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A recently developed self-consistent technique, based on analyticity, unitarity, and generalized
ladder-graph dynamics, is used to calculate soft-meson couplings. Ladder exchanges are approxi-
mated by Regge exchanges and certain duality constraints are imposed, leading to p-, f , and -g-
meson m. partial decay widths which are in good agreement with the data. If the dual-tree approxi-
mation for the triple-Regge vertex g (t, t', t") is made, a value for g (0,0,0} in reasonable agreement
with experiment is obtained.

I. INTRODUCTION

The usual approaches to different kinds of hadronic
calculations in the confinement region neglect qq creation
and annihilation in first approximation. This is some-
times justified on the basis of the Nf/N, expansion of
QCD, with the number of flavors Nf fixed when the
number of colors N, ~ao (Ref. I). However, this limit is
a very unrealistic approximation to a world with X, =3
and Nf = 3 even for light quarks, so that qq effects could
be important. As a matter of fact, sea quarks, which arise
from qq creation, are known to play an important role for
small fractional quark momenta (or Feynman-x values)
within hadrons in deep-inelastic lepton-hadron scattering
experiments. Since small x corresponds to the crucial
long-range part of the confinement region, there is every
reason to expect that a realistic soft-hadron physics will
emerge only when qq effects are properly taken into ac-
count. The usual difficulties with chiral symmetry and in
accounting for the smallness of the pion mass are un-
doubtedly manifestations of this fact. A standard way of
overcoming such difficulties is to assume a chiral bag or
cloudy bag model, in which a cloud of mesons surrounds
a core of valence quarks —a picture which also leads
naturally to the successful meson-exchange description of
nuclear forces. But the existence of such a cloud of
mesons is only possible if a "hadronization, " arising from

qq creation, takes place.
The dual topological unitarization (DTU) program

is a highly promising fundamental approach to soft-
hadron physics, in which sea quarks play an indispensable
role from the beginning. Their hadronization implies that
strong interactions between hadrons in the low-
mornentum-transfer (or long-distance) regime are mediat-
ed by qq mesons, qqq baryons, and qqqq baryonium.

Earlier versions of DTQ, while unambiguous and suc-
cessful for mesons, could not consistently take into ac-
count baryons and baryonium states. However, the gen-
eralized scheme of Chew and Poenaru and Stapp pro-
vides a consistent way of overcoming this difficulty,
without modifying in any way the meson sector. In their
approach, one or more quark lines can be replaced by "di-
quarks" of a certain well-defined topological structure,

and "Landau" lines, which are associated with the four-
momenta of hadrons in any given diagram, are intro-
duced. It can be argued that the "interactions" of the
Landau lines with the diquarks must be weak. As a
consequence, diquark breakup and formation, and there-
fore baryonium ~ meson transitions, are forbidden in
first approximation, so that baryonium states should be
narrow below the baryon-antibaryon threshold.

At the lowest level of the Chew-Poenaru-Stapp scheme,
spin-momentum coupling is dealt approximately and pari-
ty is violated. In this paper, however, we shall work at a
more accurate lowest level in which baryonium ~ meson
transitions remain suppressed, but in which parity is satis-
fied and the spin and momentum are properly coupled to
each other; all of our considerations will be limited to
mesons only.

The DTU scheme provides a method of quasiperturba-
tive expansion to calculate the scattering amplitude for
the different quark-duality diagrams generated by unitari-
ty. These diagrams are ordered according to their topo-
logical complexity. Thus for meson-meson scattering in
the flavor-SU(Nf) scheme, the leading term is the planar
amplitude, which corresponds to the sum of all the planar
(uncrossed) quark-duality diagrams of Fig. I, at least if we
neglect diquark-loop diagrams, which have the same form
as the diagrams of Fig. 1, but with the internal q lines re-
placed by 5=qq lines. These correspond to nonmeson
intermediate-state channels which involve lower-lying
Regge trajectories and should therefore be less important.
The first-order correction is the cylinder term, which cor-
responds to the nonplanar (crossed) quark-duality dia-
grams of Fig. 2, where again we neglect diquark internal
lines.

In the above unitary sums, we can count the powers of

ll + g ~ ~

g g

FICx. 1. The sum of planar quark-duality diagrams for a
meson + meson~meson + meson process.
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suits with similar calculations based on a dual-tree model
of the Neveu-Schwartz type and with experiment. Our
conclusions are summarized in Sec. IV.

