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1/N expansion (N =number of generations) and mass hierarchy of charged fermions
in composite model for leptons, quarks, and Higgs mesons

Tsunehiro Kobayashi
Institute of Physics, University af Tsukuba, Ibaraki 305, Japan
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A new 1 jN expansion for mass matrices of charged leptons and quarks is proposed in a compos-
ite model. The number N is shown to be the number of fermion generations. From the phenomeno-
logical analysis of mass matrices the generation number N is estimated to be 3—6.

I. INTRODUCTION

The mass hierarchy among the charged-fermion genera-
tions is one of the very difficult problems to und'erstand in
the present particle physics. Though we have some
models beyond the so-called standard model
[SU(3),SSU(2)1.U(l)r gauge theory], e.g., grand unified
theories (GUT's), supersymmetric (SUSY) GUT, tech-
nicolor model, composite model, etc. , the hierarchy has
not yet been sufficiently interpreted in any model. The
hierarchy is numerically represented by the following
mass ratios among three generations:

( first: e, u, d ) ( second: p, s,c')
2

(second: p, s,c) (third: r, b, t)
where the mean mass value for the nth generation is de-
fined as

( nth: a, b, c) =(m, mbm, )'~

The order of 10 in (1.1) is strikingly small as compared
with the ratios ( ground states) /( first excited states) and
(first excited states)/(second excited states) among the
levels of hadrons. On the other hand, it is strikingly
large, when we compare it with the ratios of QCD scale
parameter A, -200 MeV to the characteristic energy
scales of the new models noted above, i.e.,

posed the following form of the mass matrix for three
quark generations:

0 3 0
m, = A' 0 B

0 B' C
(1.3)

with
f

A'
f

=
f
3

f

and fB'
f

= fB f. The Fritzsch mass
matrix has been reexamined in new experimental informa-
tion about the Kobayashi-Maskawa matrix. In these
analyses the relations

E 3 D

~q — A' I' B
D' 8' C

where
1/2 3

(1.5)

f
B

f

—
f

B'
f
-(mqm3)'

C-m3

are derived, where m; (i =1,2, 3) indicates the mass of
quark in the ifh generation. The Fritzsch mass matrix
can easily be extended to the form

T
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A~UT & 10 GeV

+SUSY +GUT

order of A, /A„,~~,d, ~
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(1.6)

2
+technicolor & 10

+composite & 10 GeV
&10 '
&10—4

(1.2) For the choice of
f
D

f

—
f

D'
f
-[(m i/m2)' ] m3 the

matrix has a form similar to that presented by Wolfen-
stein in the discussion of CP violation. In any case, the
mass-matrix elements for quarks seem to be expanded by
the order parameter

In theoretical aspects the hierarchy would be represented
by that of the couplings of fermions with Higgs mesons.
The question "What is the origin of the hierarchy?, "how-
ever, is still an open question. I think that no model has
yet succeeded in finding any reasonable answer for the
question.

From the phenomenological viewpoint the mass matrix
for quarks was extensively studied by Fritzsch. ' He pro-

1/2

Pl 3

1/2

(1.7)

What does it mean? Matsumoto is trying to interpret this
expansion as 1/NIt expansion, where NH means the di-
mension of hypercolor gauge interaction [SU(Ntt)] in a
composite model.
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In this paper we shall investigate the mass matrix
represented by the form (1.5) with the constraints {1.6) in
a composite model proposed in an earher work. (Hereaf-
ter we shall refer to this paper as I.) In I we derived the
mass relation

m, (m, —m„)+mb(m~ —m, )+m, (m, —m, ) =0

leptons and quarks

Pox =txSa a 0$

P;x=tx(S S )3

ya =t+ I(So/So't) (S01'S 1')

scalar bosons

cop ——S S0 0$

a)( ——SSS
=S"S"S"

(2.2)

in the approximation of m, =m„=md =0, which predicts
a reasonable value for the top-quark mass, i.e.,

m, =47+15 GeV .

where a =l or q, X =L or R, and (AA )3 and IBBI 3 stand
for the (3,3) representation of (SU(3)H,SU(3), ), while
Higgs mesons with the (2,2) representation of (SU(2)I,
SU(2)~ ) generating fermion masses are given by

P'=tLt t {a=I or q), (2.3)
In the argument of I, however, any reason for reproducing
the mass hierarchy was not presented. We would like to
show that the characteristic order for the hierarchy given
in (1.7) would be represented by the number of fermion
generations in this model.

In Sec. II we shall briefly review the composite model
presented in I for the needs of discussion. Violation of
maximal symmetry introduced in I and its effects for
charged-fermion masses will be discussed in the context of
the 1/N expansion in Sec. III. In Sec. IV explicit exam-
ples of mass matrices for the three-generation case and for
the four-generation case will be presented in the 1/N ex-
pansion. Phenomenological analysis of charged fermions
according to the matrix represented by (1.5) and (1.6) will
be done and the results will be compared with the form
expected from the 1/N expansion in Sec. V. In Sec. VI
we shall comment on the meaning of N, couplings of fer-
mions with scalar bosons, and loop corrections.

tl (R)S'

SU(3)It SU(3), SU(2)L, SU(2)g Ng I. J
3 3 —1

3 3 (2.1)
3 3 O O+

2(1)
2(1)

where SU(3)~ and SU(3)„respectively, stand for the hy-
percolor and color interactions, the subscripts L and R
represent left-handed and right-handed, respectively,
N~ L and J are, respectively, the B —L, number and
spin-parity of the particles. The SU(2) doublet t and t~

are, respectively, described in terms of the charge doublets
t =(t ), t ") and t t=(t~ t& ' ), where Q in
t '~' and tt'~' stands for electric charge of t and t~. Qur
model is L-R symmetric.

