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Strange matter, a stable form of quark matter containing a large fraction of strange quarks, may
have been copiously produced when the Universe had a temperature of —100 MeV. We study the
evaporation of lumps of strange matter as the Universe cooled to 1 MeV. Only lumps with baryon
number larger than —10 could survive. This places a severe restriction on scenarios for strange-
matter production.

INTRODUCTION

A new candidate for the dark matter of the Universe is
strange matter. ' This substance consists of roughly equal
numbers of up, down, and strange quarks confined in a
quark phase which is conjectured to have a lower energy
per baryon number than ordinary nuclei. Strange matter
is absolutely stable, has a density comparable to that of
nuclei and can exist in lumps ranging in size from a few
fermis to —10 km. If it is distributed in space in lumps
larger than —1 cm, it could close the Universe without
ever encountering the Earth and would be astronomically
unobservable.

To be a viable candidate for the dark matter of the
Universe, a substance must at least pass the following
three tests. First, there must be a reasonable theoretical
expectation, independent of cosmology, that this form of
matter exists. Second, there must be a reasonable scenario
for copious production of the substance during some
cosmic epoch. Third, the substance must be durable
enough to survive until today.

Strange matter has never been seen in the laboratory,
yet there are plausible arguments that this form of matter
exists. A lump of strange matter contains ordinary
quarks (up, down, and strange) and gluons plus a small
component of electrons to guarantee charge neutrality.
The hadronic material is in a "quark phase" in which nu-
cleons and mesons do not exist and the quarks are free to
roam within the lump. Witten' suggested that this form
of matter could be absolutely stable, i.e., the energy per
baryon number (equal to one-third the number of quarks)
could be less than 930 MeV. The inclusion of strange

quarks is crucial to having a low energy since their pres-
ence increases the fermion degeneracy. (Higher-mass
quarks, such as the charm quark, are not included since
their masses are more than the chemical potentials in-
volved. ) A precise calculation of the energy is beyond our
present abilities. However, a detailed study has shown
that within the uncertainties inherent in a strong-
interaction calculation, the existence of stable strange
matter is reasonable. Ordinary nuclei would then be un-
stable but the rate of decay into strange matter would be
effectively zero since the decay could only proceed
through a very-high-order weak interaction. It is possible
that the true ground state of the strong interactions is not
iron and that this possibility has been overlooked.

Mitten' also outlined a scenario for the production of
strange matter in the early Universe. The production oc-
curred when the Universe cooled through the QCD phase
transition at a temperature T, (roughly 100—200 MeV),
which is characteristic of the strong-interaction energy
scale. Above this temperature quarks are unconfined,
below it they are confined. As the Universe cooled to a
temperature T„bubbles of the confined phase appeared
and began to expand into the deconfined phase. (There is
some reason to believe that the phase transition was first
order. ) The Universe stayed at the temperature T, until
the confined phase occupied nearly all of space. However,
it is possible that a large fraction, say 95%%uo, of the net
baryon number condensed into the regions of the decon-
fined phase. If these regions lost heat primarily through
processes such as neutrino emission, which did not deplete
their baryon number, they would have settled into nuggets
of strange matter. These nuggets would contain most of
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the baryon number and mass of the Universe.
Witten's scenario has been criticized by Applegate and

Hogan, but the physics involved is sufficiently complex
that a clear determination of the outcome of the QCD
phase transition is unlikely to appear soon. %'e examine
one of the consequences of this phase-transition scenario.
We work with the hypothesis that large amounts of
strange matter were produced as the Universe cooled
through T, . Our goal in this paper is to examine the fate
of a lump of strange matter as the Universe cooled below
T„ i.e., we will examine the durability of the lump. By
working below T, we avoid any subtle discussion of the
QCD phase transition.

Strange matter has an energy per baryon number of less
than 930 MeV but most likely more than 850 MeV.
Therefore, the energy I required to liberate one neutron
from a lump of strange matter is certainly less than 100
MeV. In equilibrium, a lump of strange matter could not
exist at a temperature I and at a density comparable to
that of the Universe at that temperature. Entropy con-
siderations would simply favor the breakup of strange
matter into neutrons. However, a large lump maintained
at the temperature I for a brief enough period would
evaporate only its outer layer. The Universe cools from
100 to 1 MeV in 1 sec. We find that this is enough time
to evaporate all but the largest lumps of strange matter.
A detailed analysis gives the minimum baryon number of
any lump that survives as roughly 10 . This restriction
severely limits the viability of strange matter as a candi-
date for dark matter.