9 9

FIG. 2. The sum of cylinder quark-duality diagrams for a
meson + meson~meson + meson process.

where the summation is over all possible intermediate
states. The two planar amplitudes are "joined" to each
other in such a way that there are no crossed lines, as il-
lustrated in Fig. 3. Equation (1.1) constitutes a highly
nonlinear constraint for the amplitude T. Its solution is a
self-consistent scattering amplitude, in the sense that the
output T exactly coincides with the input T.

The above planar bootstrap problem is the first step in
the DTU program. Once we have its solution, nonplanar
effects can then be systematically brought in through the
topological expansion. Up to now, however, we do not
have any explicit theory which defines the exact form of
the planar amplitude. Therefore, in practical calculations,
one relies on some kind of approximation or assumption
about the form of the amplitude. In the present work we
shall use the self-consistent DTU technique developed by
Balazs in Refs. 7 and 8, which has been successfully ap-
plied to qq, qqq, and qqqq hadrons.

In Sec. II we review the dynamical considerations of
Balazs's approach. In Sec. III we construct a model to
make coupling calculations. We compute the triple-Regge
coupling constant and meson couplings. For simplicity
we consider only mm. scattering. Then we compare the re-

( 2
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FIG. 3. Planar unitarity as given by Eq. (1.1).

the coupling constant for each planar diagram as g,
g (g Nf), g (g Nf), . . . , where Nf comes from the fla-
vor sum for each quark loop; similarly, for the cylinder
diagrams, we see that they go as g, g (g Nf ),
g (g Nf), . . . , where the factor Nf again comes from
the fact that each quark loop can take on Nf different fla-
vors. If we take the g Nf -1 bootstrap constraint, ' each
term of the summation has the same order of 1/Nf, i.e.,
g —1/Nf for the planar and g —1/Nf for the cylinder
diagrams. For more complex quark diagrams, the order
of 1/Nj for an amplitude is determined by the topology
of the diagrams. In general the contribution of any
quark-duality diagram becomes weaker as its topology
gets more complicated.

If we only keep the contribution of the planar diagrams
to the full 2~2 scattering amplitude, we can consistently
obtain the "planar unitarity" equation

2 ImT~2 34(planar) =g T|2 „(planar) T34 „(planar),

II. DYNAMICAL CONSTRAINTS

The simplest way of implementing planar unitarity is to
represent the amplitude T by an infinite sum of ladder
graphs. ' If we also assume that particles are produced
in clusters (resonances), so that the sum over n in Eq. (1.1)
can be rewritten as a sum over clusters, Fig. 3 takes on the
form shown in Fig. 4. For large s each ladder line may be
approximated by a Regge exchange a(t). " The require-
ment that there be no double-counting, say, between Figs.
4(a) and 4(b), implies that the clusters (a, . . . ), (b, . . . ),
(c, . . . ) must be bounded; they are therefore dominated by
bound states and resonances, which, in practical calcula-
tions, will be approximated by narrow-resonance peaks.

The evaluation of Fig. 4 entails a self-consistency prob-
lem (planar bootstrap), because the output Regge pole a(t)
generated by the infinite sum of ladder graphs must be
consistent with the input pole satisfying the duality rela-
tion of Fig. 5.

We will deal with the "ordered" planar amplitude
T(s, t) which only has s-t crossing symmetry and satisfies
unitarity at the planar level. The full planar amplitude is
then a linear combination of T (s, t), T (s, u ), and T ( t, u ),
where s, t, and u are the Mandelstam variables.

To handle the graphs of Fig. 4, we formally associate a
coupling-strength parameter P with each of the clusters
(a, . . . ), (b, . . . ), (c, . . . ), . . . , and make the Mellin-
transform projection

Aj(t)= f dvA(s, t)v j (2.1)

where v is the usual crossing-symmetric variable
(s —u)/2, which can also be written as

4
v=s+ —t —g m '

2 l
i=1

(2 2)

Thus the projected sum of Fig. 4 takes on the form of an
expansion in P:

A, (t) =pu~, (t)+p'upj(&)+p'u3j(&)+ ' ' ' (2.3)

where Pa&j(t) is the Mellin transform of Fig. 4(a), which
gives, approximately, a contribution to A (v, t) of

Pa, (s, t)= l, (t)5(s —s, )

+b/(t)b2(t)(pQV) '"e(s —s)e(sQ —s), (2.4)

b

+ '
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FIG. 4. Planar unitarity in terms of ladder graphs. For large
s the ladder lines can be approximated by Regge exchanges.
This infinite sum of ladder graphs has the same planar topologi-
cal structure as the sum illustrated in Fig. 1.
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FIG. 5. Average duality relation between the cluster (a, . . . )

and the Reggeon a{t).