Leptons (@'), quarks (g~), and mesons needed in discus-
sions for fermion masses are represented by the following
SU(3)H-singlet bound states:

II. MODEL FOR COMPOSITE LEPTONS,
QUARKS, AND HICiCxS MESONS

The basic idea of the model has been represented in I
and related papers. ' The following fundamental constit-
uents (t, t~, and S ) for composite leptons, quarks, and
Higgs mesons are introduced under the basic gauge in-
teraction
G—:SU(3)II X SU(3)c X SU(2)L, X SU(2)g X U(1)g

N+
c,-*c,"=s„

i= —N

(2.5)

should be satisfied because of the orthogonality and the
normalization among 4'„(n =0, 1, . . . , N). In (2.4) N+
and % are, respectively, given by the maximum integer
less than (N+1)/2 and that less than N/2. We have N-

where it is noted that t I and t z, respectively, belong to
the doublets of SU(2)„and SU(2)L, in the notations of I.
(For details for bound states, see I.) The important point
of the model is noted by the fact that g„, g~, and co„,
respectively, have a series with the same quantum num-
bers for the gauge interactions G except for the So num-
ber, whereas P and P~ have no such series. As was dis-
cussed in I, the existence of co„-meson series can induce
the spontaneous violation of S number by the condensa-
tion of S bosons in the vacuum and all co„can have
nonzero vacuum expectation values. Following the dis-
cussion of I, we introduce the maximal symmetry. We
may image the world, where S bosons condense infinitely
and the S number has no meaning at all. In other words,
all physical values do not depend on the S number. In
the symmetric limit we get the most important result of I,
that is, all co„have an equal vacuum expectation value
(t0). (For details, see Sec. III of I.) In the derivation of
(co), the cutoff number N for

~

n
~

of co„was also intro-
duced. An interpretation of N was done in Sec. X of I
and will be touched upon again in the final section of this
paper. Since all the mass-matrix elements for g,' (a =l or
q) derived from the couplings of iP; and to„(g,JAP;'. co; JQJ)
become equal in the maximal-symmetric world, P'; are
rewritten in terms of mass eigenstates represented with
one heavy-mass eigenstate %p and 5-fold massless eigen-
states 4'„(n =1,2, . . . , N) as follows,

+
for a heavy-mass state,N+1;

(2.4)

C;"g'; for N-fold massless states,
i= —N

where n = 1,2, . . . , N and the relations

N+
c,"=0,
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fold ma, ssless-fermion generations.
Fermions acquire masses from the couplings P' (a =l

and q) written down as

N+
(2.6)

comes exact in the limit of %~oo. A simple example of
the realization of such a violation will be represented by
the power expansion of the order 1/N (Ref. 9), that is,
every physical quantity can be written as a power series
such as

i =—x a =(l,q)

As was shown in I, charged-fermion masses for the nth
generation corresponding to 0'„[f= i( —1), q( —, ), and

q( ——,
'

)] are described in terms of two terms as

/(N) =I'0'+ g /'"'N "/'n!,
n=1

where

(3.1)

772f = f(~) g (n)+g(n) (2.7)

where Af'"' arises from the coupling given by (2.6) after
the condensation of P' occurs, and B'"' represents the
common term for three charged fermions in the same gen-
eration. ' It is noted that the formula (2.7) should not be
applied to the lowest generation (first generation) because
the SU(3), corrections for (2.7) are considerably large for
the first generation (e, u, d). For the second and third gen-
erations we obtain the relations given in (1.8) and predict
the top-quark mass around m, =47+ 15 GeV.

In I the above discussion was made under the assump-
tion that the maximal symmetry is realized exactly.
Everyone will ask the question "Is the symmetry really
exact?" From the next section we shall consider the viola-
tion of the maximal symmetry and discuss the charged-
fermion masses including mixing among different genera-
tions once more.

III. VIOLATION OF MAXIMAL SYMMETRY
AND 1/X EXPANSION

The introduction of the maximal symmetry takes a very

important role in the discussion given in the previous sec-
tion. We noted that such a symmetry may be natural if
S bosons condense infinitely and the S number (Ns, )

has no meaning at all. That is to say, in the ideal world
where the symmetry is exact, an co„meson with an arbi-
trary S number (Nzo ——3n) can be found with an equal

probability in the vacuum and an co„meson can change it-
self into a)„with an arbitrary S number with an equal
transition probability. In the discussion of I, however, the
cutoff for the S number of a)„, such as

~

n
~

&N, is also
introduced. Now we would like to question whether the
maximal symmetry and the finite cutoff N are compatible
with each other. Mathematically the answer is yes. As
was shown in Sec. III of I, it is realized by introducing the
symmetry under all permutations among a)„bosons in ef-
fective potential V,ff(a)). How is it physically. When the
cutoff for n is introduced, we should consider that the
condensation of S bosons in the vacuum is not infinite
but finite, because if the condensation is infinite, there is
no trivial reason to flee from the possibility that S bo-
sons make co„mesons with n ~N in the vacuum. In the
world with a finite N we can suspect that the change of
S number will not be so simple as all changes occur in an
equal weight in the ideal world. We should take account
of the finite-size effect by means of the cutoff N, that is,
violation of the maximal symmetry.