PROPERTIES OF STRAN(jrE MATTER

In order to calculate the evaporation of strange matter
in the early Universe we need to establish some of its
properties. A lump of strange matter with baryon num-
ber 3 is a collection of 3A quarks in a quark-matter
phase which is absolutely stable at zero temperature and
external pressure. The mass of a lump of strange matter
is eA where e is between 850 and 930 MeV. The radius
grows as 3' . The baryon number density is roughly
(125 MeV) or 2.54&&10 /cm . The minimum value of A
for which strange matter is stable is around 10. For
lower A, shell effects raise the energy per baryon number
above the mass of a nucleon and the substance can decay.
The maximum 3 is determined by requiring stability
against gravitational collapse into a black hole,
A -2.5~1057.

Quark matter consists of up, down, and strange quarks
and electrons with chemical equilibrium between the fla-
vors maintained by the weak reactions: d~u+e+v,
s~u+e+v, and s+u~Q+u. Electrons are included to
guarantee electric-charge neutrality. The chemical poten-
tials of the quarks inside strange matter are typically 300
MeV. A single quark can never be removed from strange
matter because of confinement. The baryon number of
strange rnatter can change only through the emission or
absorption of baryons such as neutrons, protons, and A' s.

We define the binding energy I to be the energy needed
to liberate one neutron from a zero-temperature lump of
strange matter,

o.=f„4~r, =f„crpA i (2)

where f„ is the absorption efficiency and f„&1. We will
discuss the sensitivity of our results to f„ later. We do
not expect f„«1 under any circumstances of interest in
this calculation. o.o ——3.1& 10 MeV is obtained by as-
suming a density of (125 MeV) .

We can use detailed balance to compute the neutron
emission rate for strange matter at a temperature T.
First, consider the equilibrium situation, at a temperature
T, where strange lumps of all baryon numbers are coexist-
ing with neutrons. The reaction (A+ l)~(A)+n will es-
tablish the equilibrium relative number densities. Because
of (1), the chemical potentials obey

p(A+1)=p(A)+p(~)+& . (3)

For nonrelativistic, nondegenerate particles (we always
work at a temperature much less than the neutron mass),

' 3/2
2~ 2V

(4)
mT g

p=Tln

where 2V is the number density, m is the mass of the par-
ticle, and g is the internal partition function. For neu-
trons, g=2. For strange matter, the internal partition
function g(A, T)-constXexp(aAT/p~) where a is of or-
der unity and p& is the quark chemical potential inside the
lump of order 300 MeV. The ratio g (A + 1,T ) /
g(A, T)=1 up to corrections of order T/pq. Then (3)
and (4) imply

3/2
m„T=2

2m
e —I/T (5)

for the number densities in equilibrium.
In equilibrium, lumps of strange matter are absorbing

and emitting neutrons. The rate per unit volume at which
lumps with baryon number 3+1 are being created is pro-
portional to the density of those with baryon number A
times the density of neutrons times the cross section,

R[(A)+n~(A+1)]=N~N„f„crpA (T/2~m„)'

(A+1)+I~(A )+(n ),
and in the Introduction we argued that I is certainly less
than 100 MeV. We focus on the neutron since it is one of
the two lightest baryons and unlike the proton it does not
face a Coulomb barrier. If a slow neutron strikes a large
lump of strange matter, it will fall in and break apart
releasing an energy I. We expect the neutron to enter
unimpeded for several reasons. The quarks inside the
neutron typically have energies above the top of the Fermi
sea of the strange matter so there is no Pauli blocking.
The neutron interior is in the same vacuum configuration
as the strange matter and since we assume a positive sur-
face tension, combining material to make a larger lump is
energetically favored. (If the surface tension were nega-
tive, strange matter would form tiny balls which would
presumably evaporate very easily. ) We expect, therefore, a
neutron absorption cross section which is geometric:
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1 y.2~ —I/Tp g 2/3 (8)

This evaporation rate has been evaluated by considering
an equilibrium situation. However, it is simply the
evaporation rate, into neutrons, of a lump of strange
matter at a temperature T and Eq. (8) can be used in
nonequilibrium situations.

