. Con-
trary to this, the structure of the wave function in the oth-
er oscillating regions as well as the behavior along the
lines /=+M are qualitatively the same as that of the
massive scalar field. ' ' The development of these struc-
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FIG. 4. {a}The square of the wave function,
~
%(x,yi

~

2, for M=0.8 and A, = l. In all the following diagrams 'of the wave function,
the section 0 &y+x & 6 and 0 &y —x & 6 is presented. On the line x =0, the value of y is equal to a. In all diagrams we can see until
a =6. (b) The square of the wave function for M =0.4 and A, =1. (c) The square of the wave function for I=0.3 and X=1. (d)
The square of the wave function for M =0.25 and k = 1.
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FIG. 4. (Continued).
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B. Small M

On the other hand, for small M the exponential
behavior of the wave function near the line V =0 is shift-
ed into the. Euclidean area. This behavior indicates the
existence of a certain class of Lorentzian paths of classical
universes which cross over the line V =0 and bounce in
the Euclidean area. To explain the bounce below V=O
we have to consider the possibility of a nonvanishing velo-
city of the VEV P at the bounce point, a =0. In the fol-
lowing discussion we denote this nonvanishing velocity of
the VEV by $0. From the constraint equation (8) we find
at a =0, the minimum radius of the corresponding
universe as

C3
C3

C3

C3
C3

(O

C3C3-

C3
C3

1 ~[4'Q + ~(00) l (21)

This equation tells us that the larger the velocity of the
VEV, the smaller the minimal radius of the corresponding
universe can become at the bounce point.

Furthermore, the recession of the exponential behavior
can be interpreted as a deeper penetration of the Lorentzi-
an paths into the Euclidean area, i.e., the stronger the re-
cession, the higher the velocity Po at the bounce point of
the Lorentzian paths. However, the magnitude of $0 is
limited as we see from the equation of motion (6): A suf-
ficient expansion can only occur for 2/0 & 8'(Po). As for
the paths starting near the minimum, we see that they
soon contract independently, whether or not a nonvanish-
ing (()o exists.

The presence of the nonvanishing $0 opens a new possi-
bility for a type of classical path.

With nonvanishing velocity of the VEV, a universe
starting its expansion from a bounce point apart from the
local maximum of the potential W(I()) has the chance to
reach the area around the local maximum and thus can
become very large. From there, it can either cross the line
/=0, provided that its $0 exceeded a critical value P, at
the bounce point, or turn at this line. In both cases the
universes expand along the lines I()=+M. This situation
can be seen in the typical bounce solutions given in Fig. 6.

The classical paths contract again in any case discussed
above. This fact, together with the exponential behavior
of the wave function near the light cone, can be under-
stood consistently by the interpretation that the class of
Lorentzian paths, which will be determined from the
wave function by WKB approximation, consists of oscil-
lating universes. To support this picture, the existence of
these kinds of paths has to be confirmed. Note that the
solutions given in Fig. 6 are not eternally oscillating
universes. However, we can get the paths of the eternally
oscillating universes by "fine tuning" the initial values as
we shall explain in the following.

For further discussion, we define the origin of the pa-
rameter time t =0 of the path to be at the bounce point of
the minimum radius, for convenience.

Generally, a solution which has a bounce at t =0 runs
from the singularity at t= —oo to the singularity at
t =+ oo. Varying the values of $0 at t =0 thereby keep-
ing I()o fixed, we can find that the path of the solution
bounces at its maximum in t &0. Then the solution be-
comes symmetric under time reversion at the maximum
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point. Therefore, the path comes back to the bounce
point at t =0 with the velocity P= —P ~, 0. Let us call
this time t~. The solution, however, still goes to the
singularity on the other end corresponding to t =+ ao. To
make this side finite and bounce at its extremum, we vary
the values of $0 and $0 at t=0, keeping the bounce at
0&t &t&. In this way we can construct the Lorentzian
path of the eternally bouncing universe. Numerically it is
rather hard to find the appropriate parameter, but as long
as both paths have an expansion phase this solution will
exist. This is certainly true for our examples in Fig. 6.