Now let us study the maximal-symmetry violation ac-
cording to the statement that the maximal symmetry be-

(3.2)

~(„) l. d "F(N)
d(1/N)"

In (3.2) F( ' and F(")should be finite.
Here let us study such a type of the violation effect in

charged-fermion masses. We cannot use the relations de-
rived in I

g;, (a);, ) =g(co) for all (i,j), (3.3)

where g;J are defined by the effective coupling of the in-
teraction

Q Q Qg(JP~l ( JWJ
a, i j

j

Considering that n =0 of a)„ is always the center of the
variation range ( N& n &N—) for the finite N and the ef-

fective potential V,fr(co) is symmetric under the exchange
of n with —n, we may postulate that the relations

~
(a)„)

~

=
~

(a) „)
~

will be satisfied and the difference
of (a)„) from the value of the symmetric limit

(a)),
~

(a)„)—(a)) ~, will become large as
~

n
~

becomes

large. We should also take account of a similar situation
for the coupling constant such that

~ g,z
—g

~

will become
large as ~i

~

and/or
~ j ~

become large, where g denotes

the symmetric limit of g,i, i.e., lim)v g;J
——g. From the

above considerations we shall make a model according to
the following ansatz:

N
(n)N —n

min

(3.4)

where
~ g,z"

~
& oo are independent of N and n;„will be

an integer which becomes large as ~i
~

and/or
~ j ~

be-
come large. We can easily see that all the differences ex-
pressed in (3.4) vanish in the maximal-symmetric limit,
i.e., N~co. The contributions of P' mesons, Af'"' and
B'"' defined in (2.7), can also be represented in terms of
the 1/X expansion. We may therefore write the mass-
matrix elements of charged fermions as

N

(~f ),q
—(~7 ),1

—— g . C~~j"'N

min

(3.5)

where (~j™);J=g(a)) is taken into account. Now the
eigenstates given in (2.4) are no longer eigenstates of the
mass matrix. We sha11, however, see in the next section
that the separation into (po and (11'„ in (2.4) is useful in
making realistic models for fermion mass matrices.
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IV. CHARGED-FERMION MASSES IN THE 1/N EXPANSION

As noted in Eqs. (1.5), (1.6), and (1.7), phenomenology seems to suggest the following form for the quark mass matrix
for N generations:

0(X—2(N —1)
) 0(X (N ——1))

'

0(X—(N —1))

0(X ) 0(X )

0(X ) 0(X ) 0(X ')

0(X ) 0(X ') 1

(4.1)

m2im2p

where 0(X ) means that the order of the matrix element is the same as or smaller than X and mN is the mass of
the ¹h-generation quark. In (4.1) X is estimated to be -(m„)/I„)'i . Here let us consider realistic examples satisfy-
ing the above form.

(I) ExampIe for N =3. The mass matrix is given as
r

n2p ~2—1 P2

mi2 mii m)p

mp2 mph mpp

mi

mp Pp
(4.2)

m 12 I 11 m 1() m 1

Since in the maximal-symmetric limit (N —+ oo ) all m,j for i&j become equal, i.e., g(p) ), it is convenient to define the
variables

E"—:m" —g($)lJ LJ (4.3)

in the following discussion. Following the definitions given in (2.4), we perform the unitary transformation by means of
the unitary matrix U as

~—:Ul~ U,
where

(4 4)

U=

0

—1/V 2

0

1

2

—I/v 2

0

0

I/V 2

l

2

2

(4.5)

J

The explicit form of ~ is given in Appendix A. We can make an example realizing the matrix expected from (4.1) by
taking the following matrix elements:

e22 ——a22N '+b22N +c22N +0(N ),
'+b 1 )N +c 1,N +0(N "),

1
———(222N '+b2 )N +c2,N +0(N 4),

(4.6a)

e2) b21 N +c21N——+d2) N +0(N . ),
e 1()= b2(N +c 1()N—+d 1()N +0(N )

e2p= b2)N +c2pN +d2pN "+0(N ),
e 11 —— b2)N +c 1(N —+d 1)N +0(N ),

(4.6b)

e) ) c))N +d))N + e))N ——+.0(N 6),

epp cppN + d ppN +e——ppN +0(N ),
e)p=c)pN +d)()N +e)()N +0(N 6)

(4.6c)
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where the Hermiticity e~; =e;J is postulated and the following relations must be satisfied:

b22+b 1 1+2Reb2 1
——0,

C21+C 11
—C 10—C20 =0,

C00 —C11 —2 ImC10 =0,
d11 +d00 —2 Re d10 =0

In (4.7) ReX and ImX, respectively, denote the real part and the imaginary part of X. We can write M as

(4.7)

eX dX
d*N cN

I CfC+ 3

D*X C*X

C'N

b&
aX

g CfC~ —P

(4.8)

where

Ea= —,(a22+a 1 1
—2Reap 1),

1 CfCb = (b 1 1
—b22+2 Imb2 1+4b21),

2 2
1c=—„[c22+c 1 1+2Rec2 1

—2 Re(c21+c20+c 1p+c 11)+c11+coo+2Rec10]

C (C —11 +C 20 C 21 C —10 )

d = (d21+d 11
—d2p —d 1p

—d11+dpp+2 Imd10)2v2
1e = —,(e11+eoo—2 Ree1p),

A =g(co),
1B=— (b22 —b 1 1+2Imb2 1+4b21) y2V2

1C= ~ [c22+c 1 1+2Rec21+2Im(c21+c20+c 11+c 1p) —c11 —cpp —2Reclo]

(4.9)

)fC CfCD = (d21+d, 1
—d2Q —d 10+d11 —doo+21md10) .

