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Proton decay cannot be suppressed kinematically
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Using a recently derived decay-law formula for relativistic unstable particles, we examine how the
decay of a free proton could be affected by the size and shape of the wave packet. For simplicity,
the proton is assumed to be spherically symmetric and spinless. The decay probability is found to be
lessened comparing to the theoretically expected one; however, the effect is insignificant under real-
istic experimental conditions. Hence the proton decay is not likely to be suppressed kinematically,
contrary to the prediction of a paper by Fleming.

I. INTRODUCTION

The problem of consistent relativistic description of de-
cays has attracted attention for a long time. ' lt is con-
nected with some peculiar difficulties. One of them con-
cerns the fact that one cannot regard the commonly used
formula

as an exact expression of the decay law for a free unstable
particle. ' This is so because (1) relies on the assumption
that the unstable particle is characterized by a one-
dimensional subspace A „of the state Hilbert space
spanned by g. However, translational invariance, together
with the fact that momentum operators have purely con-
tinuous spectra, requires A „ to be infinite-dimensional.

Making a physically reasonable choice of this subspace,
we have been able in Ref. 2 to derive a consistent decay-
law formula [cf. (5) below]. It gives a nondecay probabili-
ty P&(t) which depends not only on the mass distribution
of the initial state P, but also on its three-momentum
spread. Fortunately, this does not complicate the stan-
dard treatment of decays, because the deviations of P~(t)
from the simple formula related to (1) are very small pro-
vided the initial spatial localization of the particle is not
extremely sharp. The estimates performed in Ref. 2 show
that this is true in practically every decay experiment;
hence the decay-law dependence on kinematical charac-
teristics of the initial state is negligible within the limits
of experimental errors.

There is a possible exception, however. It concerns the
proton decay which is sought vigorously at present in or-
der to confirm (or to refute) this prediction of various
grand unified theories. The recent experimental results
give a lower bound of 10 yr on the proton lifetime,
which seems to be longer than the prediction of the most
popular SU(5) model of grand unification (about 10 '

yr,
however, with large uncertainties ). Before claiming it as
inadequate, one must be sure that the decay is not
suppressed by an additional effect. There have been so~e
speculations on this point recently. In most of them, the
decay slowdown is regarded as a consequence of the
short-time nonexponentiality of the decay law; it ap-

Qg(t) = 1 Pp(t)— (2)

This will be done in the following sections for a realistic
choice of the mass distribution, in order to simplify the
calculations, we neglect spin of the proton and assume the
wave packet to be spherically symmetric.

The results can be summarized briefly as follows. The
calculated decay probability is actually less than the
"theoretical" one, but its decrease is insignificant. Up to
higher-order terms, we have'

Q&(t) =I t[1—s(g)], (3a)

where s(g) is a positive quantity depending on the func-
tion g which characterizes the three-momentum distribu-
tion of the initial state [cf. (4) below]. A rough estimate

pears that the effect is negligible unless some highly ques-
tionable assumptions are made. ' Miglietta and Rim-
ini" predict that the slowdown region is followed by the
region of accelerated decay. Again, this region is experi-
mentally hardly accessible. A possible dynamical mecha-
nism for the slowdown of decay was discussed by
Goldhaber, Goldman, and Nussinov. '

Another suggestion' is that the decay might be modi-
fied by the spreading of the proton wave packet which is
very fast in the time scale given by the theoretically ex-
pected lifetime. Such a possibility cannot be excluded
a priori, and the present paper is devoted to discussion of
this problem. Our treatment is based on the above-
mentioned decay-law formula because the latter provides
a natural framework in which the effects of the size and
shape of the initial wave packet on the decay law can be
studied. Such an analysis should yield a more reliable re-
sult than the rough argument employed in Ref. 13, which,
by the way, leads to an effective proton lifetime as large
as 10 yr.