1 —X(j)
(2.5)

where (s, )'i is the mass of the lowest nonvanishing con-
tribution in Fig. 4(a) and s corresponds to a point approxi-
mately halfway between a and the next contribution above
it. The 5-function term is then an approximation to the
contribution of a and the Regge term b, b2v takes into
account all the higher s)s contributions in the average
sense of Fig. 5. To avoid a situation where the units of
b, b2 vary with a(t), we have introduced a scale factor Po,
with the same units as s ', so that b]b2 become dimen-
sionless. We will take the empirical value" PO

——1 GeV
it will be omitted from the equations. Furthermore, since
we are insisting on no double-counting between Figs. 4(a)
and 4(b), we have inserted a step function e(so —s) to ex-
clude states above the effective threshold s =so of Fig.
4(b). The remaining terms in Eq. (2.3) involve difficult
loop integrals. We will discuss below some dynamical ap-
proximations that are useful in dealing with them.

If we take the [1,N] Pade approximant' of Eq. (2.3)
we obtain, for a given t,

where S& and Sz are the spins of the external particles.
Equation (2.10} implies that the resonance average over
[O,s ] immediately constrains the high-energy Regge
behavior, and conversely it ensures that the smooth Regge
amplitude at high energies, if extrapolated to low energies,
gives an average description of the behavior in the reso-
nance region. Equation (2.10) is often referred to as semi-
local duality.

If we apply (2.1) to (2.4), use (2.8) and (2.9), and com-
bine with (2.10) and (2.7), we obtain

a+ ].—S1 —S2
1 V Vp

+lna+1—Si —S2 v, V

f dy G (y)y
' lny

(2.11)
f, d yG( y)y

The dynamics of our problem is now contained entirely
within the function G(y). If we take the discontinuity of
Fig. 4(b) across the two-body intermediate state, as shown
in Fig. 6(a), we have the two-Reggeon behavior
G (y) ~y '"' for large y, modulo logarithmic factors. 9'4'
On the other hand, by including higher intermediate
states, such as the cut across a three-body intermediate
state in Fig. 6(b), the y

'"' behavior is canceled for large y,
leading to a sharp falloff in y. " We therefore expect the
peaked structure of Fig. 7. This peaking permits us, in
turn, to make the approximation

where lny =in(v&/v, ) (2.12)

x(j)=p +p
a1j alj

Q2j

a)j

2

+ ~ ~ ~ (2.6)
within the integral of Eq. (2.11), with an a-independent
ai. Then Eq. (2.12) reduces (2.11) to the equation

has N terms adjusted so that an expansion of Eq. (2.5) in
powers of P reproduces the first (N+1) terms of Eq.
(2.3). In the case of the lowest elastic process for a given
set of quantum numbers, Eq. (2.5) satisfies elastic t-
channel unitarity exactly for any finite value of N (see
Ref. 8). We thus expect the series (2.6) to converge fairly
rapidly in the limit N ~ oo . If we use the Mellin
transform (2.1) we find, order by order, that Eq. (2.6} has
the structure

e =CiX,
where

X =(a+ 1 —Si —Sq)ln(v/v, )

ln(vi/vo)
Ci ——1+

ln (v/v, )

(2.13)

(2.14)

(2.15)

(2.7)

K(a) =1 . (2.8)

The corresponding residue, normalized as in Eq. (2.4), is

K(j)=f dy G(y)y

where y =v/v, and v, and vo are the values of v at s =s,
and sp, respectively.