There are two degrees of freedom to specify completely
a classical I.orentzian path, since a Hamiltonian con-
straint is imposed. In our specification of the initial con-

FIG. 6. (a) The bounce solution in (a, P) variables for kf=0.3
and k= I with the initial values, Po ———0.005 and the "velocity"

Po ——0.024, i.e., below the critical value at the bounce point. The
bounce point is marked by an arrow. (b) The bounce solution in
(a, P) variables for M=0.3 and A, =l with the initial values,

I(Io———0.005 and the "velocity" po ——0.026, I.e., above the critical
- value.
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ditions we have used both degrees of freedom in order to
adjust the time reversibility of our solution with respect to
its maxima. The consequence is that we pick up an infi-
nite, countable number of Lorentzian paths. These
Lorentzian paths can be characterized by a pair of in-
tegers which count the number of oscillations in each ex-
pansion period. The possibility of a solution describing
an eternally oscillating universe without being time rever-
sible with respect to its extrema also remains.

VI. DISCUSSION AND CONCLUSION

In this paper we have investigated a quantum cosmo-
logical model of an inflationary universe with a minimally
coupled scalar field, the potential of which is a simple
double well. We integrated the Wheeler-DeWitt equation
with the boundary condition of "no boundary" and found
that the resulting wave function forms a nontrivial peak
near the potential maximum in a certain parameter range.
At the same time, we observed a recession of the exponen-
tial behavior in the Euclidean area. The interpretation of
this change in the behavior of the wave function led us to
a generalized picture of the eternally oscillating universes:
The classical universes possess a nonzero "velocity" of the
VEV, Po, at the bounce point a=0. As we stressed in
Sec. V, the nonzero velocity of the VEV implies that the
paths of the universes bounce below the line V=O in the
Euclidean area.

The new aspects summarized above enlarge the possibil-
ities of the cosmological model: Including the possibili-
ty of the nonvanishing velocity $0, not only the universes
with a bounce very near to the maximum, but also those
with a bounce apart from the maximum have the chance
to experience a long period of inflation compared to the
case of vanishing $0. In fact, provided the velocity $0 is
sufficiently near to the critical velocity at the bounce
point, the universes have a rather long period of inflation,
while the VEV is climbing up the potential to the max-
imum.

The meaning of the large peak near the maximum and
the change of the behavior of the wave function can be
understood consistently by considering the relations be-
tween the behavior of the wave function and that of the
classical paths as follows.

When we decrease the parameter M, the exponential
behavior recedes more, which implies an increase of the
velocity of the VEV Po of the corresponding classical
universe. With the nonvanis hing velocity $0, the
universes with bounce points in a wider range around the
rnaximurn can reach the area where the peak appears.
The numerical analysis confirmed the existence of a large
number of classical paths describing these types of oscil-
lating universes. Following our interpretation, we can
conclude that our peak is formed where the phases of
several individual waves, which correspond to these types
of classical paths by the WKB approximation, agree.
This circumstance is the well-known constructive interfer-
ence. Therefore, we can attribute the appearance of the
peak to the presence of a bunch of classical Lorentzian
paths gathering near the maximum of the potential 8'(P).
The formation of the peak is to be understood as a conse-
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FICJ. 7. The bounce solution of Fig. 6(a) in (x,y) variables.

quence of the constructive interference of the'quantum
states peaked around these classical paths.

With the above considerations, we can even go a little
further: A higher velocity at the bounce point has the ef-
fect that the paths gather earlier and closer into the peak.
Therefore, the peak is shifted more towards the line V=0
and becomes higher with decreasing M. We can see this
changing of the behavior of the wave function clearly in
Fig. 5. In contrast to this, in the case of large M, the
velocity of the VEV $0 is negligible, and the classical solu-
tions cannot gather enough to form a peak.