2V2

We can, of course, add N ' terms to (4.6b) and N
terms and N terms to (4.6c). The choice of (4.6), how-
ever, has an interesting hierarchy, that is, the order of e,j
is determined in terms of the distance from the geometri-
cal center of the mass matrix as shown in Fig. 1. We see
that the orders of e,z on the same circle are the same.
That is to say, the finite-N effect becomes large, as the
distance from the center becomes large. This choice
seems to realize the expectation expressed in (3.5) for the
finite-size effect of the mass matrix. Provided that we put

I c11 I

=
I coo I

=
I c1o I

all e;~ on the same circle have the
equal absolute value up to the higher-order terms in the
1/% expansion.

It is also interesting that the mixings of 1IIQ with 1II'„

(n&0) can be neglected because the order of off-diagonal
terms inducing the mixings (B, C, and D) are two order of

' smaller than those expected in (4.1).
(2) Example for N =4. For g; (i =2, 1,0, —1, —2) we

can define the matrix described by e;~:—m;J —g( w ) as

,
~P~01-

FKx. 1. geometrical center of matrix ~,.
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&12

e02

&21 20 ~2—1 ~2 —2

~ ~ ~ (4.10)

eio=eN '+fioN +O(N ),
ep )= eN— +fp )N +O(N )

epp fN—— +O(N ),

(4.11e)

(4.11f)

&—22 &—2—2

The geometrical center of the matrix is at cop. According
to the idea similar to that for N =3, that is, all eij on the
same circle with the center at epp have the same order of
1/N expansion, we can make an example reproducing the
(4.1)-type mass matrix by means of the following choice
of eij

where the Hermiticity ej,. ——e,j is postulated and the rela-
tion

(C12 —C 1 —2) (C~ 2
—C &2) —(Cp2 —Cp 2)=0 (4.12)

must be satisfied. (For details, see Appendix A.) Taking
the unitary matrix U as

e22=aN '+b2N +O(N ),
e 2 2 aN '——+b 2N +O(N ),
e2 2

—— aN ' ——,
' —(b2+b 2)N +O(N ),

(4.11a)

e 2=bN +c 2N +d 2N +O(N '),
e ) 2 —— bN +—c ) 2N +d ) 2N +O(N )

(4.1 lb)
e 12——bX +C 12K +d
e( 2

—— bN +c—) 2N +d) 2N +O(N ),

0

U = v'2/3

0

0

1

v2

0

1

v2

0

1

v2

0

1

v5

v'2/15 0 1

5

v'2/15 0 1

5

v'2/15 1

5

1 1—v'3/10
2 5

e2p= bN +c2—pN +d2oN +O(N ),
ep 2 bN +cp——2N +dp 2N +O(N ),

(4.11c)

e)) dN +e),—N— +f„N +O(N ),
+e

& )N +f I (N +O(N ),
ei, = d'N +e, —,N '+f i )N +O(N ),

(4.11d)

(4.13)

we obtain the mass matrix expected in (4.1).
As shown in the examples for X =3 and 4, we can see

that the mass matrix satisfying the form of (4.1) for the
arbitrary number of N will be reproduced by using the
maximal-symmetry violation. Now we may expect that
the generation number N will be estimated from the
phenomenological analysis of mass matrices since X in
(4.1) should be N in our model.

V. PHENOMENOLOGICAL ANALYSIS OF CHARGED-FERMION MASS MATRIX AND 1/N EXPANSION

In general we may write a mass matrix for N generations as

aiv i(m imiv )
1/2

a)2(m )m2) 1/2

CX22Pl 2

aviv(m ]m~) 1/2

1/2aiv —ix(mdiv —imiv )

&xxmx

(5.1)

From the standpoint of the 1/N expansion we postulate
I

form the phenomenological analysis by using the mass
matrix

and

m„/m„) -0(N2)

a;1 -0(1) .