From Eq. (2.5), Az has a Regge pole at j=a if

Since C& is independent of a, and hence of X, Eq. (2.13)
will, in general, have up to two solutions for X, and hence
for a. A more accurate treatment of Fig. 4 must be
equivalent to a relativistic generalization of a multichan-
nel, rnultiparticle version of a Lippmann-Schwinger or
Schrodinger equation, however, and is therefore expected
to give a unique output a(t). If we assume that this is in
fact the case, Y =CiX must be tangent to Y =e . This

bib2 —— Pa& /EC'(a) . — (2.9)

We next require that the Regge pole satisfy the finite-
energy sum rule' (FESR) of Fig. 5:

f ds[pa, (v, t}—b, (t) &b(t)v '"e(v)]v ' '=0,
(2.10)

(b)

FIG. 6. {a) Figure 4(b) cut across the two-body intermediate
state. {b) A cut across a three-body state.
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G(Y)
ters of Regge trajectories. For example, for the Regge re-
currences (i.e., orbital excitations) of m and p, with

m&
——0.776 GeV fixing the scale, the following results are

obtained:

m =mz —(2a&) '=0,
a (0)=0, a~(0)=0.5,

(2.23a)

(2.23b)

FIG. 7. The peaked structure of G(y). The slope discon-
tinuities result from the threshold effect of the successive open-
ing up of the different s-channel intermediate-state channels as-
sociated with Figs. 4(b}, 4(c},. . . .

a' =a& ——0.83 GeV (2.23c)

which are in good agreement with the experimental
values.

gives

C) ——e, X=1 (2.16)
III. PLANAR SELF-CONSISTENT
CALCULATIONS OF COUPLINGS

or, using Eqs. (2.14) and (2.15),

v, =v, (v/v. )'-'
=vo(v, / v)exp [e /(a + 1 —S,—Sz )], (2.17)

s —sga(t)=S, +S,—1+ ln 1+ (2.18)

Equation (2.18) has branch points at v, =0 and
v, = —(s —s, ), which can be joined by a cut in the v,
plane. It can be argued that this singularity structure is
spurious and that the approximation (2.12), and hence Eq.
(2.18), are not valid in that region. Away from this singu-
lar region, on the other hand, Eq. (2.18) can be well ap-
proximated by the linear expression

a( t) =S,+Sz+c +2a'v, , (2.19)

a form which exactly reproduces the t woo Eq. —(2.18)
limits of a'(t) and [a(t)—ta'( oo )] if we take

c = ——,', 2a' = 1/(s —s, ) .

Equation (2.20) gives

S=S~+ 2A

(2.20)

(2.21)

For processes in which the s- and t-channel Regge slopes
are equal, this is consistent with the usual semilocal-
duality statement that s be at a point halfway between a
and its first Regge recurrence. This would be the case for
crossing-symmetric processes, for example, in which a lies
on a(t) and a' ' is the spacing between recurrences.

Using Eqs. (2.2) and (2.20), Eq. (2.19) can also be writ-
'ten as

A. Dynamical constraints at and near
the forward direction

In the derivation of the Regge-t'rajectory formula (2.22),
we obtained two dynamical constraints, namely, Eq. (2.8),
which with the approximation (3.1), becomes

K(a(t), t) =Paz~~, ~(t)/a~~~, ~(t) = 1, (3.2)

The Regge-trajectory result (2.22) was based on the
dynamical approximation (2.12), which might be expected
to arise in a wide class of models. When applied to entire
sets of processes, Eq. (2.22) gives powerful self-
consistency conditions which determine the parameters of
the Regge trajectories. On the other hand, coupling calcu-
lations inevitably require a more dt„tailed model.

We will assume that Fig. 6(a) begins to be canceled by
Fig. 6(b) only at relatively high values of s. Therefore we
can approximate Fig. 4(b) by Fig. 6(a) when we evaluate
az~. We will also approximate the ladder exchanges of
Fig. 6(a) by Regge exchanges and assume that the [1,1]
Pade approximant is a good representation of Eq. (2.5), so
that Eq. (2.6) becomes

K (j)=diaz~/a, ~, (3.1)

with P azj given by Fig. 8. The practical advantage of us-
ing this approximant is that we only have to evaluate the
first two diagrams of the sum of Fig. 4 explicitly. More-
over, in the case of factorizable models' the approximant
is in fact exact. For simplicity, we wi11 only consider
~m ~~~ scattering.

4
a(t)=S~+Sz ——, +2a s, +—t —g m;

1 2

/ =1
(2.22)

b

Equation (2.18) or Eq. (2.22) apply to a given specific pro-
cess. The same output a can, however, arise in an infinite
number of other processes. It turns out that consistency
can be used to justify Eq. (2.22) for all t (Ref. 8). The
same arguments do not apply to Eq. (2.18), and so we
shall use only Eq. (2.22) in what follows.