STRANGE MATTER IN THE EARLY UNIVERSE

An object with an evaporation rate dA /dt given by Eq.
(8) will evaporate completely in a time

2~ I/Tg 1/3
r(A) =

mn ~ fn&0
(9)

To see if a lump survives we should compare this lifetime
to the age of the Universe at a temperature T„. In the
radiation-dominated era, the age of the Universe is

1/2
3

32mGp
(10)

where G is Newton's constant and p is the energy density.
The energy density is mostly in photons, electrons, and
three types of neutrinos for which p =43m T„ /120 and

1/2
45 1

172m ~G

For a lump to survive until the temperature is roughly its
binding energy I, it must have a baryon number 3 greater
t an -10"y„'.

This simple analysis indicates that the minimum
baryon number required for survival is extremely large.
To confirm this, we present a calculation of the evapora-
tion in the environment of the early Universe which in-
cludes the following effects.

(i) Energy balance: The heat capacity of the strange
matter is very low, and the lump cools rapidly as it evapo-
rates. The lump will cease evaporati. ng unless energy is
continuously supplied. The source of this energy is
predominantly incoming neutrinos.

(ii) Diffusion away from the lump: The emitted neutrons
and protons scatter off ambient particles and the baryon-
number flow, away from the lump, is constricted. The
baryons must push through the surrounding medium.

(iii) Absorption: A high concentration of baryons near
the surface of the lump will lead to absorption. If the
concentration near the surface is too high, the net
evaporation could be zero.

where the last factor is the mean neutron velocity. (This
form for the velocity is exact only for large negative
chemical potentials. However, it is still approximately
correct in our regime. ) The rate per unit volume at which
lumps of baryon number A+1 are disappearing is equal
to the density of those lumps times their decay rate ~:

R[(A+1)~(A)+n]=N~+)r .

The principle of detailed balance tells us that in equilibri-
um these two rates, (6) and (7), must be equal. Using the
equilibrium relation (5) we obtain

(iv) Obscuration of neutrinos: The emitted baryons form
a blanket around the lump and shield it from incoming
neutrinos. This limits the energy supply and the subse-
quent evaporation.

We will calculate the net evaporation rate dA/dt of a
lump of strange matter when the Universe had a ternpera-
ture T„. Using Eq. (11) we then get

dA dA dt dA 45
dt dT„dt 172m G

—2

Q

(12)

Given a lump with a certain initial baryon number, this
equation can be integrated to trace the evolution of the
lump as the Universe cools. %'e now turn to the calcula-
tion of dA/dt.

EVAPORATION IN AN OPTICALLY THIN
ENVIRONMENT

1, r, )—,
' l(1)

p(r„T)= .
r, (—„' l(T),

(13)

where l(T)=(GF p T ) '. The factor of —, in Eq. (13)

An evaporating lump has a lower temperature than the
environment. Heat flows from the surrounding medium
to the lump, supplying energy for evaporation. At the
temperature of interest, T„&100 MeV, the environment
consists primarily of photons, electrons, neutrinos, and
their antiparticles. Near the lump there may also be a
high concentration of emitted baryons. The neutrinos,
which only interact weakly, have the longest mean free
paths and are the best energy transporters through the
medium. However, in order to heat the object the neutri-
nos must be absorbed. In this section we study evapora-
tion under conditions for which neutrinos dominate the
heating and in addition the environment is transparent to
neutrinos. In the next section we will determine the range
of values of T„and A which imply these conditions.

If the medium near the lump is optically thin to neutri-
nos, then neutrinos from far away can heat the lump.
These neutrinos have a thermal distribution at a tempera-
ture T„which is greater than the temperature at the sur-
face of the lump T, . The rate at which energy flows into
a lump of radius r, is 4rrr, (7m /160)T„where we have
included three generations of neutrinos, i.e., v„v„v@,vz,
v„v,. A neutrino is assured of being absorbed only if its
mean free path is smaller than r, . The incoming neutri-
nos have energies of order T„. They scatter off a Fermi
gas of quarks with chemical potentials p~, much larger
than T„. The mean free path of these neutrinos is rough-
ly (G~ p~ 'r„) ' where Gz is the weak-interaction con-
stant. The chemical potentials in strange matter are typi-
cally 300 MeV so at a temperature T„of 10 MeV the
mean free path is around 16 m. At this temperature an
object of thi. s radius or larger, corresponding to
3 -5& 10,will absorb aH incident neutrinos.

If the lump is smaller than the neutrino mean free path
l(T„), the probability p(r„T„) of absorption will vary
linearly with the radius. If the lump is much larger than
l(T„), then p(r„T„)= 1. We will use
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arises from an average over solid angle. Equation (13)
overestimates p(v„T) when v, —l(T). The rate at which
heat is absorbed is then

7 2

160
(14)

7 2

L =4nv, ' -[T„p(v„T„)—T, p(v„T, )] .

