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Soft theorems of current algebra are consistently applied to D ~K~ decay amplitudes from
which D*, F*, and E pole contributions have been removed. The K* pole, ignored in previous
calculations, represents the contribution of the flavor annihilation channel. The net effect is an im-

proved, though not entirely satisfactory, understanding of D—+Km data, with real amplitudes.
Final-state interactions are introduced to give a fit to data.

I. INTRODUCTION

Now that the new Mark III data' reconfirm that
(D ~K sr ) is not color suppressed, it is time to exam-
ine the effect of heretofore ignored "helicity-suppressed"
8'-exchange quark graphs on the theory. A recent
model-independent analysis of D~E~ decays based on
the two branching fractions'

=0.35+0.07+0.07,

=3.7+1.0+0.8 (lb)

(where, in the latter, we have used r +IrDo 2.5+0.6), ——
finds that (1) real amplitudes cannot fit the two ratios in
(la) and (lb) simultaneously, and (2) a sizable W-exchange
(nonspectator) contribution is needed to lift color suppres-
sion. In this paper we first apply the standard current-
algebra techniques combined with P-wave vector-meson
F*+ and D' pole graphs but also include, in the spirit of
using vector mesons only, the K" pole graphs in flavor-
annihilation channels. Though on-shell this contribution
is helicity suppressed, it is not a priori obvious that the
application of soft theorems will not result in some con-
stant contribution as a remnant of the K* pole. We find
that the E pole nevertheless approximately decouples
from the final on-shell decay amplitudes and is thus effec-
tively helicity suppressed.

The result of this procedure can, with real amplitudes,
lift color suppression to a degree and come close to ex-
plaining the two ratios in (la) and (lb) for a color-
enhanced —to—color-suppressed F -to-D transition ratio
of about —2.5. One naively expects the absolute magni-
tude of this ratio to be 3. Furthermore the self-consistent
current-algebra —PCAC (partial conservation of axial-
vector current) requirement forces the amplitudes in the
approximate "vacuum-saturated" quark spectator minus
color-suppressed quark spectator form employed in Ref. 5
for all two-body weak decay amplitudes to match favor-

ably the observed scales. One exception is the
( D ~K n)mode. . Once final-state interactions are
switched on, it becomes possible to generate both Roo and
Ro+ within their experimental bounds.

In Sec. II we develop current-algebra —PCAC theorems
for D ~K~ decays, introducing all possible P-wave
vector-meson pole graphs. These pole graphs account for
the rapid variation of the amplitude as one of the particles
is taken off-she11. The background, once the pole contri-
butions are subtracted, is assumed not to have any energy
dependence. After noting that the K* pole in the flavor-
annihilation channel does not contribute significantly to
the final on-shell 3~K~ amplitudes, we attempt to
match the decay-rate ratios to (la) and (lb) and find that
a near fit is obtained with a F* to D* transiti-on -ratio of
= —2.5. Next in Sec. III we show that the PCAC con-
sistency requirements are identical to vacuum saturation
of quark spectator and color-suppressed spectator graphs.
We then predict the scales of the three decay amplitudes
(D ~K ~+), (D ~K vr ), and (D+~K ~+). In Sec.
IV we discuss final-state interactions and show that the
decay amplitudes corrected for rescattering in the final
state generate both Boo and Ro+ within their experimen-
tal bounds. We summarize our analysis in Sec. V.

II. CURRENT-ALGEBRA —PCAC THEOREMS
FOR D —+Em.

In what follows, the D meson will always be kept on
mass shell, with pD ID, where pD

————D-meson four-
momentum. The Nambu-Goldstone bosons ~ and K will
be taken off mass shell with four-momentum always con-
served, pD ——pz +p, so that pz ~mD as p ~0. Such a
long extrapolation in p& is not likely to be smooth as it
spans the resonance region. We account for the rapid
variation of the amplitude Mz in this extrapolation by
vector-meson F, D*, and E* poles shown in Figs.
1(a)—1(c). The expectation is that the background ampli-
tude M in M =Mz+M is smoothly behaved. The on-
shell amplitude can then be computed in the usual
manner
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M'" =MR+ Mcc —Mp(0), (2) m&
2

[Mp —Mp(0)] „=— M
7?lD —mg

where Mp(0) denotes the soft-z or -K meson pole ampli-
tude. The charge-commutator amplitude Mcc is obtained
from the PCAC relation, for example, with p ~0 and
f =93 MeV,

2

(m+
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I
Hp,

I
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(5b)

combined with [Q&,Hp ]= —[Q,Hp ] for Hp built from
V —A left-handed currents.

