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In this paper the mechanism of a cosmological phase transition is addressed in a new way which
avoids weaknesses of previous approaches. The effects of inhomogeneities are included explicitly.
A numerical analysis is presented in which for a wide class of models the Universe enters a period of
new inflation. The analysis is classical and applies to models in which the scalar field responsible
for driving inflation is weakly coupled to other fields. We derive heuristic arguments which deter-
mine the boundaries of the region in parameter space for which inflation is realized. The agreement
with the numerical results is good. This paper complements a previous analytical analysis.

I. INTRODUCTION

The analysis of cosmological models with a period of
exponential expansion of the Universe' is generally based
on the investigation of the time dependence of the finite-
temperature effective potential. Even in models in which
/=0 is a local maximum of the zero-temperature effec-
tive potential (Fig. 1), the finite-temperature mass term
turns /=0 into a global minimum at sufficiently high
temperatures.

According to the standard view of new inflation, the
finite-temperature mass term forces P(x)=0 uniformly in
space. As the Universe cools down, the temperature-
dependent mass term decreases and the scalar field starts
to evolve from its initial homogeneous configuration on
top of the potential barrier towards the minimum of the
potential. The dynamical evolution is described by the
classical scalar-field equations of motion. If the curvature
of the potential near the origin is small, the scalar field
will initially move very slowly. In this "slow rolling"
period the stress-energy tensor is dominated by the
almost-constant potential-energy term which acts as a
cosmological constant and generates exponential expan-
sion of the Universe.

Mazenko, Unruh, and Wald have recently raised seri-
ous objections against the standard picture of inflation.
They point out that at high temperatures in the early
Universe one should expect large fluctuations in the value

"V($)

FICx; 1. Form of V(P) in models which give inflation.

of the scalar field as a function of space. Hence it is un-
justified to use effective-potential methods. Mazenko,
Unruh, and Wald argue that as a consequence of large
thermal fluctuations spatial domains of (b(x)=+a. will
form already at the critical temperature Tc. In this case
the Universe would never enter an inflationary period.

In a previous publication we presented an analytical
analysis of the evolution of a scalar-field configuration
P(x, t) initialized to be in thermal equilibrium at a given
temperature TE & T&. The dynamics is governed by two
forces, the expansion of the Universe and the forces due to
the nonlinear field-theory potential. The Hubble expan-
sion dampens the amplitude of tb(x, t) and causes a red-
shift of wavelengths. Both effects lead to a homogeneous
scalar-field configuration localized at a value of P equal to
the initial spatial average of P(x) and thus, if the latter is
small compared to o, to an inflationary period. The non-
linear forces due to the potential on the other hand favor
domain formation. In Ref. 5 we concluded that if the in-
teraction rate I" of the nonlinear forces is much smaller
than the Hubble rate H(t), the Hubble-expansion effects
will dominate long enough to ensure a period of inflation
of sufficient length to solve the cosmological problems
which inflation is meant to solve.

Our previous analysis was nonrigorous. It was based on
a perturbative Green's-function method. One aim of this
work is to confirm the validity of the analytical method
numerically. There is, however, a much more important
motivation. In our analytical work we overestimated the
domain-forming forces since we only derived bounds on
the maximal value of the nonlinear terms in the equations
of motion. Hence we were only able to prove the ex-
istence of an inflationary period for models with very
small coupling constants. In this paper a classical
analysis is shown to yield inflation in a much wider class
of models. We derive heuristic arguments for the critical
values of the coupling constants (values which separate
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the regions which yield inflation from those which do
not}.

The conditions on the coupling constants we require in
order to demonstrate that the Universe enters an inflation-
ary period are much less restrictive than those which must
be imposed in order to get a reasonable answer for the am-
plitude of energy-density fluctuations.

In the following section we summarize some important
previous results. In Sec. III we review our analytical ap-
proach and point out in which ways the present analysis is
complementary to it. We then describe our numerical
method, the particle-physics models we consider, and the
physical questions we ask. A special section is devoted to
a discussion of initial conditions. In Sec. VI we derive the
heuristic conditions on the free parameters of the
quantum-field potential under which we expect inflation
to be realized. Our numerical results are summarized in
Sec. VII and agree quite well with the theoretical predic-
tions. We conclude by discussing some interesting phe-
nomena we observe in some of the numerical runs.

In this paper we use natural units kz ——A=c =mp] =1.
The background metric will be that of a spatially flat
Friedmann-Robertson-Walker (FRW) universe.