(5.2)

a(m&m2)'~ y*(mqm3)'

p(m2m3)'a'(m)m2) 1/2
goal 2

y(m, m3)' P'(m2m3)'

At present we have some information on the mass matrix
for the low-lying three generations. Then we shall per-

(5.3)

From the ansatz of (5.2) we can write three eigenvalues as
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'm

mp
L

mi

+(y —
I p
I')

I p.l'

4= 1+Ipl' +Iyl'
m3 m3

m3

mp
mp

(5.4)

In general all parameters in (5.3) can be different from
three charged-fermion series corresponding to e series
(e,p, r), u series (u, c, t), and d series (d,s,b). We, howev-
er, have too many parameters to determine from the
presently available experimental data. Then we shall per-
form the analysis under the following constraint: x, y, a,
p, and y are common for three series, but mi, mq, and
m3 are different among the three. Under this constraint
m i, m3, and m3 are described in terms of other parame-
ters (x,y, a,p, y) and real masses of leptons and quarks
(A] Ap A3). Furthermore, we may put

(5.6)

where

& = (a —P*y')/(y —
I P I

'),
&=x —Iy I' —(y —

I
pl') l~ I'. (5.5)

except the cases for x =0 and/or y=0, which are not
realistic in the idea of the 1/N expansion. Now the pa-
rameters a, p, and y can be estimated from the experi-
mental constraints for the quark mixing matrix, which is
given by

0.9730+0.0007 0.231+0.003
(d,s, b ) 0.231+0.003 0.9715+0.00011

& 0.008 0.04—'0.07

& 0.02
0.04—0.07

0.9980+0.0011
C (5.7)

For the convenience of analysis we looked for the solution for (a,p, y) in the range where a, p, and y are real and
0.1(

I
a I, I p I, and

I y I
(1. The region from 0.1 to 1 is taken under the consideration that three eigenvalues are posi-

tive and off-diagonal matrix elements do not change the order of 1/N. The CP phase is neglected here. We find the fol-
lowing four possible solutions for (a,p, y);

(0.6,0.9,0.3) (solution 1 ),

( —0.65, —0.7,0. 1) (solution2),

( —0.2,0.8,0.3) (solution3),

( —1/3, —0.83, —0. 1) (solution4),

(5.8)

where quark masses are changed in the range, '

m„=5+1, m, =1300—1400, m, =45 000—52000,

md ——8—11, m, = 170—190, mb ——4800—5300,

where all values are in CxeV. Here let us reconstruct the mass matrices of the three series for these four solutions. They
are given as

1.1~ 10 1.4~ 10 9.8& 10
1.4~ 10'~ 0.51 0.65, solution -I,

9.2 ~ 10-4 —7. 1X IO ' 3.0~10—'
=1.7~ 10'~ 0.13 —0.25, solution 2,

=1.6~ 10'X
8.6~10—4 —2.6~ 10 8.8 ~ 10

0.20 0.36, solution 3,

=1.6~10 )&

7.5~10 —4.5 ~10-'
0.25

—2.7 &&
10-'

—0.41 solution 4,
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3.5X10 ' 4.8X10 ' 5.6X10-' '

~„=4.3 x10'x 0.19 0.39, solution 1,

=5.1x 104x
3.0X 10 —2.5x 10 1.7X 10

5.1x 10-' —0.16
1

solution 2,

=5.0x 10'x
2.7 x 10-4 —9.3X10 4.9X 10

7.9 X 10 0.23, solution 3,
1

=4.9x 10'x
2.9x10—' —1.9x 10-'

0.11

—1.7x10-'
—0.28 solution 4,

(5.9)

6.2x10 3.3x10 2.4x10
Md-4. 7x103x 0.22 0.42, solution 1,

=4.7 x 10'x

=4.6x10'x

5.7x10—'

6.4x 10-'

1

—1.3X 10 7.5X ]0
7.6 x 10—' —0.19

1

—5.4x 10 2.4x 10
0.27

1

solution 2,

solution 3,

=5.0x 10'x
6.6x10—' —9.8x10 ' —8.1x10—'

0.13 —0.31, solution 4,

1.3x10 1.3x10 1.1x10
(m) =6.6X10'X 0.28 0.47, solution 1,

=7.4x 10'x

1

1.6x 10 6.2x 10 3.4x 10

7.9x10 ' 0.20
1

solution 2,

1.1x 10 2.4x 10 1.0x 10

=7.2x10'x 0.12 0.28, solution 3,

1.1x10—' 4.3x10—' 3.4x10—'
=7.3 x10'x 0.15 0.33, solution 4,

where the last matrix (~) is defined by the matrix elements

(~),J. = [ ] (~, ),J.(~„);(~d ),J [
]'~. (5.10)

Since four mass matrices derived from four solutions are not very much different from each other except signs of matrix'
elements, we cannot choose one from the four. It is interesting to compare the matrix (M) with the following matrix
expected from the 1/N expansion:
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~—2 ~—1

1.2&103.7~10
0. 1 1

0. 1 1

0.33, X=3

3.9~ 10-'

1.6~10—'

1.6X10 2

6.3 ~ 10—'

8.0~ 10—'
4.0~ 10—'

1

6.3 X 10-'
0.25

1

4.0~ 10

0.2
1

X=4

7.7~104.6&&102.8~10
2.8~10'1.7

1

We may say that the matrix elements except (~) i3 are
almost represented by the right order of 1/N expected
from (4.1 ) for the choice of N =3—6. The smallness of
(~) i3 comes from the small value of y. Since this situa-
tion seems to be common for all (~f )~3 (f= e, u, d), the
choice ~i3-y(m i /m2 ) m 3 by Wolfenstein seems to
be better. In the details of the three matrices we also see
that the orders of the elements for ~~ ~ and ~~2, especial-
ly those in ~, and M„, are a little smaller than those ex-
pected in the 1/N expansion. We should, however,
remember that in the lowest generation (e,u, d ) the SU(3),
(QCD) corrections are not negligible. Actually the viola-
tion of chiral symmetry by quark-antiquark condensation
in QCD is well known and also one color-gluon exchange
contribution ' has to be taken into account. We should
not take a little deviation from the 1/N expansion in the
matrix elements connecting with the lowest generation,
i.e., ~&; and ~;&, so seriously.