We have not included photons or electrons because we are
working in a domain where electromagnetic heating is
highly diffusion limited.

The lump of strange matter is losing its baryon number
through the emission of nucleons, i.e., neutrons and pro-
tons. The neutron evaporation rate is just Eq. (8):

For small lumps the energy absorbed is proportional to
the volume of the lump.

If the lump is larger than a neutrino mean free path, it
is black to neutrinos and will also emit neutrinos with a
thermal spectrum. The rate at which energy is emitted is
then 4m.v, (7m /160)T, since the lump emits at its tem-
perature T, . If the lump is smaller than the neutrino
mean free path we should include an emission probability
factor of p(v„T, ). The net heating rate is

We have not included neutrinos in Eq. (18) because the
material near the lump is assumed to be thin to neutrinos.
For quickly evaporating lumps the weak interactions do
not have time to establish the equilibrium relationship

However, at temperatures as low as 20 MeV,
there are enough pions around to establish equilibrium
through strong interactions like m.++n ~p+~ . There-
fore, at the surface of the lump the densities of nucleons
are

11
N„(T, )=Np(T, )= (T„" T,4) .—

360T,
(19)

These nucleons, near the surface, can be reabsorbed by
the lump. From Eq. (2) the absorption rates are

v„' '=f„N„(T,)ooA i (T, /2am„)'i

gr'= fpNp(T, )o pA (T, /2am„)'.
(20)

where the last factor is the mean thermal velocity of the
nucleons near the surface. The net evaporation rate, emis- .

sion (16) and (17) minus absorption (20), is

dA mn Ts —IIT,
2

e
dt 2w

2m n Ts —I/Ts 2/3v„= e 'f„ooA'
2~2

(16)
11

360T,
(T„4 T,4)(T, /2rvm—„)'"

The proton evaporation rate can be determined in much
the same way as the neutron evaporation rate. However,
the proton faces a Coulomb barrier which is equal to the
electron chemical potential p, in strange matter. This is
typically a few tens of MeV. A proton incident on
strange matter must have a kinetic energy larger than p,
or it will not be absorbed (except by penetrating the bar-
rier, a small effect). Thus, the absorption efficiency for
protons f~ is energy dependent and the evaporation rate
r& has a somewhat different form than r„. We will make
the approximation

2
mn Ts I/T 2/3

v = e 'fpooA
2~2

(N„+N )T+ T'= T„'. -

180 180
(18)

where fz is a constant absorption efficiency less than f„,
i.e., 0&f~ (f„(1.Our conclusions will turn out to be
insensitive to fz and f„so this approximation is valid.

Outside the lump the neutrons and protons are strongly
interacting amongst themselves and the protons are elec-
tromagnetically interacting with the electrons, positrons,
and photons. The nucleons are in local thermal equilibri-
um with the electromagnetic quanta. We can establish the
local densities of neutrons and protons using pressure
equilibrium. The contribution to the pressure from elec-
trons, positrons, and photons is (1 lvr /180)T where T is
the local temperature, T, (T& T„. The neutrons and
protons contribute (N„+N~ )T to the pressure where N„
and X~ are the local densities. Far from the lump there
are no nucleons so

Xo,A'"(f„+f, ) . (21)

The mean kinetic energy of an emitted nucleon is 2T,
(this form for the kinetic energy is exact only for large
negative chemical potentials; however, it is still approxi-
mately correct in our regime) and the energy required to
release each nucleon is I. Therefore, energy is being ex-
pended at the rate

L = (I+2T, ) .dA
dt

(22)

By energy balance this equals the incoming power given
by Eq. (15). This equality allows us to determine the sur-
face temperature T, of a lump with baryon number A
given the temperature of the Universe T„and the binding
energy I.

Once we know T, as a function of A and T„we know
dA /dt, by Eq. (21), as a function of A and T„ for a given
I. Since dA/dT„ is simply determined by Eq. (12), we
can integrate, starting at some initial high temperature
and find the fate of a lump as the Universe cools.