Balazs ' has applied (2.22), in a self-consistent way, to
compute the low-mass hadron spectrum and the parame-

FIG. 8. Figure 6(a) for mm —+m. in the Regge-exchange ap-
proximation.
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1

aj
K(j, t)

v)(t)= —ln
v, (t)

vp(t)—ln , (3.3)1+a(t)

a'(0) K (j,o) K(a(0), t )
a

j=a(0) t=O
=0 (3.4)

which follows from Eqs. (2.7), (2.12), and (2.17) for mm.

scattering.
In practice, a2(s, t) involves a double integral for t&0.

However, a2(s, o) and [()a2(s, t)/Bt], p can both be re-
duced to single integrals, so that our calculations will be
made at and near t =0. Now one can assume a linear
upper cutoff s()(t), at least for small t, for the cluster
(b, . . . ) =(c, . . . ) of Fig. 4(b) or Fig. 8, which is different
from the cutoff sp for the cluster (a, . . . ) of Fig. 4(a).
The latter will be assumed to be t independent. Allowing
so to be t dependent, on the other hand, would be a crude
way of taking higher ladder graphs into account more
completely. If we now consider the constraints given by
Eqs. (3.2), (3.3), and their t derivatives at t =0, we can
determine the basic unknowns sp, sp(0), s p(0), and the
overall normalization of our couplings. The expressions
for the t derivatives at t =0 of (3.2) and (3.3) are

and v„ is the value of v at s =s„,with s„midway between
s,(„,) and s, („) for n ) 1, and defined by

s„=s,+(n ——,
' )a' (3.8)

We now consider the value n =N such that sN
(so (s&+&. we will approximate the continuum between
sN and so by a peak at s =s, (N) with a magnitude that is
proportional to the length of the interval [s&,sp]. Thus
we have

paE(s, t)= g K„y,(„) (t)5(s —s, („)),
n=0

with K„defined by

(3.9)

1 if n(N,
+n SO —S

SN+ 1 SN
ifn=X,

(3.10a)

(3.10b)

which, in general, takes values between zero and one.
Similarly, we approximate the different states in

(b, . . . )=(c, . . . ) by narrow peaks at s =m(, (p), mb(E),
ms(2), . . . with b(0)=b =m and a spacing a' ' between
them. We then have the generalized finite-energy sum
rules of Fig. 9; this, under the assumption that the cou-
pling of internal to external lines is factorizable, gives

y b (t')y ~ (t")=J d~y „(t)g(t,t', t")co B(pE) (3.11)

a'(0) K (j,o)
Bj j=a(0)

82
+ .K(j&t) (())Bt Bj

v)(t)
ln

dt v, (t)
(3.5)

and

(3.12)

where

y~b n)(a(t~ t )3 nb(n)a(t~t )

= J„decoy~ ~(t)g(t, t', t")co~B(sp s), —
GtPn

B. A many-peaks approximation
to the dynamical equations

P—=a(t) —a(t') —a(t"),
co—:s + —,(t —2m —t' —t"),

(3.13a)

(3.13b)

The next step in our calculations is to find explicit rep-
resentations for pa E(s, t) and p a2(s, t).

For the crossing-symmetric mm. ~me process, in which
a =p lies on a(t) and a' ' is the spacing between re-
currences, we can approximate the different contributions
in (a, . . . ) by narrow peaks at s =m, (p), m, (E),
mg(2), . . . WEth a (0)=a =p and a spacing 1/a' between
them. To relate the couplings of these states to each oth-
er, we make use of the FESR duality of Fig. 5 [see also
Eq. (2.10)],which gives

N

y a2(s, o) = y B„„(S,O)B(s —s() )
n, n'=0

(3.14)

and co„ is the value of m at s =s„, with s„midway be-
tween sb(„E) and ss(„) for n ) 1.