Another remarkable observation we have made is the
similarity of the phase of the wave function with that of
the de Sitter universe in a certain parameter range, along
the line x =0. From this, we can expect that the dom-
inant contribution to the WKB approximation of the
wave function along the line x =0 is given by de
Sitter —type universes which are running along this line
(see Fig. 7).

Furthermore, in the parameter range where the peak ex-
ists, the density of such classical de Sitter —type paths will
be high. It would follow that we should be able to see an
array of peaks along the line x =0. However, we cannot
see a clear structure over the whole axis which we could
call an array of peaks, although there exists a small num-
ber of peaks along this line, for a special parameter, which
are definitely bigger than the wavelet structure. In fact, if
we see the wave function of smaller M, the phase itself
starts to deviate from that of the de Sitter universe. This
seems to contradict our picture; nevertheless this behavior
can be understood consistently as follows.

The peak near the maximum of the potential W(P) is
formed by the contributions of classical paths which
spread to both sides /=+M and P= —M, i.e., the classi-
cal paths run apart from each other with growing distance
from the peak. The density of the classical paths near the
line x =0 is therefore decreasing. Furthermore, we have



1300 URSULA CARO& AND SATOSHI WATAMURA 32

to recall that universes which bounce with a velocity P
larger than the critical P, are also present. These classical
Lorentzian paths will cross each other and their contribu-
tions to the wave function interfere. The more we de-
crease M, the more interference we get and therefore the
expected array of peaks is smeared out and the phase
starts to deviate from that of the wave function of the de
Sitter universe.

On the other hand, the considerations above suggest the
possibility that, in a certain parameter range, many
universes start off around the peak and run parallel for a
finite distance along the x =0. In this parameter range,
therefore, we can expect an array of some large peaks
along the line x =0 which is formed by the universes run-
ning parallel along there. Our observations support the
discussion given above: If we look carefully at the wave
function with the parameter M =0.3 in Fig. 4(c), and the
corresponding wave function on the line x =0 in Fig. 5,
we can recognize that the first several peaks along the line
x =0 are rather high compared to the wave function in
other parameter ranges (and also to the case of the de
Sitter universe).

We have seen that for a certain parameter the construc-
tive interference, which is responsible for the formation of
the peak, is kept along the line x =0, visible as an array
of peaks. As we already discussed, since the classical
paths start to run apart from each other or to cross each
other, the array disappears after a finite distance.
Nevertheless, this array of peaks can be called a "wave
packet. " The wave function of our model is a superposi-
tion of quantum states of expanding and contracting
universes and it is a real function in (x,y) (Ref. 13).
Therefore, the array of the peaks which we observe is to
be understood as the superposition of the wave packets
corresponding to exponentially expanding and contracting
universes. It is quite interesting that all these structures
could emerge from the wave function obeying the
boundary condition of no boundary.

The wavelet structure appearing in that Lorentzian area
which includes the peak, for the case of smaller M, is also
to be understood as the interference of the contributions
of many classical universes.

The complicated oscillatory structure along the lines

P =+M can also be interpreted by the fact that all
Lorentzian paths finally expand along there (see Fig. 7).
The envelope of the wave function along these lines is an
increasing function in a. This is in a good agreement
with the fact that the density of the classical paths be-
comes higher.

In our model, we restricted the number of degrees of
freedom of the universe into two, but if we consider a
larger or infinite number of degrees of freedom, the in-

terference structure of the wave function may become
stronger and the peak may become higher and sharp. In
this case, the tendency that the bouncing universes gather
near the maximum would increase.

Our Inodel contains two parameters, M and k. Howev-
er, since we saw that the Euclidean paths are rather in-
dependent of A, we fixed A, (A, = 1) and mainly discussed
the effects occurring by varying M alone. The wave func-
tion as a whole, of course, changes its behavior when

varying A, over a large range. This will be discussed else-
where. Here, we investigated the change of the properties
of the wave function in a range where the behavior of our
wave function is relatively "stable" under variation of A, .