II. PRELIMINARIES

In this section we wish to motivate our investigation in
more detail. Experts in the field may want to skip to the
next section.

Inflationary-universe models, models in which there is
a period of exponential increase in the physical distance
between two comoving points, have recently received a lot
of attention in the physics literature The. y provide a
solution of important cosmological problems' in the stan-
dard big-bang model and allow for a mechanism which
for the first time in a causal way generates the primordial
energy-density fluctuations required to explain galaxy for-
mation. "

In inflationary-universe models matter is described in
terms of quantum fields, one of which must be a scalar
field P(x, t) with a nonvanishing vacuum expectation
value at zero temperature. The zero-temperature effective
potential has double-well shape (see Fig. 1). A simple ex-
ample is the A,P theory with potential

V(P)=A(P —a )

At high temperatures T the effective potential is approxi-
mated by adding a T-dependent mass term to Eq. (1):

Vz(P)=A, (P o)+CP T—.

with C a constant of the order A. . Thus for temperatures
T greater than the critical temperature Tc ——(A, IC)' o
the symmetric state P =0 minimizes the finite-
temperature effective potential, whereas for T & Tc, /=0
becomes unstable.

According to the standard picture of new inflation, the
initial scalar-field configuration minimizes the finite-
temperature effective potential and hence is homogeneous
and localized at /=0. As the Universe cools below Tc
the configuration becomes unstable and starts moving to-
wards one of the minima of V(P) as described by the clas-

Tq„—V(0)gp

The effective potential Vz.(P) is the free-energy density of
a homogeneous scalar-field configuration P(x)=P. At
zero temperature, we may alternatively define V(P) to be
the minimum of the expectation value of the Hamiltonian
among all homogeneous states,

V(P) =min(s
~

H
~

s ),
(s is)=1,
(s

~

P(x)
~
s) =P .

(4)

Mazenko, Wald, and Unruh pointed out that it is un-
reasonable to restrict attention to homogeneous scalar-
field configurations. In the early Universe there will be
temperature fluctuations. The static minimum-energy
configuration will be inhomogeneous. It will consist of
spatial domains in which P(x) =+o.. Hence it is unjusti-
fied to use effective-potential arguments in the early
Universe.

We agree with the objections against using the effective
potential to argue for inflation. We also agree that given
an initial thermal state at a fixed temperature TE )Tc the
final field configuration will consist of spatial domains.
However, the domains do not form instantaneously but
slowly as a result of the nonlinear force term V'(P) in the
scalar-field equation of motion. For times shorter than
the typical time scale 7' ' of domain formation the Hub-
ble expansion of the Universe is the dominant force effect-
ing the scalar-field configuration. The Hubble damping
of the amplitude and the red-shift of wavelengths tend to
lead to a homogeneous field configuration localized at a
value of P equal to the initial spatial average of P(x). The
balance of the two effects must be determined by a de-
tailed dynamical analysis.

III. ANALYTICAL RESULTS

In a previous paper we analyzed the evolution of an in-
itial scalar-field configuration analytically and concluded
that provided the nonlinear forces V'(P) are sufficiently
small (compared to H ) there will be a period of new in-
flation sufficiently long to solve the cosmological prob-
lems. In the case of a Coleman-Weinberg model' we
showed that new inflation is realized provided

g(
~Pl

where g is the gauge coupling constant. For the A.P
model of Eq. (1) the condition is

0 )OZp)

Our results were based on determining the dynamical
evolution of an initial classical scalar-field configuration

sical scalar-field equations of motion. If the curvature of
V(P) at /=0 is small, then P(x, t} will remain close to
/=0 (close on the scale of o) for a long period during
which the equation of state is dominated by the potential
energy term which acts as an effective cosmological con-
stant and leads to an exponential expansion of the
Universe
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in which each Fourier mode is thermally excited at the in-
itial temperature TE ) Tc. We are thus analyzing typical
configurations which contribute to the quantum-field
functional integral. We show that each such configura-
tion leads to an equation of state which gives inflation.
Since we only consider classical-field configurations
which satisfy the field equations we cannot definitely con-
clude that the result will persist when taking the full
quantum average. We hope that the physical understand-
ing gained in this analysis will apply to the complete
quantum problem. It must be stressed that the usual ap-
proach of coupling the quantum average to gravity cannot
be used since it totally neglects the effects of spatial inho-
mogeneities.