The vector-meson pole graphs of Fig. 1 in the limit

p —+0 correspond to

[Mp —Mp(0)]
ma +mz2 2

mg

,
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If we instead take the limit px. —+0, then (4) is replaced
by

In (4) and (5) Mp, represents the K*-pole term with
similar definitions for M ~ and M „.We have

neglected m compared to mD in (4) and (5).
It is interesting that while the naive vector-meson I *-

and D'-pole model is recovered in (4a) and (5b), the
helicity-suppressed (or "mass-suppressed") K*-pole
graphs of Fig. 1(c) are significantly enhanced by a factor
mD /mx —14 in (3c) and (4c). In quark language this
means that while the spectator and the color-suppressed
spectator graphs of Figs. 2(a) and (2b) remain unaltered,
the contribution of K' pole in the annihilation channel,
Fig. 2(c), is enchanced to the level of other quark graphs.
But in spite of this effect we shall see below that the K"
pole contribution will nevertheless be suppressed in the
physical on-shell amplitude due to a consistency require-
ment imposed by current algebra and PCAC.

To see how this happens quantitatively, we work out in
detail the current-algebra —PCAC analysis (2)—(5) for the
(D ~K ~+) amplitude M +, the (D ~K vr ) ampli-
tude M, and the (D ~+K m.+) amplitude M + as
@~~0. This leads to the following on-shell physical am-
plitudes,

K (b)
(b)

(c)

FIG. 1. Vector-meson F*, D*, and X* pole graphs for
D —+Km decays. The cross within the circle represents the weak
transition.

(c)
FIG. 2. Equivalent quark spectator, color-suppressed specta-

tor, and 8'-exchange quark graphs for D ~Em decays.
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M+ = (K IH vvI'D )2f
(mD —m~ )—gv, (m. + IHg IF*+)

2m~g

m
(m+

I
Hg IF+) =gv (n.+

I
HvvIF*+),

K mF
(9a)

and (8) shows that the following PCAC consistency condi-
tions must be valid:

(mD —m~ )+gv, (K' IHp ID ),
2m~ g,

(K IHg IDO)

(mD —m~ )—gv (K* IH~IDO),
2m

(K IH~ ID')
2

(6a)

(6b)

2' (K'IH~ID')=g, , (K'IH~ ID*'),
1r ma

2—(K'IH~ ID') = —g, , (K"'IH~ ID'),
m

where

1 1 1

f 2 f fE:

(9b)

(9c)

(mD —m~ )—gv, (m+
I
H~

I
F*+),

2mF g,

(6c)

fry /f =1.25, which we use throughout,
f If =0.9. before studying the significance of the iden-
tities (9), we first substitute (9) back into (6) or (8) to ob-
tain th'e final on-shell D~Km amplitudes,

where gv is the VPP SU(4) coupling constant and m
has been neglected compared to mD throughout. Note
also that the hI = 1 isospin sum rule

is identically satisfied by (6).
If we instead take the limit p~ —+0, then current algebra

and PCAC lead to the on-shell matrix elements

iM(D ~K m+)= 1

2frc

1

W2

2
mrna.

mD

1 1 1 mz+— Df fx f ma'

(10a)

lM += —~ [(K IHtvID )+(~+ IH~ IF+)] iM(D ~K vr )=-~ 0 0 0

2
2 1 1m'
f f f m~'

(lob)

2 mFg
I

(mD +m~ )—gv z
(K* IHw ID

2m~ g

miM(D+~K'~+) = 1—,F+ D,2' mD' 2f

where we have defined

(10c)

™+ (K* IHgyID ),
mx

(8b)

M += — (n+ IHg IF+)
K

2™,( +IH IF*+)
2 m

m
M = (K IHs ID ) — (K IHtvID* )2' may %'e note that although the X*-pole term, signaled by