Furthermore, we have to keep in mind that in the case
where M becomes very small (M -=0.3) the coupling
I,/M is of the order of =—100, i.e., in the strong coupling
region. Therefore, it is not possible to undertake a direct
comparison with the perturbative region of the theory.
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APPENDIX

4~ ——4E +4g —%s —h V(x,y)%'c, (A2)

where 4'c is the effective value of the wave function at
the center and given by

+c ———(%E+%g )+(1—P)+o,P
2

(A3)

FIG. 8. The convention of the lattice points for the numerical
calculation.

The numerical calculation of.the wave function is per-
formed on a lattice (see Fig. 8) by using a finite-difference
scheme. ' The declination of the wave function in the y
direction and x direction can be written in finite-
difference form. The distance between the lattice points is
denoted by h. The second derivative in the y direction,
for example, is expressed by

r

1 +x —+c +c—+s
h h h

(A 1)
gy~ h

We put these finite-difference expressions into the
Wheeler-DeWitt equation (11) and get



QUANTUM COSMOLOGICAL MODEL OF THE INFLATIONARY UNIVERSE 1301

where P is taken as 0.5 for the purpose of stability in the
numerical calculation. Using these equations, we can ex-
press the value of the wave function at a point X on the
lattice by its "previous" values at the points F., 8' S, and
C. Once the values on two arrays along the light cone
y =

~

x
~

are known, we can calculate the whole wave
function on the lattice.

Therefore, we need values on the light cone and values
on the lattice points next to the light cone to define the
declination of the wave function, numerically. Since the
step size is finite, we have to be careful about the fact that
the Euclidean area along the light cone is shrinking con-
siderably with the distance from the origin. Actually, we
soon reach an area where we "step" into the Lorentzian

area already with the first difference step h away from the
light cone. There, we have to take into account that a
part of the initial points is determined from Euclidean
and the others are from the Lorentzian wave function.

For this, using the results in Sec. III, we take the values
of the wave function of a de Sitter universe in order to
determine the value of the points next to the light cone.
As we can see from the WKB approximation, however,
near the light cone the wave function is very smooth and
the difference between these values and the values on the
light cone (4=1) is very small. Furthermore, we ob-
served that the value of the wave function is enough near
unity along the V =0 line for large P in the Lorentzian re-
gion. This justifies the numerical calculation.

~A. H. Guth, Phys. Rev. D 23, 347 (1981); K. Sato, Mon. Not.
R. Astron. Soc. 195, 467 (1981).

2A. D. Linde, Rep. Prog. Phys, 47, 925 (1984), and references
therein.

A. Vilenkin, Phys. Lett. 1178, 25 (1982); Phys. Rev. D 27,
2848 (1983).

4A. Vilenkin, Phys. Rev. D 30, 509 (1984).
5A. D. Linde, Lett. Nuovo Cimento 39, 401 (1984).
Ideas of the quantum creation of the universe are discussed by

E. P. Tryon [Nature 246, 396 (1973)j; R. Brout, F. Englert,
and E. Gunzig [Ann. Phys. (NY) 115, 78 (1978)j; Atkatz and
H. Pagels [Phys. Rev. D 25, 2065 (1982)];and J. R. Gott [Na-
ture 295, 304 (1982)].

7J. A. %'heeler, in Battelle Rencontres, edited by C. De%'itt and
J. A. Wheeler (Benjamin, New York, 1968).