The equation of motion for the scalar field in an ex-

panding FRW universe is

P+ 3 P(t) a'(—t) V'P = —V'(P) .
a (t)

(7)

If we replace the potential by —,', R P (R is the Ricci sca-
lar) we obtain the equation of motion of a free conformal-
ly coupled scalar field. The general solution P(x, t) is

P(x, t) =a '(t)P(x, r),
where P(x, r) is a general solution of the wave equation in
flat spacetime and r is conformal time given by
dt =a (t)dr . A typical solution in flat spacetime is a
standing wave. We thus conclude that the expansion of
the Universe produces two important effects. It leads to
a Hubble damping of the amplitude of P and it red-shifts
wavelengths. Since energy density and pressure of the
scalar field are given by

p= —,P'+ —,(VP)'a '(t)+ V(P),

p = —,
'

P
'——,

' (VP)' a'(t) —V(P),

both effects drive the configuration towards one which is
localized at the initial spatial average of P(x) and homo-
geneous. The equation of state becomes p= —p and
gives rise to inflation.

The force which opposes the free-field contraction and
favors domain formation is due to the nonlinear potential
V(P). The main idea in Ref. 5 is to estimate the maximal
effect of this force and hence the minimal time it will take
until domains form. As indicated above, we choose the
initial scalar-field configuration to be such that each
Fourier mode has thermal energy. In a finite volume V
we expand the conformal field P(x, ~)

P(x, r) = V '~ g e'" "qz( )r.
'

(10)
k

We use a perturbative Green's-function method to esti-
mate the maximal effect of V(P) for each mode qq. We
write

qg(~)=qg'(r)+qg'(r) .

qq '(r) is the result for free evolution, qz '(~) is the effect
of the potential to lowest order in A, . In order to estimate
the source term in the equation of motion for qz(~) it was
crucial to assume random initial phases for the qq(r)

modes.
Modes with

~

k
~

= TF have maximal phase space.
Those with higher

~

k
~

are suppressed by the thermality
condition. We thus claim that the corrections in the
scalar-field evolution (compared to the free-field theory
dynamics) will be small as long as for the modes with
maximal phase space

(on the right-hand side we mean the amplitude of the
zeroth-order oscillation). Condition, (12) will be satisfied
up to a certain time ~&. Provided ~z )H ' there will be a
period of new inflation before domains form. For the
models we considered this condition yields Eqs. (5) and
(6).

The above analysis is nonrigorous. It is based on a per-
turbative scheme. A further weak point is assuming ini-
tial random phases for the Fourier modes. Finally the
condition (12) for the existence of an inflationary period is
somewhat ad ho@. The numerical analysis we present in
this paper eliminates the first and last of these weak
points. The evolution of a scalar-field configuration is
indeed a small perturbation from the free-field evolution.
The deviation grows in time and inflation ends soon after
it has become of the same order of magnitude as the un-
perturbed value.

Since our analytical method was based on establishing
upper bounds on the effects of nonlinearities, the bounds
in Eqs. (5) and (6) are conservative. The numerical
analysis presented below allows us to significantly extend
the class of models for which we cap show that new infla-
tion is realized.

IV. NUMERICAL APPROACH

We numerically integrate the Klein-Gordon equation
(7) for a scalar field P(x, t) in a given background FRW
metric. The method works for any scalar-field potential
V(P), but in the evaluation we consider two specific cases.
The first is a "Coleman-Weinberg" model, a single
scalar-field toy model with potential

V(P) =A,P ln ——,
' + —,

'
A,o4 .

O
2

This potential can be viewed as the effective dynamical
potential .for the scalar field in a real Coleman-Weinberg
model, ' a model in which a scalar field with potential

(and vanishing mass term) is coupled to gauge fields,
and in which the self-couplings of P are suppressed com-
pared to the couplings between P and the gauge fields.
This model was used in the original analysis of new infla-
tion.