If we take off all constraints introduced in the above
analysis, we may find other solutions which would be
better from the standpoint of the 1/N expansion. We,
however, note that the first constraint (i.e., a, p, and y are
common in three series) has a meaning if we require that
the mass relation ( 1 .8) be kept. That is to say, if a,j de-
fined in (5.1) is common in three series, the relation ( 1.8)
is satisfied between arbitrary two generations. We can
easily see that the differences of the order 1/N among

(a„p„1,), (a„,p„,y„), and (aq, pq, yq ) do not change
(1.8) in the lowest order of 1/N.

VI. COMMENTS AND DISCUSSION

We shall briefly comment on the meaning of the finite
N. As was noted in early works, ' we conjecture that
there will be some sublevels between the energy of order 1

GeV and the Planck mass (-10' CxeV). In this idea the
S boson is represented as a bound state with fermionic
substructure. Such a bound state will naturally have a
nonzero finite size characterized by the inverse of the
characteristic energy scale (AH ) for the interaction con-

2

structing the S -boson bound state from fundamental fer-
mions. In that case S bosons cannot condense infinitely
in the finite region. characterized by the inverse of the

characteristic energy scale of SU(3)~ interaction (AH ) be-
cause of the Pauli exclusion principle among fermions. "
As was shown in I, N is determined from the following
equation for the mean S number of the vacuum

~

0'):
N

(N 0)=3 g n (0' /a„(0)a„(0)
/

0')

—& ( (AH, /AH )'), (6.1)

g n + -N + -(AH /A„)
n =0

%'e obtain

/A )'"'+" .

(6.3)

(6.4)

Obviously we see

lim X—+ oo
AH ~ce

2

(6.5)

That is to say, the maximal symmetry is realized in the
structureless limit for S bosons. %'e can also see that the
order of new sublevel A~ is estimated from (6.4). It

2

should be remarked that the AH dependence of N induces

the A~ dependence of other physica1 constants. For in-

stance, the vacuum expectation value ( co ) estimated in I
as

(co)=—(2N+ 1)
k

(6.6)

where h and k are, respectively, the coupling constants of
the three-point vertex and the four-point vertex in
V ff(co), must have the AH dependence if h and k are in-

where a„(0) and a„(0) stand for the annihilation and
creation operators of co„meson with zero momentum.
The order of ( AH /A~ ) in (6.1) implies the maximum

number of S bosons which can stay in the vacuum
without overlapping in each other. Provided that we put

(0'
~
a„(0)a„(0)

~

0') n' wi-th l ~ 0, (6.2)

(6.1 ) can be read as
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dependent of AII . We may consider that the mass of the

heaviest fermion, Ng ( co ), becomes infinite (order of
Plancks mass) in the maximal-symmetric limit realized
by A~ ~oo (N~oo). From (6.6) the relation

lim (Ng(co)-gh/k)~oo (6.7)
AH ~00

is required. This indicates that coupling constants must
have different AH dependences. This fact is quite mean-

2

ingful, as we remember the important result derived in I,
that is, coupling constants must have some hierarchy for
realizing the realistic model at low energies, e.g., the
Weinberg-Salam model and very light masses of neutri-
nos. Relation (6.7) just tells us such a situation. We shall
study the hierarchy among coupling constants from the
standpoint of the 1/N expansion in the next step.

At present we do not know how the maximal-symmetry
violation should be introduced. In genera1 the violation is
represented with the S -number dependence of all cou-
pling constants. As a simple example we can introduce
the violation only by requiring the S -number conserva-
tion to V,fr(co) which determines the vacuum. How we
should describe the maximal-symmetry violation is left as
an open question in this paper.

We should also answer the following question: Is the
maximal-symmetry violation really needed or not?" We
may say, "yes," because mechanisms generating masses
given in (2.6) and (2.7) cannot induce any mass differences
among the massless eigenstates if go' ——go for all i are re-
quired in the symmetry. That is to say, the terms Af'"' in
(2.7) become equal for all n, because they are evaluated as

N+

g,"~c,"~'(yf)

3 ((I&)
LJ'

FIG. 2. The lowest-order diagram contributing to the effec-
tive coupling among P;z, , g;g, and co;

g;, -g-Ng (g )'h" (P')A (6.10)

In comparison with the mass terms arising from the iP'-
meson condensation (gc(P') ), we have

where the masses of vector mesons and cutoff for the loop
momentum are estimated to be the order of AH go are
defined in (2.6), and gjk and h„~, respectively, stand
for the coupling constant for the g';, P~, and V~ ~ vertex
and that for the V, V, and co„vertex Co.nsidering
that g;k-g and h„"~ -h" as for the order of N in
the 1/N expansion, we can reduce (6.9) to

=go& W& (6.8) g& & N( v)2h v( )A —2 (6.11)

where g ~

C~"
~

=1 in (2.5) is used. Similar considera-
tions can be adopted to Bf'"'. Considering that constraint
go(')=go for all i is a natural ansatz in the maximal
symmetric world, we have to introduce the symmetry
violation.