88. S. DeWitt, Phys. Rev. 160, 1113(1967).
C. W. Misner, Phys. Rev. 186, 1319 (1969); in Magic Without

Magic: John Archibald Wheeler, a Collection of Essays in
Honor of his 60th Birthday, edited by J. R. Klauder (Freeman,
San Francisco, 1972).
For a review see, e.g., M. Ryan, Hamiltonian Cosmology
(Springer, New York, 1972); see also M. A. H. MacCallum, in
Quantum Grauity, An Oxford Symposium, edited by C. J. Is-
ham, R. Penrose, and D. W. Sciama (Oxford University
Press, New York 1975), and references therein.

~~D. J. Kaup and A. P. Vitello, Phys. Rev. D 9, 1648 (1974); W.
F. Blyth and C. J. Isham, ibid. 11, 768 (1975); C. J. Isham
and J. E. Nelson, ibid. 15, 3226 (1974).

2S. W. Hawking, in Astrophysical Cosmology, proceedings of
the Study Week on Cosmology and Fundamental Sciences,
1982, edited by H. A. Bruck, G. V. Coyne, and M. S. Longair
(Pontificia Academia Scientarium, Vatican City, 1982).
J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960
(1983).

~ S. W. Hawking, in Relatiuity, Groups, and Topology II, Les
Houches Lectures, 1983, edited by B. S. DeWitt and R. Stora
(North-Holland, Amsterdam, 1984), p. 333.
I. G. Moss and W. A. Wright, Phys. Rev. D 29, 1067 (1984).
S. W. Hawking, Nucl. Phys. 8239, 257 (1984).
S. W. Hawking and Z. C. Wu, Phys. Lett. 1518, 15 (1985).
A. D. Linde, Pis'ma Zh. Eksp. Teor. Fiz. 38, 149 (1983);Phys.
Lett. 1298, 177 (1983).

~ G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752

(1977).
2 See, e.g., R. Arnowitt, S. Deser, and C. W. Misner, in Gravita-

tion, edited by L. %itten (Wiley, New York, 1962), p. 227.
In the numerical calculation, we choose the lapse function as
X =1.

S. Coleman, Phys. Rev. D 15, 2929 (1977); C. Callan and S.
Coleman, ibid 16, 17.62 (1977); S. Coleman, in The Whys of
Subnuclear Physics, proceedings of the International School of
Subnuclear Physics, Erice, 1977, edited by A. Zichichi (Ple-
num, New York, 1979).
In the case of the de Sitter universe, the wave function shows
rapid oscillations with a slowly varying amplitude. This wave
function can be considered as a standing wave consisting of a
superposition of quantum states describing expanding and
contracting universes. It is shown that the envelope of the
probability distribution at'

~
%(a) ~, i.e., the square of the

slowly varying amplitude, is proportional to the distribution
of the three-spheres in a in the de Sitter universe (Ref. 13).
Thus in this context the envelope of the square of the wave
function is to be understood as a square of the slowly varying
amplitude. In other words, if we think of the semiclassical
approximation, the values of this envelope are given by the
square of the prefactor. The factor aI' in the probability dis-
tribution is demanded by choosing the measure of the minisu-
perspace in such a way that the differential operator of the
Wheeler-De%'itt equation becomes Hermitian. In our case
the probability distribution is simply given by

~
%(x;y)

~

2 in
(x,y) variables.

~4S. W. Hawking and I. G. Moss, Phys. Lett. 1108, 35 (1982).
25The possibility of this type of solution is suggested by Hawk-

ing in a different context {Ref. 14) and discussed by Page
(Ref. 26). However, in our case this type of solution is inevit-
able in order to understand the behavior of the wave function.

26D. N. Page, Class. Quantum Grav. 1, 417 (1984).
At the bounce point of a classical path the corresponding clas-
sical universe reaches its minimal size and from there goes
into a new expansion phase. From this point of view we can
construct a cosmological model in which the bounce point
represents the beginning of the evolution of a universe.
For a parameter value M=0. 32, all peaks within the whole
size of the diagram (a &6) on the line x =0 are definitely
higher than the neighboring wavelet structure. The phase for
this parameter is comparable to that of the de Sitter universe.