As we have mentioned, the appropriate conclusions of
Ref. 2 do not apply to the proton. The estimates which
worked effectively for the other unstable particles gave a
very weak restriction in this case because of the extremely
long lifetime. ' Since the task of finding better estimates
is difficult, one must approach the problem directly by
calculating P~(t), or rather the decay probability
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y1elds

s(g) &c(hq) (3b)

the form

g(m, p)=f(m)g(p) . (4a)

where hq is the position spread of P and the coefficient c
is of order 10 cm . Hence the correction might be sub-
stantial only for a proton which is localized initially to a
volume of subnuclear size, but in this case the arguments
leading to (3) are no longer applicable. Since we are not
interested in the protons bound in nuclei, ' the relations
(3) show that the decay under consideration cannot be
suppressed by some "kinematical fragmentation" as sug-
gested in Ref. 13. This supports the common opinion that
there is no other key to the problem than a thorough in-
vestigation of the dynamical mechanism that governs the
proton decay.

II. THE DECAY LA%

According to Ref. 2, the proton wave function (in p
representation) at the initial time t =0 is assumed to be of

I

ln fact, g is a two-component function here, but if we

neglect spin of the proton, it can be regarded as a scalar
one. For technical reasons, one assumes that g is support-
ed by the ball 8,= [p: I p I &eI of a radius e. The func-
tion P belongs to the Hilbert space A which is the carrier
space of the direct integral of (unitary, irreducible) repre-
sentations of the Poincare group referring to the isolated
system formed by the proton itself and its decay prod-
ucts; The mass distribution

I f( )
I

will be specified in
Sec. IV.

The subspace A „CA which corresponds to the proton
alone consists of all functions of the form (4a) with

g CL (8,). In order to write down the decay law ex-
plicitly, one needs the projection E„onto A „. Its action
can be conveniently expressed using a suitable orthonor-
mal basis in A „;in this way we obtain'

d
2

P~(t)= g f dm
I
f(m)

I f 2, &2 hk(p) f dQPY~&(Qp)g(p)exp[ it(m +—p )'~ ]
klan

2(m +p )'~ P P P

where P~& are the spherical functions, p =
I p I, and [hk] is a complete system of functions with supports in [O,ej which

fulfill the orthonormality condition

2df dm
I f(m)

I f, hj(p)hk(p)=5jk .
2(m +p )'~

Suppose now that the initial wave function is spherically symmetric, i.e.,
'

t/i(m, p) =f(m)g(p),

(6)

(4b)

where g:[O,e]~&. This is certainly an ad hoc assumption, but it gives us a possibility to evaluate the decay probability
from (5). At the same time, our conclusions are not likely to alter qualitatively if the initial state is not rotationally in-
variant (or if we take the spin into account). For the wave function (4b), one can simplify (5) using orthonormality of the
spherical functions: it yields

2

P&(t)=4~+ f . dm
I
f(m)

I f, hk(p)g(p)exp[ it(m +p—)'~ ]
k

Since they belong to ~, the functions (m,p)
Mf ( m)hk(p), f ( m)g(p) are square-integrable with
respect to dmp dp/2(m +p )'~ . The integrations are
then interchangeable by the Fubini theorem and we can
write

I

cay law (8) equals

Pg(t)=4'+ I (hk, s, )G I2,

where

(1 la)

2

P~(t) =4m g f hk(p)g(p)G(p, t)p'dp (8) s, (p) =g(p)G(p, t)G(p, O)

where

f(m)

[notice that G(p, O) &0 in view of (9)] and (, )G is the
inner product in L ([O,e], G(p, O)p dp). Since [hk I is an
orthonormal basis in this Hilbert space according to (10),
the Parseval equality yields

The orthonormality condition (6) now reads

(9) Py«) =4~I Isi I I

G', (1 lb)

f hj(p)hk(p)G(p 0)p dp =6jv (10)

This relation suggests yet another reformulation: the de-

P~(t) =4~ f I g(p) I

'
I G(p, t)

I
'G(p, O) 'p'dp, . (12)-

where G(p, t) is given by (9). The formula (12) is essential
for our following calculations. Since P~(0) =1 by defini-
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tion, the function g has to fulfill the normalization condi-
tion

4m f Ig(p) l
G(p, O)p dp= 1 . (13)

Combining the last two relations with (12), we can express'
the decay probability

g (t) 4~ ('
l

(
)l2G(pO) IG(p t)l 2d

G(p, O)
(14)