Here let us comment on the effective coupling of P;
with co„. Since P,'I, g';z, and co„, respectively, belong to
(2,1), (1,2) and (1,1) representations of [SU(2)l, SU(2)z],
there is no direct coupling among P';I, P;R, and co„. The
effective coupling among them arises from the diagram as
shown in Fig. 2, where V„denotes the vector meson ex-
pressed as the excited state of co„meson. It is required in
Fig. 2 that

P7z =J—k, f71 =l —k

This equation indicates that the masses derived from the
effective couplings of co mesons with fermions is one or-
der of N larger than that of P' mesons, when we put
(g ) h" (co)AH -O(l). From the above evaluation
we can recognize that every sum over S -number index
without any constraint raises one order for N. At present
we do not clearly say that such a fact would have any
connection with the 1/X expansion.

In this paper we proposed the 1/N expansion of mass
matrices for charged fermions. If the expansion is really
meaningful, we will see the effect of the expansion in oth-
er observables. We shall investigate not only the theoreti-
cal aspect of the expansion but effects in other observables
as well.

Then the effective coupling constant g;J for the vertex
g';co; JQJ is estimated as follows in the lowest-order dia-
gram:

g;, —gr 0"'
& 0'&g,kgk';

k

APPENDIX A: MASS MATRIX M,

The mass matrix ~, is defined by

m, = U'm, U, (A1)

m m'
where (~,);z ——e;~ =m;J —g(co). For N =3 ~, is
described by the following matrix elements:
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(~e)11 Y(EII Elo Eol+Eoo) ~

1
(Me)12 = (E12—El I

—Elo+ El I
—E02+ Eol +Eoo —Eo I ) ~

2 2

1(~ )13
2

(E12 El —I E02+Ep —I)

1(~e)14= (E12+EI I +Elp+El —I E02 Eol —EOO
—Ep I)

2 2
1(~e)22 =
4 (E22 —E'21 —E20+ E2 I

—E12+El I +E10—E'l I
—E02+Epl+ Epp —Ep I +E 12

—E 11
—E lp+ E I I)

1
(Me)23 ~ (E22 E2 I E12+—El —I E02+Eo I+E——12+E I —I)—~2v2

(~e)24 4 [E22+E21+E20+ E2 —I (E12+El I + 10+El —I+ 02+ 01 +Eoo'+ Eo—I )+E—12+E—I I +E—10+E—I —I] i
1

1(~e)33 z (E22 E2—I E—12+E—I —I) ~

(A2)

(~e)34= — ~ (E22+E21+E20+E2 I
—E 12

—E ll —E 10
—E I I ),2v'2

(~e)44 4 (E22+E21+E20+E2—I +E12+El I +Elo+ El —I+E02+ Eol+Eoo+ Eo—I+E—12+E—11+E—10+E—I —I ) ~

and other elements ~eJ, (j &i ) can be obtained by the replacement of all E„~ with E~„ in (Me),z, where the unitary ma-
trix U is given in (4.5). For N =4 with U given in (4.13) the matrix elements of Me are written as

1 1 2(~e) I I = 6 (El I+E—I —I+El —I+E—11)—T(EIO+ EOI+ EO—I+E—IO) + 7EOO

1 1I+E-11)+ - «OI —Ep- I »2 3 ~3
1 1

(~e)13 ~ (E12+E—I —2+El —2+E—12) ~ (Ell+E—I —I+El —I+E—11+Elo+E —10)2v'5 3& 5

1 2 2~ ( E02 +Eo—2 ) + ~ ( Eo I +Eo—I ) + ~ Eoo ~3v'5 3V 5

1 1
(~e)14 ~ (E12 EI —2+E—12 E—I —2)+ ~ (E02 Eo—2) i2%3 v3
(~e)22= 2 (Ell+E I I

—El I
—E 11) i

3 1
(~e)23 (E12 E—I —2+ El —2 E 12) + — (El I E I —I +El —I E—11+E—IO E 10) ~—

15
1(~e)24 = T (E12+E I 2 —E 12

—El 2) ~

3 2(~e)33 IO ( 22+ E—2 —2+E2—2+E—22)+ (c ( 11+E—I —I+ 01+ —10+Elp+Eo —I+El —I+E—11+Eoo)

5 (E21+E—I —2+E20+ Eo—2+E02+E—20+ E2 —I+El —2+E—21+E—12+E—2—I+E12)

v3 1
(~e)34 ~ (E22 E—2—2 E2—2+E—22)+ (E12 E I —2 El —2+E 12+E02 ——EO 2)t-

v 5 15
1(~e)44= T(E22+E 2 2

—E2 2
—E 22) i

(A3)

and elements (~e)z, (j & i) are derived from the same replacement defined in the case of N =3, and umnteresting ele-
ments (~e);5 and (~e)5; are omitted from the above equation.