(9c), is enhanced to the same size as the D*-pole graphs
[signaled by 9(b)], its effect in the on-shell amplitudes
[signaled by 1/f terms in (10)] is minimal, largely cancel-
ing against the charge commutator terms in (10a) and
(10b). The net effect is close to a model with only F" and
D* poles (i.e., spectator and color-suppressed spectator
quark graphs). For reference, in a model with F.* and D*
poles only and unconstrained by current algebra, (10) is
replaced by [where (9a) and (9b) are used]

~2 m .' (K IH ID* ). (8c) iM(D ~K m+)=.1

2frc
(12a)

Again (7) is identically satisfied by (8).
Since the on-shell amplitudes must be the same, no

matter whether p~ or p is made soft, inspection of (6)
iM (D'~K'~') =o —o o

2
(12b)
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F/D
—2.0
—2.1

—2.2
—2.3
—2.4
—2.5
—2.6
—2.7

Rpp
0.25
0.23
0.21
0.19
0.18
0.17
0.15
0.14

Rp+
11.45
9.43
8.0
6.94
6.15
5.53
5.0
4.63

TABLE I. Rpp and Rp+ without final-state interactions. F:&—n+
I
H~

I
F+) = (3.57&&10 GeV), (14b)

2

where c& is the cosine of the Cabibbo mixing angle and
p =mD for D decay on shell. The right-hand side of
(9a) involves the F +~@+ transition amplitude [note
that in defining the matrix elements involving vector par-
ticles in (6) and (8) we have already factored out e p where

e& is the polarization four-vector and p& the four-
momentum of the particlej appearing in the amplitude

iM(D+ K'~+) = 2'
mz 2

1—,F+ D.I
mD' 2f

(12c)

III. VACUUM-SATURATED D ~Km SCALES

The ratios Rpp and Rp+ of (1) now depend on the ratio
F/D defined in (11). In Table I we have tabulated Rpp
and Rp+ as functions of F/D. We notice that for
F/D = —2.0 to —2.5, color suppression of Rpp is partial-
ly lifted and we come close to a simultaneous fit to Rpp
and Ro+. It must be remembered that real amplitudes
will not fit Roo and Ro+ simultaneously. A fit to Roo
requires F/D closer to —2.0 while Rp+ requires it to be
closer to —3.0. A magnitude of 3 for F/D corresponds
to the color-suppression of &K IH~ D ) relative to
&vr+ IHtvIF+) as expected. Even the relative sign is
anticipated once one appreciates that while Fierz reshuf-
fling of quark fields in Htv gives F/D=3, the extra
minus sign enters this ratio due to the Cartesian phases of
hadron states in the strong (Ademollo-Gatto) coupling at
the vertices &K

I V& I

D ) versus &m.+
I V& I

D )

A (F*+~m+)= &m+—
I
Hg

I

F*+)(e p) .

With vacuum saturation one has with J= V —A,

(15a)

A(F*+~vr+)= &~+
I

—&+ I0&&0I I'" IF*+&
Gp

2v2
2 2

G c, m,
(if )(e'p)

gv
(15b)

Comparing (15a) and (15b) we obtain

&rr+ IHp IF'+)= c( (if )
gv

(16)

GFci'f mD'fF
IM

2
1 1 D

fry f F
2

1—mg

Then (14) and (16) lead to (9a) in the approximation
fF f~. Sim—i—lar analyses likewise lead to (9b) and (9c).

Returning now to the decay amplitudes in (10) but with
fF&fx, we can compute their magnitudes using the scale
of F set by vacuum saturation (14) and an assumed F/D
ratio. The magnitudes of the amplitudes are then given
by

GF

2 2
(13)

In this section we test the scales of the three amplitudes
in (10) by using vacuum saturation. In Refs. 5 and 7 the
authors have discussed the scale of the vacuum-saturated
amplitudes for K+~~++ and D —+Km decays and
shown that a satisfactory fit to the K—+2~ and D~Km
amplitudes is obtained through vacuum saturation of the
matrix element.

We begin by demonstrating that vacuum-saturation
does indeed imply the consistency conditions of (9). More
specifically, we assume the usual form for H~ construct-
ed out of left-handed currents,

GFci'f mD'fF
IMpp I

GFci'f mD'fF
I Mp+

I

=
2

(17a)

PED
2

D
F '

(17b)

1 1—
fF,

~ac 1 D
2 +

mD' f F

(17c)

1 1 ~ac

f 2f
1—

Vacuum-saturating the left-hand side of (9a) leads to

' &~+IH IF+) TABLE II. Amplitudes in units of 10 CxeV.