The second class of models we consider are single
scalar-field models with a double-well A,P potential [Eq.
(I)]. In many particle physics models the scalar field
which drives inflation is very weakly coupled to other
fields. The dynamics of the scalar-field configuration is
then determined by its interaction with gravity alone, i.e.,
by Eq. (7). Models of this type naturally arise in super-
gravity models. " Decoupled scalar fields driving infla-
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tion have also been proposed in nonsupersymmetric
models. '

We start the system in the hot radiation-dominated
phase at a temperature TE & Tc. Since the energy-
momentum tensor is dominated by the homogeneous radi-
ation fluid, it is justified to take the metric to be a FRW
metric. The scale factor is increasing proportional to t'~ .
Given an initial scalar-field configuration we follow, the
time evolution of T&,(P(x, t)), the contribution of the sca-
lar field to the equation of state. We determine for which
values of the free parameters A, and o the equation of state
becomes inflationary as a consequence of the expansion of
the universe, i.e., for which

p(P(x, t))=—p(P(x, t)), (14)

where p(P(x, t)) and p(P(x, t)) are given in Eq. (9).
We choose plane-wave initial conditions of the scalar

field:

P(t,x,y, z) =A sinkz,

P(t, x,y, z) =0 . (15)

We also considered the effect of superposing several
modes, of adding a small asymmetry (i.e., a small con-
stant) to Eq. (15), and of adding random fluctuations.
Choosing plane-wave initial conditions reduces the prob-
lem to an effective (1 + 1)-dimensional problem.

In our analytical analysis we chose the initial scalar-
field configuration by thermally exciting all Fourier
modes. In our opinion the important physical effects can
be seen using a single plane-wave initial configuration.
We want to verify that as a consequence of the expansion
of the Universe the amplitude of the plane wave decreases,
and that the coupling to other modes has a negligible ef-
fect for small values of the coupling constant. These con-
clusions will then also apply for a finite superposition of
plane waves.

We do not address the question of the length of the in-
flationary period. Since we show that in models for
which the scalar-field equation of state becomes inflation-
ary the scalar-field configuration is essentially homogene-
ous in space and localized at /=0, the usual estimates of
the length of the inflationary period should be valid.

V. INITIAL CONDITIONS

The first set of initial conditions are "quasithermal" in-
itial conditions. We imagine that the modes of the scalar
field have been excited by interactions with other fields.
We pick as initial temperature TE ——o.. Since modes with
k & o are exponentially suppressed by the Boltzmann fac-
tor and since the phase-space density of modes is propor-
tional to k we pick k=o in Eq. (15). The amplitude A
is then determined by demanding

py(TE) =—p„d(T@)= TE4

30

p„d and p~ are the energy densities in radiation and in the
scalar field. % is the number of particle species in
thermal equilibrium at TE. On the other hand

pp(TF)= —,'A k

Thus
1/2

2%'

30

(17)

Hence our initial conditions are A =k =o. and
' 1/2

H(t )= X'~' '
90

(19)

Since a single-mode pure state rather than a mixed state is
chosen, we call these quasithermal initial conditions.

The reasons for assuming quasithermal initial condi-
tions are the following. In the standard big-bang model
matter is described by a gas in thermal equilibrium for
T ~ mp~. Since the scalar field corresponds to just anoth-
er particle, it too should be in thermal equilibrium. In
particular, at rE all modes of the scalar field will be
thermally excited. More pragmatic reasons are that
thermal equilibrium is generally postulated at TE in
models which give new inflation. Mazenko, Unruh, and
Wald" also assume thermal- initial conditions.

Severe criticism can be raised against assuming quasi-
thermal initial conditions for P(x, t). For weakly coupled

models there will be insufficient time for scalar-field
self-interactions to thermalize the configuration. For
Coleman-Weinberg —type models (which are strongly cou-
pled to other fields), interactions will thermalize the
scalar-field configuration. The coupling to other fields
will remain important in the dynamical evolution for
T & TE. Taking these into account by simply replacing
V(P) by V,tt(P), the one-loop effective potential (13) will
be a very crude approximation.

We thus extended our analysis to more general initial
conditions. Classical equipartition (although not strictly
applicable in this nonlinear system) suggests that at the
initial temperature TE ——o.:

—kA =—AA= —o.2 2 l 4 & 4
2 2 2, (20)

This gives A=A, ' o. and k=A, ' o., i.e., longer wave-
length fluctuations with larger initial amplitude.

The second extension is to include perturbations with
wavelength equal to the Hubble radius at T=o.. We vary
the amplitude of' these long wavelength perturbations
from o to A,

'~ o. We also considered initial conditions
with nonvanishing spatial average of P(x) and with ran-
dom fluctuations in P(x).