III. SIMPLE PROPERTIES OF Pp(t) FIG. 1. The mass distribution.

Notice first that the decay law given by (12) is well de-
fined. As we have mentioned, G(p, O) is positive for each
p %[0,e] unless f(m)=0 for almost all m in [mo, ao ), but
this is impossible since g is a unit vector in A . In fact,
the mass distribution is normalized conventionally as

f l
f(m) l'dm=1; (15)

it fixes the normalization of g through (13). We have

l
G(p, t)

l
& G(p, O) for all p, t, and therefore

0 & P~(t) &P~(0) = 1 as it must be. Since the integrated
functions in (9) and (12) have t-independent majorants,
the dominated-convergence theorem implies the functions
G(p, ) and P~( ) to be continuous. In a similar way, one
can prove

lim P~(t)=0;t~ 0O

(16)

g (p)=c(~)g(p/~) . (17a)

The normalization factor here is obtained from (13) to be

l
c(x)

l
=x ' ' 4' f l g(y)

l

'G(~y, O)y'dy

(17b)

Then the decay law P& „(t) referring to the rescaled func-
tion g„ is given by

it is enough to change the integration variable to
A, =(m +p )'~ in (9) and to apply the Riemann-Lebesgue
lemma which shows that G(p, t)~0 as t~ oo.

In the case of the proton decay, however, one had to
wait too long before the limit (16) might become physical-
ly interesting. The following fact is much more impor-
tant: the dependence of P~(t) on kinematical characteris-
tics (i.e., on the shape of g) is suppressed if the three-
momentum spread of P is small enough. In order to see
this, consider the scaling transformation g —+g, 0 ~ a & 1,
where

p~„(t)= f lg(y)
l l

G(~y, t)
l

G(ay, o) 'y dy

E —1

x f, lg(y) l'G(~y, O)y'dy

Since the function G is easily seen to be bounded and

g EL (O, e) due to the assumption, one can use the
dominated-convergence theorem and perform the limit
~—+0+ under the integrals. We obtain

lim G(~y, t)= f e ' 'dm(m)
0+ ™0 2m

so that relation (18) yields

lim P@ (t)
v —+0+

2 —2" ff(m) I' tmtd -" ff(m) I'
mo Zm mo 2m

(19)

We see that the limit is independent of g. Moreover, if
the mass distribution

l f( )
l

has a sharp peak around a
value M, we can approximate the above expression replac-
ing (2m) '

by (2M) '. It gives
00

2 — 2
lim P~ (t)= f l

f(m)
l

e ' 'dm
~~0+ ' ~0

i.e., the standard expression related to the formula (1).
The central question is now whether we are near

enough to this limit situation in actual experimental ar-
rangements. We will discuss it in the following sections.

Iv. cHolcEoF l f( ) l'

One has to specify first the mass distribution entering
into (12) through (9). In any realistic theory, it should be
of a more or less Breit-Wigner shape, with the principal
contribution resulting from the pole approximation to
solution of the full dynamical problem. ' We choose it in
the form

0, m &mo,
l
f(m)

l NI(I /2m)[(m —M) + —,I ] +co(m)I, m &ma,2 & 2 —1 (21)

where M=938.28 MeV, further mo is the threshold mass and I & 2& 10 MeV corresponds to the lifetime T) 10 ' yr.
The function co is supposed to obey the following restrictions (Fig. 1):
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'(1 /2m)[(m —M) + —,I ] ', m )mp+8,

f(I /2')[(mp —M) + —,1" ] ', lm —M
I

& , 8—,
(22)

where we have denoted 8 =2(M —mp). This quantity is of the same order as M, because the lowest open channel in the
standard theory is p~e+~ which gives mp ——135.47 MeV.

One can use (1S) and (21) to find the normalization factor X in (21), or more exactly, to derive the estimate

I
X—1

I
& +O(I'/8') .

mB

Since I /8 & 10,we set N = 1 in the following. With this approximation, one can write

G(p, t) =Gp(p, t)+G) (p, t),
where

I exp[ —it(m'+p')'~']
Gp(p, t) =

1
'

2 2 1/2
(

' ')'"

(23)

(24a)

(24b)

G&(p, t)=f, exp[ —it(m +p )'~ ]dm .
2( 2+ 2)1/2

V. EVALUATION OF G(p, t)

Let us first estimate the right-hand side (RHS) of (24c). The inequalities (22) yield

I 2 p+ dm I dm+~p m 4~ ~p+& ~ m

(24c)

1n 1+I B I 1
ln 1—1

nB mp 4~ M(M —mp)