DIFFUSIVE HEATINCi

In the preceding section we assumed that the material
surrounding the evaporating lump forms a layer which is
transparent to neutrinos. We now want to see under what
conditions that assumption is valid. A lump which starts
significantly evaporating at some temperature T; when it
has a baryon number 2; can at most emit 2; nucleons
and will typically be surrounded by roughly 3; nucleons.
The number density of nucleons goes like (T„T)/T—
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i;(E) '= gR(, (E) . (24)

The cross section for neutrino nucleon scattering is
given by C;„Gz E or C&Gz E where C;„and C~ are
calculable coefficients. The nucleons are taken to be at
rest since T &&m. The neutrino nucleon reaction rate is
then

R;„+R;~=(C~„+Cq)Gp E N„. (25)

The neutrino lepton cross sections depend on the lepton
energy so these reaction rates must be computed by in-
tegrating over the Fermi distributions of lepton energies.
Thrs gj.ves

where T is the local temperature. T is not very different
from T„or T, so the typical nucleon density is T„.
These nucleons will extend out to a radius of order
A ~ /T„. Incoming neutrinos scattering off these nu-
cleons have a mean free path of -(GF T„) '. For the
surrounding medium to be thin, we require (GF T„) to
be greater than A /T„.

We will compute the heating rate in this regime by as-
suming a stationary state has been achieved for each T„
as the Universe cools. This is not strictly correct, and
probably results in a slight underestimate of the heating
rate. However, for reasons that will become clear below,
this error is not important.

Since the material is optically thick to the neutrinos,
the pressure due to neutrinos must be included in calculat-
ing the pressure balance. Equation (18) becomes

360 360
(23)

The energy flux due to a neutrino of type i
(i =v„v„v&,v&, v„v ) is proportional to the temperature
gradient and to the mean free paths l;. The rate R;, (E) at
which neutrinos of type i and energy E scatter off parti-
cles of type a (a=n,p, e, e) can be calculated using the
standard electroweak theory. The mean free path l;(E) is
then given by

l~ '(E)= (l; '(E) ) = —,
' g g R;, (E) .

The flux carried by all six neutrino types is

F= —2 f lg(E)
dr 0 QT e +1

L

4~E dE
(2m. )'

(28)

This formula is the fermionic counterpart of the Rosse-
land approximation. The total flux can be written as

F= —g(T)
dT
dI'

(29)

L
4mr

(30)

where L is the total neutrino heating rate. L is deter-
mined by integrating (29) from the surface of the lump to
infinity, using (30). The result is

r

~s TsL=
GF &u Tu

where 4 is a dimensionless function given by

(31)

Ts

T.
dx dT

o T
( x+1)2

T2
X a(T„T)x+bT—

(32)

The constants a and b are determined by Eqs. (23) and
(25)—(27).

The evaporation rate is determined as in Eq. (21), ex-
cept that neutrino pressure is taken into account,

2
' 1/2

dA ~n Ts —I/T
8

dt
43rr (T 4 T4) s2 T

720T, " 2am„

where g(T) is determined by Eq. (28). g(T) depends on
T„ through the neutron and proton number densities
given by Eq. (23).

The assumption of stationarity implies that

a = leptons
R;, =D;GJ; T E, (26)

&&~oA'"(fn+ft ) . (33)
where D; as well as C;„+C;~ are given by the standard
weak-interaction theory. These calculations have all
neglected the Pauli blocking associated with finding the
final states occupied. This reduces the rates by roughly
10%%uo and we include this factor at later stages.

Neutrino-neutrino scattering has a different effect on
the calculation. It is clear that scattering between neutri-
nos of the same type i has no effect on the flux carried by
neutrinos of type i; this is a consequence of momentum
conservation. Furthermore, scattering between neutrinos
of different type but identical l; (E) has no effect on their
fluxes. The effect of collisions between the neutrinos of
different type and different 1;(E) is to increase the flux
carried by the type with smaller i;(E) and decrease the
flux carried by the other type. This effect may be approx-
imately modeled by averaging the collision rates over the
neutrino types. The average mean free path is then

The heat lost in evaporation is given by Eq. (22), and as
before, Eqs. (22) and (31)—(33) determine the temperature
T„I., and dA/dt

An important property of Eq. (31) is that the heating
rate varies inversely with T„. This may be understood as
follows. The flux is proportional to the gradient of T
( —T /r ), inversely proportional to the number density of
scatterers ( —T ), and inversely proportional to a typical
cross section ( —T ). The luminosity is 4rrr times the
flux. The product of these terms is —r/T

Since the heating rate varies as T„',and the age of the
Universe varies as T„,it is clear that, in this regime,
most of the evaporation occurs at cooler temperatures.
This means that the total evaporative loss of a strange
lump that starts evaporating in this regime is insensitive
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to the initial T„.
We can check the stationary solution to see if the region

over which the temperature changes from T, to = T„ is
optically thick to neutrinos. This condition is
GF r, T„~1, a more stringent condition than what we es-
timated earlier by requiring that enough baryons could
have been emitted to make the surroundings optically
thick. This line is shown in Fig. 1.