VI. THEORETICAL PREDICTIONS

On the basis of qualitative arguments we first derive a
criterion which allows us to determine for which values of
the free parameters A, and o of the scalar-field potential to
expect new inAation. Three forces enter into the equation
of motion of the scalar field, the tension force
T=k~a (t)P, the Hubble damping term H(t)P(t)=D,
and the nonlinear force F~, which is 4A,P in(P /o ) for
the Coleman-Weinberg model and 4A,Q(P —o ) for the

model.
The tension force induces time oscillations of a stand-
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ing wave. For a free conformally coupled scalar field the
solution of the Klein-Gordon equation (7) is

P(t, x) =a '(t)P(r(t), x), (21)

where r(t) is conformal time and P denotes a standing
wave in flat spacetime. The Hubble damping force is
made up of a contribution from a (t) and another from

D = HP(t—,x)+Ka (t)cos(kt —k x) (22)

H P&4A, Q ln (23)

For quasithermal initial conditions the maximum of the
ratio between the right-hand side and left-hand side of
(23) occurs for some value P=—o. At this point the loga-
rithmic factor will be smaller than 1. Hence (23) yields

2

C= Xo. Ca 8m-3
(24)o. 90

with a constant C—= 1. For a A,P" model there is no loga-
rithmic suppression factor on the right-hand side of (23).
Hence Eq. (24) will be true, but with a smaller constant C.

Two crucial predictions from Eq. (24) are that k,„, the
maximal value of the coupling constant for which inAa-
tion is realized, scales as o. and as X. We can understand
both scalings easily. For fixed A, , the average curvature of
the potential and hence the domain forming forces, in-
crease as a decreases. Increasing X means increasing the
initial Hubble constant and the damping force. Our nu-
merical analysis verifies both predictions.

If the initial amplitude at tp is larger than o., the above
argument must be slightly modified. Initially both D and
X will point in the same direction (for P & o). The ampli-
tude of the scalar field will be damped according to Eq.
(2). Once it becomes of the order o. at time t, the above
analysis applies unchanged. But at that time the Hubble
parameter is smaller

for (()(t,x)=a '(t)sin(kt —k x). Only the first term is a
damping force in the sense that it at every instant in time
damps the magnitude of P. We call it D. D is the force
which drives P towards the initial spatial average of P,
i.e., /=0. The nonlinear force F~ is the cause of domain
formation. It always points toward the closer of the mini-

ma of V(P) at P=+o.. If I D
~

&F~
~

at all points in
space at the initial time, then a large amplitude initial-
field configuration will be driven toward the homogene-
ous configuration P(x) =0. In this ease new inflation will
be realized. For the Coleman-Weinberg model the cri-
terion is

The numerical results show that A, ,„decreases as A in-
creases.

An intuitive picture for inflation follows by rewriting
the Klein-Gordon equation as

p+3HQ= —V'(p) —k a p= —V,'ff k(p, t), (27)

a ( t) =exp( tH),

Eq. (28) yields
2

k a-'

(29)

(30)

for the length of the period during which the amplitude of
oscillation decreases. 3 in this context is the amplitude at
the time the Universe becomes inflationary. In work in
progress we will attempt to verify this formula numerical-
ly.

A nonvanishing initial spatial average P of P(x, t) will
evolve according to the classical equation of motion for
the k =0 mode. If the initial values of P and (d Idt)P are
small compared to o. and o. , respectively, and if the cur-
vature of the potential at P(tp) is small compared to H,
then P will evolve slowly (on a time scale H ') toward
the closest minimum of the potential. The k&0 modes
will be damped as described above and the scalar-field
configuration will become homogeneous and localized at
P(t). In the de Sitter phase Eq. (7) can be solved explicitly

by evaluating all terms of Eq. (7) for a plane wave with
number k. For k & 4A, cr the effective potential for mode
k has a unique minimum at /=0 (in the case of a A,P
theory). Figure 2 represents the phenomenon graphically.

The above intuitive picture also gives a criterion for the
effect of a superimposed long-wavelength mode with wave
number k2 and amplitude A2. Provided k2 ~ 4A,o.

(again for a A, (() model) the tension will be strong enough
to set an oscillation of this second mode in motion. If the
modes are weakly coupled the amplitude of both modes,
will independently decrease. There are no obstroctions to
inflation. The only effect of 22~0 is to change the am-
plitude in Eq. (26).