M
mp+B

I I 1 1 I 1 1+ ( +
7TPl pB 2' B 2M+B 7TB m p 2B

Since 2B+mp & 4M, we obtain

IG)(p t)l &
21M

mmpB
(2S)

The RHS of (24b) can be evaluated by contour integration. The integrated function represents restriction to [mp, oo )

of a function which is analytic with the exception of two simple poles at M+(i/2)1 and two cuts on the imaginary axis
referring to the factor (m +p )'~ . Thus we have (see Fig. 2)

Gp(p, t ) = —2~i. I exp[ —it(m +p )' ] +G, (p, t),2~ 2(m +p )' [m —M —(i/2)I ] „~ )r

exp( —it[(mp iz) +p ]—'~ ] dz
Gz(p, t) =-

2[(m —iz) +p ] (m —iz —M)~+ —,
' r' (26b)

Here we have used the fact that the integrated function
behaves as (1 /4')

I
m

I

for large
I

m I, and therefore
the integral over Cz(R) vanishes in the limit R ~ oo.

Our intention is to show that G(p, t) is given essentially
by the pole term in (26a). Let us estimate the additional
term (26b). We have

I
(m, —iz —M)'+ —,

' I'
I
=(z'+ —„'8')[1+0(I'/8')],

(27)

where the last term can be again neglected. Furthermore,

I
(mp iz) +p I

=z —+2(mp —p )z +(mp +p )

C, '

Re rn

F(z ). — FICx. 2. The integration contour for (241).
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We need to estimate F(z ) from below. The minimal
value F(yo)=4p mo is achieved for yo ——p —mo, but
we are interested in F(y) for y =z &0 only. If we there-
fore restrict our attention to those values of e for which
the inequality

P &6&Plo (28)

which yields the estimate

holds, then a stronger estimate is possible, namely, E(y)
&(mo +p ), i.e.,

I (mo iz—)'+p'
I

'~ & mo . (29)

Finally, [(mo iz—) +p ]'~ lies in the fourth quadrant for
z&0 so

I
exp[ —it[(mo —iz) +p ]' ] I

&1 holds for
t &0. Combining this fact with (26) and (29), we get the
inequality

I" ~ dz
I G2(p t)

I
&

4~m o 0

p . I I
~2 ~ 4~2

so that we obtain

2 t Im t [M (—i /2 )I ] +p ]
'~

2 3 4
~ ~ ~

2M 8M

It 1— + 3p
2M 2 g~4

2 4——'(I t)' 1 — + + . + . (35)M4

The second term can be neglected since I t is very small. '

If we neglect also the higher powers of p /M, then

neglecting again the terms which contain I'/M. The
numerator in the RHS of (33) is then given by

I G2(pt)I &
4

I
4mo&

The estimates (25) and (30) together give

(30) 2—[[M—(i/2)l ]'+ '] ' '= 1—
2M 2~2

so the relations (33) and (35) yield

I G~(p, t)+G2(p, t)
I

&
I 2M 1 062 r=0.62

~o& ~& 4 ~o& G(p, O) —
I
G(p, t)

I

I t p
G(p 0) 2M

(36)

(31)

We shall show a little later that the modulus of the pole
term in (26a) is -(2M) '. Taking then the values of M,
mo, and I into account, we see that one can neglect the
remainder terms and write'

up to higher-order terms.
Substituting now from (36) to (14), we get

r

2

Q~(t)= M J, lg(p)l' 1— (37)

G(p, t)= exp( it[[M—(i/2)—I ] +p J'~ )

2[[M—(i/2)l ] +p j'~ (32)
Furthermore, the normalization condition (13) can be
rewritten in the same way as

VI. THE DECAY PROBABILITY

2

M J Ig(P) I
1 'P dP=1 (38)

Now one has to insert the calculated G(p, t) into (14).
Before doing that, however, it is useful to find a suitable
approximative expression to

G(p, O) —
I G(p, t)

I

G (p, O),

1 —exp(2tIm[[M (i/2)I —] +p I' )

2[ [M —(i/2)I ] +p J
'

which would make the integration in (14) easier. Recall
that the expression (32) itself is approximative. In view of
(31), the corresponding error will not change essentially if
we replace the denominator in the RHS of (33) by
2(M +p )' . Furthermore, we shall assume that

e(&M .