ELECTROMAGNETIC HEATING

56—

O 54—
O

~sa
~as

For sufficiently small lumps, the neutrino heating rate
will fall below the heating rate due to photons, electrons,
and positrons. This heating rate is difficult to calculate
precisely because it depends on the number of baryons
that have been previously emitted. By neglecting the elec-
tromagnetic heating we have underestimated the heating
rate and therefore the evaporation rate particularly for
small lumps. This means that the low-3 part of the
curves in Fig. 1 should fall even faster, but this has no ef-
fect on our conclusions, so we can safely neglect elec-
tromagnetic heating.

50—
I t t

20 40 60 80
t

100
I (Me V)

FIG. 2. The initial baryon number 3 &i2, for a strange lump
that loses 50%%uo of its baryon number, plotted vs binging energy
I. The so1id curve is for f„+f~=1, the dashed curve for
f„+fp ——0. 1.

FLAVOR EQUILIBRATION

High-temperature lumps of strange matter emit neu-
trons and protons from the surface. Neutrons and pro-
tons are made of up and down quarks whereas the equili-
brium configuration of strange matter has comparable
numbers of up, down, and strange quarks. The lightest
strange baryon, the A, is too heavy (1116 MeV) to be
emitted. For the evaporation to proceed, up and down
quarks must be supplied to the surface. As the number of
up and down quarks drops, the strange quarks convert to
ups and downs via the weak interactions. The rate at
which the strange quarks convert places an upper limit on
the total evaporation rate.

dA (GF p, sin o,a .
dt

(34)

Using Eq. (12) we can get a limit on the slope of the
curves appearing in Fig. 2,

2
d log10A io 1 MeV 1( 1010

dT T T
' (35)

The strange quarks have a chemical potential p~ =300
MeV and the rate for a single quark to convert is roughly
GF p~ sin 8, where sin 8, =0.04. The total number of
strange quarks is 3, so we get the limit

This slope is very large and places no significant restric-
tion on any of our calculations.

50-

40-
C)

O

30-

20-

IO
50

a I

20 30 40
T~(Mev)

FIG. I. The variation of 2 with T„ for four lumps of
strange matter. The transition from diffusive neutrino heating
to optically thin neutrino heating is shown by the dashed line.
The binding energy is 20 MeV for all four lumps.

THE EVAPORATION PROCESS

We show the evolution of several evaporating strange
lumps in the A-T„plane in Fig. 1. We assume a binding
energy of 20 MeV in Fig. 1. The computations start at
T„=50 MeV, with different initial A. The important
features of the process are clear. Very little evaporation
occurs in the optically thick region. Most of the evapora-
tion occurs just as the surrounding nucleons become thin
to neutrinos. There is a critical initial A, below which the
lump evaporates completely, a narrow range in 2 for
which substantial but not total evaporation occurs, and
large lumps suffer little evaporation.

We show the dependence of our results on the binding
energy I in Fig. 2. We plot the initial A that results in
50% evaporation versus I. If the binding energy is large,
the strange matter is more secure against evaporation. We
also show the sensitivity of our results to f„+f~. The
upper curve is for f„+f~ = 1, the lower is for
f„+f~ =0.1. Since we expect f„+fz to be of order 1, the
lower curve gives a reasonable lower bound on the
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minimum A which could survive. Even for the largest
binding energies we consider, 100 MeV, the minimum size
lump which could survive as the Universe cooled below 50
MeV is 10

CONCLUSIONS

%'e have calculated the evaporation of strange matter
after the QCD phase transition, without making assump-
tions about that transition, and we conclude that the
minimum size lump that could survive has a baryon num-
ber 3 —10 . Such an object has a planetary mass.

These numbers are large in an important sense cosmo-
logically. If we assume the Universe is closed by baryons
in either the strange or normal phase, then the mean
baryon number in the particle horizon at these early

epochs is —10 (1 MeV/T„) . At T„=50 MeV this
number is -8 /10, much smaller than the minimum
baryon number of a lump which could survive. This
means that the process that leads to the formation of
strange-matter lumps must involve large perturbations in
the, baryon number on the horizon scale. A mechanism
for producing this perturbation is not known to us.
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