The intuitive picture also immediately yields a criterion
for the time at which the nonlinear forces begin to dom-
inate. As soon as the slope of V,ff k(P, t ) for P & 0 be-
comes negative the decrease in the amplitude of oscilla-
tion ceases and nonlinear effects take over. In the
Coleman-Weinberg model the condition is

A, 2k'a '(t)P(t) =4AP'(t)ln ~ (28)
o 2

For initial amplitude 3 and scale factor

H(t)
H(tp)

(25)
V((f&)

Hence (24) gets replaced by

3
4

CNo.
8m' 2 o
90

(26) FIG. 2. Potential V(P) and effective potential V,ffk($) for a
k mode with k ~4k,o. .
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FIG. 3. Value of the scalar field as a function of time at the
position of the maximum of the initial standing wave (A,P
model, o.=10 ', A, =10,N =1,A =k=o).

given the approximation (d /dt )/=0. The solution is
' j. /2

3H 1

2A, (t*+to t)'—
3H

2A,P (to)

t' gives an order of magnitude estimate for the length of
the slow rolling period. It is an open question whether in-
itial values P(to) and (d/dt)P(to) which give a sufficiently
long inflationary period are natural in a cosmological con-
text.

FIG. 5. A three-dimensional plot showing the value of the
scalar field (vertical axis) as a function of space (right axis) and
time (left axis) for the run considered in Fig. 3.

to n wavelengths. To maximize the resolution we choose
n =1. We checked the stability of our analysis against
changing n.

The important physical free parameters in the program

VII. NUMERICAL RESULTS IO

First we give a brief description of the program. We
numerically integrate the Klein-Gordon equation (7) as a
system of coupled first-order differential equations for (()

and P in a radiation-dominated FRW universe. The num-
ber of points on the spatial grid is a free parameter. We
generally use 100 points for single-mode runs and 200
points for runs with more than one plane wave. Periodic
boundary conditions hold. The spatial grid corresponds

IO

IO

IO '-
X
Qo io '-

io '-
X
I5

g

0
IO

0
l

IOO
I

200 500
t

FIG. 4. Equation of state of the scalar field at the position of
the maximum of the initial standing wave as a function of time
for the same run as in Fig. 3. The horizontal axis is time.
Crosses denote

[ p(t) (, squares
(
p„(t) [, and points

( p, (t)
)
.

IO lo'
I 1

IO
G

FIG. 6. A, ,„as a function of o. for plane-wave initial condi-
tions A =k =o., N = 1 in the Coleman-steinberg model.
Checks mark runs which yield an inflationary equation of state,
)&'s mark runs which fail to give inflation.
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TABLE I. Theoretical predictions and numerical results for
A, „. Initial conditions in the numerical runs are X= 1,
k=2 =0..

10-'
10
10
10-'

1

Theory
[Eq. {24)]

10—8

10—6

10—4

—10
—1

~max

Numerics
Coleman-Weinberg

model

10-'
10-'
10
10-'
10

Numerics

~ ~ ~

10
10-'
10
10

Q
2

are N, the number of particles in thermal equilibrium at
the starting temperature TF, A, and o, the two parameters
which determine the shape of the potential, and A and k,
which characterize the amplitude and initial wave number
of the scalar-field configuration. We follow the evolution
of the system for a fixed number of initial Hubble-
expansion times. The program stores the value P of the
scalar field, the energy density p(P), the pressure p, !P) in
the direction of the standing wave, and the pressure p„(P)
perpendicular to the standing wave, as well as the energy

IO '-

10

10
IO

'
IO
0

FIG. 8. A, ,„as a function of o. in the Coleman-Weinberg
model for large-amplitude initial conditions (3 =A,

'~ a.,
k =A, '~ o.).

10 2-
density of background radiation, all at a fixed number of
time values. In particular we can plot the (absolute value
of the) amplitude of P at a given point z as a function of
time. We plot the contribution of the scalar field to the
equation of state as a function of time for the same point
z, and finally we produce three-dimensional (3D) graphs
showing the value of the scalar field along the entire spa-
tial grid as a function of time.

Figure 3 shows the (absolute value of the) amplitude of
the scalar field at the maximum of the initial standing
wave for a run with a A,P potential. The run uses N = I,

IO

IO
6

IO

IO

I

10 2

0

FKx. 7. A. ,„as a function of o for the A,P model (same ini-
tial conditions as in Fig. 6). The dashed line indicates A, ,„(o.)
from Fig. 6.

IO I I

IO 100
FIG. 9. X dependence of A, ,„(Coleman-Weinberg model,

o =10,Hubble radius scale fluctuation with amplitude A2 ——o.
included).
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TABLE II. Theoretical predictions and numerical results for
A, ,„ for large-amplitude initial conditions (Coleman-Weinberg
model, N=1, A =A, ', k =A, ' o.).