In fact, we have already restricted e by (28), where mo is
at least seven times less than M, but for a reasonable ini-
tial localization of the proton, the inequality (34) is ful-
filled even much better. In that case, p/M is small too
and the square root can be expanded in powers of

again up to the higher-order terms. Combining the last
two relations, we can express finally the decay probability
in the form

Qp(t) = I t 1 — j I g(p)
I

2p dp (39)

i.e., we obtain the formula (3a) with s(g) given explicit-
18

VII. CONCLUSIONS

The central question now concerns the magnitude of
the slowdown coefficient s(g). Let us first derive an
upper bound for it. Suppose that the following inequality
holds,

, J, lg(p) I'p'dp«

then one may multiply its RHS by the expression appear-
ing on the left-hand side of (38), thus obtaining
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2

f lg(p) I2 2K —(1+K) p'dp&0. .(g) 2~2 2
(41a)

under which (40a) is valid. In view of the assumption
(34), we get the sought bound,

g2s(g)&, «1.
2M

(40b)

Of course, the value of s(g) is determined by the shape
of g, and not only by the three-momentum cutoff e. If,
for instance, g has a sharp peak of a width rj «e and its
tail decays rapidly enough in the sense that

I„ lg(p) I'p'"dp«J, lg(p) I'p"dp, k=1,2,

then one can estimate s(g) rather by q /2M . On this
loose level, therefore, the value of s(g) is determined by
the three-momentum spread bp of g,

This inequality is certainly fulfilled if one requires the
term in the large parentheses to be non-negative for p =e.
This yields a sufficient condition, namely,

—1
g2 g2

K& 2—
M M

where we have returned to the standard system of units.
Continuing this heuristic argument, we express bp from
the uncertainty relation' obtaining in this way

3 2

s(g) & (&q)
8M c

(41b)
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Hence we have arrived at the relation (3b); substituting the
numerical values we find c= 1.6&& 10 cm .

It is clear that a more careful analysis is needed if one
wants to get some precise statements about the depen-
dence of s(g) on the shape of the wave function. We are
convinced, however, that the results of such an effort can-
not alter the principal physical conclusion drawn from the
above considerations, namely, that the suppression of de-
cay of a free proton due to kinematical effects is unlikely
under realistic experimental conditions. %"e expect also
this conclusion to be preserved if one relaxes the technical
assumptions made above, i.e., the spherical symmetry and
neglect of the spin.
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(Ref. 3, p. 321). If a more complicated Lagrangian is con-
sidered, then other decay channels may be open, e.g. ,
p~e+v'v' (Ref. 3, p. 327). However, the increase of M/mo
to 2&10 makes little difference: the RHS of (32) can be
again identified with G(p, t) for all practical purposes, a pos-
sible error being now of order &10 . In fact the space A
should contain the states corresponding not only to the "first"
decay, but to all consecutive decays of the decay products as
well. This also requires mo ——m, .
The formula (39) can be interpreted as a result of momentum
spread and of the relativistic dilatation of lifetime for moving
particle. Let 70 be the theoretical lifetime at rest. The life-
time of the moving particle with momentum p and mass M is

%0
7-(p) =V (1—U2) —1/2 (F2+~2)1/2

M

The mean value over the momentum spread

r =4nr(p)
I g(p) I

~G(p, .0)p'dp

E=r. 1+, , lg(p) I'p"dp

corresponds just to Eq. (39) in our approximation.
Strictly speaking, the uncertainty relation just says that the
dispersion Ap is bounded from below by the appropriate mul-
tiple of (Aq) ', and hence it is not immediately applicable
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here. However, the conventional wisdom which replaces Ap
by R(hq) ' in such situations has some point. As a simple
example, consider a spinless particle in one-dimensional non-
relativistic quantum mechanics whose wave function in the p
representation is of the form P(p) =c ' g(,&2,&2)(p). In the
x representation, P(x) has a slowly decaying tail so the disper-

sion (b,q)~= oo. Nevertheless, P forms a distinct peak whose
width (measured, e.g. , from the distance of the neighboring
zeros) is -A/e.

~ In the sense of Ref. 19, hq here and in (3b) is not necessarily
the dispersion, but simply a suitable quantity characterizing
the size of the proton wave packet.