The actual expressions for ()() az and its t derivative are,
in general, rather complicated. They simplify consider-
ably for t =0, however. In the above narrow-peak ap-
proximation, we then have

and

Vl

y . '(t)= f dvy '(t)v '"

V

y, („) (t) = J dv y „~ (t)v "'B(s()—s),
Vn

(3.6)

(3.7)

TT VVW a(t")
FESA

b

JVV a(t )

VVs a (t")

b{r))

JUV' ct(t )

where

V=S +
2

(2.2')

FlGUBE 9

FIG. 9. Generalized finite-energy sum-rule duality of Eqs.
{3.11) and {3.12).
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a~(s, t)
Bt

8„„(s, t)
g=0, n, n'=0 at

e(s —so),
, t=O

(3.15)

where we have added a step function to prevent the
double-counting of contributions which are already in-
cluded in Pal and where

IC„„(0)
I

Tan'(t 0)
I

e(s (mb(n)+mb('))
16ms

(3.16)

K„„(0)
B„„(s,t) = f, dt'

I
T„„(t',t)

I

'
Bt t=O

(t+ t ') (t— t')—
, T„„(t',0)

s Bt'

K„„(t)1 a
16 Bt

(3.17)

—isa(t' j

T„„(t,t)= —y b~„~~(t, t)y b(„) (t, t) . , [s+Y(™b(„)™b(„))]sinma(t')

t+ = ——,
'

(s mb(n—) mb(n') )+ ~ I [s —(mb~. i
—mb~'i)'1[s —(mb~. ~+mb(n'))'1I '",

(3.18)

(3.19)

IC„„(t)= 1 if n, n' &X (3.20a)

so(t) —s-
N

—s~
N+1 N

if n =X, n'&X or n &X, n'=N

2

(3.20b)

so(t) s-—
if n =n'=TV .

—.s ~
N+1

(3.20c)

As in Eq. (3.9), we have added in (3.16) the factor &„„—
defined by (3.20)—to take into account the contribution
between s- and so, where %is such that s- &so &s-

N N N+1
Equations (3.11), (3.12), (3.7), and (3.6) relate all the

couplings to y, (t). The simplest approximation for
y, ~ (t) would be to assume that it is dominated by the
J =1 p resonance. However, this would not give rise to
a nonsense wrong-signature zero at a(t) =0 for y b~ (t'),
which is 'needed to cancel the pole arising at that point
from the sinatra(t') denominator in Eq. (3.18). We must
therefore add in just the right amount of a J =0+ contri-
bution of the same mass (e meson) so that y„, (t) a: a(t).
According to this we set

ImT (s, t)= go+3g~(m& )PI 1+2 2t

P

5(s —mz )

y, (t)5(s —m—
p ) . (3.23)

Now if we choose

go ——3gl(mz ),
we can make, using Eq. (2.23),

(3.24)

(where P denotes that a principal-value integral is to be
taken), gives

1 Ro
Tg(s, t) =—

~ m —s —~y0/2P

+—
z Pi(1+2tls)

m —s —I p1/2P

which, when combined with the identity

(3.21)

y, (t)=12gl(mz )a(t)—:I oa(t) . (3.25)

(3.26)

Finally, Eqs. (3.25), (2.10), and (2.4), with b&bz ——y~~~,
. give

2m —$ —lp
=P +in5(s —m ).1

m —s
(3.22) The dimensionless constant I 0 is the overall normaliza-

tion of our couplings for any given t. Equation (3.26),
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however, does not cancel the a(t) = —2, —3, poles aris-
ing from the sinn. a(t') denominator in Eq. (3.18); so we
must insert a cutoff, say, at a(t') = —l.5, to exclude them.
The region a(t') & —1.5, though, should give a negligible

contribution to our integrals. By modifying the procedure
somewhat, this cutoff can be pushed any amount beyond
a(t') = —1.5 (Ref. 8).

If we now combine Eqs. (3.18) and (3.12), we get

I T- «' t)
I
'=)' '(»[

I r.'(I' t)
I

'—
I r.+I,.(I', I)

I

'—
I
r...+)(I',I)

I

'+
I r.+),'+)(I' t)

I
'],

where

s + —'(t' —m —m ) )
g (t')t', t) Y (n) b(n'), ~ ~ „)+ (q) 2 (t )rII (t', t) L~l~r i
sin nu(t') [1+a(t)—2a(t')]

(3.27)

(3.28)

&o II'= .0941 o(sts' I) [s 2~ (mb(n) +mb(n') )]
0.25 0.25

all. = —1.42+ ' + ' +0 83 ln(slsl')
sl sl~

0.25
~a = —all+

1 2 2
2 (mb(n) +mb(n )'

(3.30)

(3.31)

+0.831n[s ——,(mb(„) +mb(n ) )] . (3.32)

If we take the Mellin transform (2.1) of Pa ) (s, t)—given
by (3.9)—and P az(s, t), and insert them into Eq. (3.1), we
have

N
' —1

K(j,t) = g Kny, (n) (t)v, (n)

with tol and tol given by (3.13) at t'= t" and s =sl and sl,
respectively.