~max

10
10
10-'

1

Theory [Eq. (26)j

—10-'
—10
—10

—1

Numerics

10
10-4
10
10-'

cr=10 ', A, =10, A =cr, and k=o. We follow the evo-
lution for 10 initial Hubble times. The envelope of the
curve in Fig. 3 is decreasing as predicted by the Hubble
damping formula. At the end of the run the amplitude is
less than 10% of its original amplitude, i.e., the configu-
ration is localized at the top of the potential barrier to
better than 10% of the distance to the minima. Corre-
spondingly the equation of state of the scalar field rapidly
approaches a de Sitter equation p =p, = —p. This is
shown by the coincidence of the three curves at late times
in Fig. 4. The crosses give the value of

~ p ~, the squares
correspond to

~ p„~, and the points to
~ p, ~

. Initially the
tension and kinetic terms dominate the equation of state,
giving p& —p. As the scalar field settles down near /=0
the potential term V(P) begins to dominate, yielding

p = —p. The 3D plot in Fig. 5 (again for the same run)
depicts the time evolution of the scalar-field configuration
along the spatial grid. The initial large amplitude wave is
damped by the Hubble expansion. The sinusoidal shape
of the wave is maintained since the nonlinear forces are
too weak to produce visible mode-mixing effects.

The results of our numerical runs for the Coleman-
Weinberg model for quasithermal initial conditions
A =k =o. are summarized in Fig. 6. All runs take X =1.
We explore the parameter space region 10 &o & 1 and
determine A, ,„, the maximal value of A, for which an in-
flationary period is realized. In Table I we compare the
theoretical predictions for A, ,„with our numerical re-
sults. The agreement confirms our heuristic picture of in-
flation. In particular we verify the o dependence of A,~,„
predicted in Eq. (24).

The analogous results in the case of a A,P model for
quasithermal initial conditions are summarized in Fig. 7.

FIG. 11. Three-dimensional plot of the scalar-field evolution
as a function of time in a A,P model with cr= 1, A, =10 2., %= 1,
A =k =o.. The axes are as in Fig. 5.

The runs are for X = 1 and explore the range
10 & o. & 1. In Table I we compare the theoretical pre-
dictions for X „with the numerical results. The heuristic
picture is again confirmed. Except for cr=1 the cr depen-
dence of A, ,„ in Eq. (24) is verified. As predicted, the
difference between the Coleman-Weinberg - model and the

model manifests itself in the difference in the con-
stants C of Eq. (25). In the Coleman-Weinberg case A, m,„
is enhanced by a factor of the order 10 due to the extra
logarithmic suppression of nonlinear forces

In the case of the Coleman-Weinberg model we investi-
gated the effect of different initial conditions. We first
considered large-amplitude plane-wave initial conditions
A =A, '~4o. , k=A, '~~cr, N = l. As predicted by Eq. (26),
A, ,„decreases as 3 increases. The numerical results are
summarized in Fig. 8 and theoretical predictions and nu-
merical results for A, ,„are compared in Table II. In
these runs a conformal mass term has been included in the
potential.

Next we considered, again in the case of the Coleman-
Weinberg model and again with a conformal mass term in

IO

10

~ y ~ ~~ 0 yO 0 ~0
0

e
~Og

~ ~

IO

IO' I I

I IO N

FIG. 10.
'

Dependence of A, ,„on A2 (Coleman-%'einberg
model, o.=10 ). The first column gives the results for A2 ——o,
the second for Aq ——5o., and the third for A2 ——10o..

IO

I

200 400
, 0

t
FIG. 12. Value of the scalar field at the point in space corre-

sponding to the maximum of the standing wave as a function of
time in a run with a long period of inflation. (A,P model, o =1,
X=10, A =k=o, N=1.)
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FIG. 13. TThree-dimensional plot of the scalar field in a ru
with large initial am litude

e sca ar ield in a run

g / g g —&/4 FIG. 14. Immediate "omain formation in a model with
coupling constant (Colem -W '

eman- ein erg, 0.=1, X=1).

the potential, the effect of addin a ioning a long wavelength fluc-

u es i
——A, a. and A2 of the two lan

consider o.= 10 d
p ane waves. We

and analyze how A, de en
and N. Figure 9 shows tha
X as predicted from Eq. (24). In Fig. 10 we lot

e s ows t a ~» increases linearl with

There is no ob-
'

n o in ation and, as predicted in Sec. VI
only depends weakly on A since a
onl a

2 since a change in A2 muses
n y a small change in the total amplitude.

dom ini
preliminary investigation of the effe fe e ect o adding ran-
initial velocities was performed. We first consider

e range —cr, cr ] independently at each point iin

metic energy not exceed the thermal energy of f' ld
r a P potential with a=1 and A, =10 the

equation of state remained infl t'in a ionary for a time eriop'
ia u e-expansion times.