APPENDIX 8: EIGENFUNCTIONS AND MIXING MATRIX FOR EQ. (5.3)

The eigenfunctions for the eigenvalues given in (5.4) are given as
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1 /2 A*B
m2mz y —IPI z

~ 1/2
pgg eye m

y Ipl m,

1/2
m)

m3

m)—A
1

' 1/2

+ P'C
Pl 3

1/2
m&

' 3/2
miAB+ 2

y Ipl m,

—p'+ p'(y
I p I

—') +y~
m3 m2

m2

m3

1/2

' 1/2
m)

YO
m3

+p(y —
I pl z)A

m3 m3
3/2

'1/2 '

m3
+p(y —

I
pl')

m3

where

A= ply

y —Ipl'

C=

(B2)

and XI, X2, and X3 are the normalization constants. It is noted that all the above evaluations are done in the assump-
tion given in (5.2) and the relation C+y =pA holds. The Kobayashi-Maskawa (KM) matrix is written in terms of
a, P,y and eigenvalues Q, 1,Az, A3 and A, '1,kz, i3) as

UKM

R11
—i8 p~ i(8p+8 )—R 21e —R2~e

pv ~(8@+8 ) ~ ~p ~(8~+8p) y ~8yR ~ze +R ~y e R J3e +R $3e

(B3)
—~p —i(8 +8p) ~ i8 ~~ i(8 +8 ) —

p —i8p
R33

where fz UKMtPz, x =y = 1 are taken, and

R11 =1— (r1 —r1 ) 1+2(r1 +r1r1 +rI )+I
~

I
'(1 —

I p I

'& z, , z I
~ I'(1 —IPI'& z

2B 4B
(5r1 +6r1r1 +5r1 )

+ (rl r 1 )(rlrz r lrz ) (rlrz r lrz )
l~ I'IPI' ~ z . z ICI' ~ ~ z

2B 2B

R1z ——,(r1 r1) 1+(r1 +r1r', +r—1 )+ (r1+r1)I~ I'(1 —IPI') „

+ z (rz rl +r lrz 2rzrlrz )
I
pl' z ~ t

R 1j'= — z, z (r1 r'1 ) 1+(r1 +—r1r1+r'1 )+ (r1+r'1 )
-p IPI ll'I . z . . z I~ I'(1- IPI'&

[(1
I p I

z)~]1/z 2B

IPI' z. . . z z+ 2 1+rl 2 2rl 2 )+ z (rlrz rlrz)rz
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R13 ——
z r1rz r—zr1+[(r1 r—1)rz —(rz —rz )r'1 ]+ (r1 —r1 )rzr1I

& I'(1 —
f P I

')
2 2

2B

R 13
——~-r Iyl r&r2— I P I

'
r]r2+ rzr'j — [(r1 —r'1 )rz —(rz rz )r', —)]

1 —IPI' 1 —IPf' 1 —IPI'

f
A

f
'(r, ' —r", ), , I P I+ [(1—

I P I
')r1rz —

I P I
'r2r 1]+,(rz' —r2 )r2r 128 2(l —IPI )

(B4)

Rzz(8)=1 — (r1 r1) 1+—2(r1 +r1r1+r1 )+ (Sr1 +6r, r', +Sr'1 )
I /1

I
'(1—

I P I

')
2 2

IPI 2 2 2 IPI 2 2

2(1—IP f
)

(rz rz) 1+—2(rz +rzrz+rz )+ (Srz +6rzrz+5rz )4(1—fP f
)

+ I [(r1—r1)(r1rz —r1rz )+(r2 r2 )(r1 rz r1 rz )]—t 2 I I 2 I 2 I 2 I

28

——[r1rz+r1rz rzr', r1rz—+2(rz—+rz )r1r1+2(r1 +r'1 )rzrz]]

y I r r .
( r 2 +r .

)
I p I

2
I y I

2r .. (. 2+.' )
(1—IPI )8 1 —IP f

+ laIIPllyl r1 r2r2 (
I P

I

'rz'+r,') e'o

r1 rzrz —
2 r1r1(

I P I
rz +rz ) e

R 2] 2 1/2 (r1r2 r1 2 )r 1
la I fPI

( 1
I P I

2)1/zing

R23 z 1/z ( 2 r2) 1+(r2 + 2r2+r2 )+ 2 ( +rz)rz2 2 I P I

'
2

(1
I P I

2)1/2 2(1 —IPI')

z 2 IPllyl
2B

(r', rz+rzr, —2r, rz)—
(1—IPI ) /8 (r1rz —r1rz )r1

R33 —1 —
z (rz rz) 1+2(rz +rzrz+rz )+ —

2 (Srz +6rzrz+Srz )
IPI' 2 I I z

2(l —IP f
)

+ (rz —rz)(r1 rz r, rz) — (r—1r, —r, r, )
I~ I'fPI' z . 2 lyl' . z

28 2B

and other elements are derived by Using the relations

R Jr RIJ(rj~rj ) )

where

1 (~1/~2) r2 (~2/~3) r1 (~1/~2) r2 (~2/~3) (BS)
ie '

i8& i8and 0=—8 +8j1+8& are used, where 8, 8&, and 8& are defined by a=
I
a

I
e, P=

I
P I

e ~, and y=
I y I

e ~, respective-
ly. In the above evaluations the higher orders of r; and r are neglected. The KM phase (5) and Maiani phase' (5') are
g1ven as
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R33( 1 —
~
R11

~

)(R 13R 31 R 13R(1 )
S1I15= sinO,

(I —~R131 )«13R 31 R13Rf1)
sin5' = sinO,

I
R 12 I IR 33 I IR 13 I

where

ij =( KM)ij

(B6)
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