Equations (3.16) and (3.17) involve nonelementary in-
tegrals. However, each term in (3.27) falls off rapidly
with t' for fixed t, so that we will approximate it by an
exponentially damped function of the form

I

I
rII'

I rO, !I'e (3.29)
I

where the constant ~0 ll is determined by demanding that
the approximation be exact at t =t'=0; the coefficients
all and ca are fixed by requiring that the partial deriva-
tives with respect to t and t', respectively, be exact at
t =t'=0 We fin. d the values

values with experiment. In the next two sections, howev-
er, we will consider a confrontation with experiment
through the calculations of the triple-Regge coupling con-
stant and partial widths.

C. An alternative calculation
assuming a dual-tree-model form

for the triple-Regge coupling

One way of avoiding altogether the a(t')= —l.5 cutoff
discussed in the last section is to assume that the triple-
Regge coupling g is determined by a dual-tree model of
the Neveu-Schwartz type, which gives

Q(t I I ) + 2 +(~(t))I -( 1 ~(t ))' Q, (t ) (3 36)I'(1+~(t)—2~(t') )

where g is a dimensionless coupling constant and X is the
number of quarks. If we assume that SU(3) is the under-
lying group, X =3. The use of Eq. (3.36) for g is an alter-
native to the expressions (3.11) and (3.26), obtained by im-
posing semilocal duality and assuming (3.25).

Now
I
rII(t', t)

I
is determined by the Eqs. (3.28) and

(3.36). It again falls off rapidly with t' for fixed t and so
we will use the exponential approximation (3.29), where,
in the present case, we have

rO II =4' Xg (SISI ) [S —
z ™b()+nmb(n ) )] )

(3.37)

n=0

dS 2a2s, tV & (3.33)

Finally, if we impose the constraints (3.2)—(3.5) on
(3.33)—using (3.14), (3.15), (3.16), (3.17), (3.27), (3.29),
(3.7), (3.6), and (3.25)—we obtain the following values for
our unknowns,

0.25 0.25
all' = —1.69+ ' + ' +0.83 ln(stsl')

sl sli

0.25
~ll' ll'+

2 2
2, (mb(n) +mb(n')

+0 831n[s —
2 (mb(n) +mb(n') )]

(3.38)

(3.39)

so ——3.27 GeV, so ——4.0 GeV, s o(0)= —1.1,

I o——206.65 .

(3.34)

(3.35)

and the numerical outcomes are

s() ——4.7 GeV, s()(0)=5.5 GeV

s ()(0)= —0.7,
(3.40)

There is no direct unambiguous way of comparing these and
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iVg /16~=0. 58 . (3.41)

The couplings I p and Xg /16~ can be related to each
other through the corresponding expressions for
g (0,0,0). So at t =t'=t"=0, Eqs. (3.11) with b =~ and
(3.26) reduce to

If we combine Eqs. (3.46), (3.25'), and (3.48), with I 0
given by Eq. (3.35), and if we use semilocal duality for g,
we get

yp . yl 0. I 8 GeV, yf ———,y2 ——0. 12 GeV
(3.49)

I n(0)[1+o.(0)][1—a(0)]'
g (0,0,0)=

(~~ )2—2u(0)( —))+a(0)
(3.42)

yg=y, =0.04 GeV, yI, ———,y4 ——0.03 GeV,

while, with the dual-tree result (3.44), we end up with

which, when compared with (3.35), gives

Xg /16~=I p/377. 90, (3.43)

yp y I 0. 19 GeV, yf —
2 y2 —0 13 GeV

yg —y3 —O.04 GeV, y& ———,y4.:0.03 GeV ~

(3.50)

where we used the values a(0) =0.5, s) ——mz
+(2a') '=1.204 GeV, and s) ——m +(2a') ' =0.602
GeV . If we now insert the result (3.41) into (3.43), we get

Equations (3.49) and (3.50) should be compared with the
experimental p-, f , and g-rn-eson arm partial decay widths

I p ——219.18 . (3.44)

On the other hand, the triple-Regge coupling constant, ob-
tained with the semilocal-duality model (3.35), is

yp ——0.154+0.005 GeV,

yf ——0.149+0.017 GeV,

yg
——0.048+0.005 GeV .