The next set of 'of initial conditions consisted of a lanc-e o a pane-

c osen in the same manner as above. In thn e case of the

and X=10 but not for X=10 A more
f f fe or a uture publication.

VIII. SOME EXAMPLES

Figures 3—5 show hw the dynamical evolution of t ic

interesting features we obse
Fi ure 11 1

serve in the numerical runs.
igure 11 plots the evolution of the scalar field f

tial conditions whi
sca ar ie or ini-

s which show a phase transition. The a-
0 =, = . The

is initial Hubble times. The amplitude of the stand-
ing wave decreases until A(t)=0. 1A, at which
equation of state of th 1

' = —. ut to e sca ar field is p=- —. But t"
nonlinear forces immediatel b, '

eia e y egin to dominate, drive the

scalar field towards the minimum f th
cause oscillations about the minimum.

um o t e otential an, and

For o.=1, A, =10 w
'

o in a-we observe a long period of infla-
tion which terminates near the end of th

u e times with a slow rolling of the scalar field
uniformly in space, toward P = (F' . . is f
a A,P potential and takes A =k =cr
un ', =cr ig. 12). The run is f

If weI we consider an initial scalar-field confi ur

t"e initial plane wave breaks u
iu e, i.e., =A, o, = ' o, weseethat

Th' flis re ects the fact that for
a s up into its higher harmonics.

in the oten
'

or
~

~
~

& cr the nonlinear terms
in e potential are dominant. Figure 13 sh hs ows t e evolu-

a oleman-Weinberg model for cr = 10
e total time interval is

to . Initially the amplitude of the scalar field de-
creases uniforml in s acy pace which den1onstrates that the
in ividual modes basically evolve inde en

o e run the phase transition takes place.
or very large coupling constants the 1'

e a initio - which is re ected in immediate

for a
omain formation. AnAn example is shown in Fig. 14. It is
or a Coleman-Weinberg potential, o =A, = 1, k =A =cr

tp

IX. CONCLUSIONS

The evolution of a classical scalar-field c f'- ie con iguration in
panding Friedmann-Roberson-Walker

scale factor a(t -t' a er universe with
r a t -t is analyzed numerically. The oal

is to determine if the evolution leads to
neces sar to r

ion ea s to a configuration
ey ocaize nearry o produce new inflation, namel 1 1'

/ =0 and homogeneous in space.
We conclude that new inflation can be'on can e realized in a

field generates inflation. Tha ion. eoretical considerations lead
o t e prediction that k
1

0

~», t"e maximal value of the cou-

—2
p mg constant for which inflation oc h ld

'
n occurs, s ould scale as

o. X, 2V being the number of article sp p

tion both for a C
a a . e numerical results confirm th' d'-is pr'e ic-

tential.
a Coleman-Weinberg potential d A,aC - '

ia an a po-
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The basic mechanism which produces a scalar-field
configuration which is homogeneous and localized at
/=0 is Hubble damping. The numerical runs show that
nonlinear effects and mode-mode couplings produce a
much smaller effect over the time period of interest than
Hubble damping.

The analysis was performed with various sets of initial
conditions. We considered plane-wave initial conditions
with amplitude A and wave number k equal to cr I'justified

by thermal equilibrium arguments). We also considered
large amplitude waves, i.e., A =A, ' o., k =A, ' o., as well
as the effect of additional Hubble-scale long-wavelength
fluctuations. Finally we considered random initial veloci-
ties.

This analysis complements and strengthens our previ-
ous analytical analysis. Mazenko' has just completed a
numerical analysis of the evolution of an X-vector model
coupled to Einstein's equations. In the X~oo limit an
inflationary phase is observed. It is however a manifesta-
tion of chaotic inflation' rather than new inflation.

In a recent report' Guth and Pi present a careful
analysis of the evolution of the Higgs field in a time-
dependent quadratic potential and reach similar con-
clusions to our results. In work in progress we are study-
ing the evolution of the scalar field for more realistic ini-
tial conditions with a 3D code. This will enable us to
analyze the mechanism of the phase transition, spinodal
decomposition. '
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