(3.51)

Ng /16~=0. 55, (3.45)

which is in turn rather close to the dual-tree value (3.41).
Both values should be compared with the "experimental"
estimate Ng /16'-1 obtained in Refs. 16 and 17. How-
ever, this experimental estimate relies heavily on a version
of the two-component duality hypothesis of Freund and
Harari' which may not be very good. In the next section
we will make a less ambiguous comparison with experi-
ment.

D. Calculation of meson resonance widths

Partial widths are another kind of coupling which can
be calculated within our approach. For simplicity, we
sha11 continue considering only ~~ scattering.

If we make the t-channel partial-wave projection (2.1)
of y v, we obtain a resonance of spin j at t =tj if
a(t~) =j. With m =0, the corresponding partial width
in the energy (v t ) variable is then given by

I (t/)
(3.46)

8~'o. '
t,

'~' '
2'(j+1)(j!)'
(2j+1)(2j)! 2m+ r

where we shall assume

I (r)=Iou(t) . (3.25')

T = —,[T(t,s)+ T(t, u)] —, T(s, u), —

T'= —,
' [T(t,s) —T(t, u)] .

(3.47a)

(3.47b)

3, yj, I, —0,
total partial width= &

y, I,=1.
(3.48a)

(3.48b)

Equation (3.46) applies to the ordered planar amplitude
T(s, t) which only has s tcrossing. -For m~ scattering, the
full planar amplitude for the t-channel isospin I, =0, 1

states is

We see that the values we obtain are in good agreement
with experiment. In the case of f and h, we should keep
in mind that the widths are modified. by nonplanar
cylinder corrections. We can also calculate the ~m par-
tial decay widths of resonances beyond g and h. We get,
for instance, the values y5 ——0.01 GeV and —,y6 ——0.01
GeV with both models.

IV. SUMMARY

We have considered the dual topological unitarization
(DTU) approach to the study of strong interactions.
DTU provides us with a quasiperturbative expansion
based on the topology of quark-duality diagrams generat-
ed by unitarity. Unlike many other approaches, DTU
takes sea-quark loops into account from the beginning.
This strong-coupling method is particularly suitable for
the description of low-momentum-transfer interactions.

The leading term consists of all planar diagrams, which
have the simplest topologies and give a good first approxi-
mation to the soft-hadron physics. They satisfy a non-
linear consistency equation, known as planar unitarity.
The solution of this planar bootstrap problem is the first
step in the DTU program. Once we have its solution,
nonplanar effects can be systematically brought in
through the topological expansion.

In Sec. II we reviewed the planar bootstrap technique
developed by Balazs, in which finite-energy sum rules are
combined with an infiqite sum of ladder graphs generated
by unitarity. By making a certain simple dynamical ap-
proximation, the bootstrap problem is solved and a simple
linear form for the leading Regge trajectory a(t) is ob-
tained.

In Sec. III we considered, within the same approach as
in Sec. II, a model for making coupling calculations at
and near t =0, where the scattering amplitude takes on a
particularly simple form. We approximated the ladder
exchanges by Regge exchanges and assumed that the [1,1]
Pade approximant was a good representation of the ab-
sorptive part of the amplitude. The practical advantage
of using this approximant was that we only had to evalu-
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ate the first two diagrams of the infinite sum of ladder
graphs, namely, the resonance and the box graphs. In the
case of factorizable models, the [1,1] Pade approximant is
exact. Our computations were restricted to ~~ scattering,
although our methods are applicable to any multiquark
system. By making narrow-peak approximations to the
resonance clusters that appear in both graphs and using
semilocal duality, we were able to solve our dynamical
equations and obtain the cutoffs of the clusters and the
overall normalization constant of our couplings. We com-
pared the results with similar calculations based on a
dual-tree model of the Neveu-Schwartz type. We calcu-

lated the triple-Regge coupling constant and the widths of
the meson resonances, which are close to the experimental
values.
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