.f fF GF~c) p
fsc

(14a)

&sr+
I A„IO)&0

I
2" IF+)2 2

1.25
1.25
1.25
1.73
1.73
1.73

F!D
—2.0
—2.5
—3.0
—2.0
—2.5
—3.0

IM

1.84
1.80
1.77
2.77
2.72
2.69

IMppI

0.92
0.73
0.61
1.26
1.01
0.84

I
Mp+

I

0.54
0.77
0.92
0.76
1.07
1.27
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In Table II we have listed the numerical values of those
amplitudes for different values of the ratios F/D and

fFIf . In SU(4) breaking fF /f could be
( m, +m, )'~ /(2m„)'~2=1.73.

The "experimental" amplitudes calculated by us are

If we treat the S-wave ~K scattering in the elastic limit,
the effect of final-state interactions is to gener'ate a com-
plex amplitude through Muskhelishvili-Omnes equa-
tions. ' The decay amplitudes in the two isospin channels
are then written as

~

M + ~,„~,=(2.51+0.22+0.24)X 10 GeV,

~
Mpp ~,», ——(1.51+0.18+0.17)X 10 GeV,

(18a)

(18b)

S —Sp 5;(s')ds'
A;(s) =A;(s()) exp f (s' —sp)(s' —s +i e)

(22)

iMp+ ~,„~,=(1.37+0.15+0.11)X10 GeV .

In computing these amplitudes we have used

+ ——(8.9+0.9) X 10 ' sec,

(18c)

(19a)

r,=(3.8+0.3)X 10 ' sec, (19b)

and the two-body branching ratios in (1) from Ref. 10.
The scales computed by us with f~/f =1.73 and

FID = —3 are reasonable except for Mpp which is too
low by about two standard deviations, One could raise
Mpp by using F/D = —2.0 but then Mp+ would be
lowered further while M+ would rise slightly.

IV. FINAL-STATE INTERACTIONS

Up to this point we have dealt with real amplitudes
only. We have, however, shown that the color suppres-
sion of the decay mode (D ~K m ) can be largely allevi-
ated maintaining, at the same time, the ratio Rp+ close to
the experimental limits. In this section we discuss the
problem of unitarization of the amplitudes through final-
state interactions. The problem of final-state interactioris
in D ~K~ decays has been dealt with by a number of au-
thors" in the past.

Quite generally, in terms of amplitudes with final states
in I = —, and —,, the decay amplitudes are

where i =1, 3, and 5; are the 0+ scattering phase shifts in
I= —, and —, states. sp is a normalization point. Eventu-
ally, in our problem, we set s =m~ .

A convenient analytic parametrization for the two-body
partial-wave amplitude is the NID form' in which N
carries the unphysical singularities and D the unitarity
cut. The Muskhelishvili-Omnes function, the exponential
factor in (22), can then be written as the inverse of the D
function normalized at some convenient point. Thus after
unitarization the complex amplitudes appearing in (20)
are

A; (s)e ' =A '(s)/D; (s), (23)

where A ' are the real amplitudes introduced in (21). We
normalize D;(s) =1 at threshold, s =(mx+m ) . We
further assume, as an approximation, that there is very
little rescattering in I= —,

'
channel so that 53(s)=0 and

D3(s)=1. We assume D)(s) to be resonance-dominated
by the kappa meson' (1.4 GeV) and normalized to unity
at threshold sp,

s —mK +lfk
D)(s) =

~o —mK

where k is the center-of-mass momentum and y the re-
duced width.

The complex amplitudes corrected for final-state in-
teractions are then,

iM(DP +K m+) = (A3e ' ~2A)e '),
3

iM(D ~K rr )= (V 2A3e '+A)e '),
3

(20a)

(20b)

2
~(p) p K

1 1
s —mK +Elk

A3e =33'~3 (p)

(25a)

(25b)

iM (D+~K m+ ) =~3A 3e (20c)

(p) ~ D 2 1 fn'

f ' 3 2 f 2ma

mz F2

ma2
1—1 fm

3 fk
(21a)

(()) 1 D f~
1

mx' F
~6f fJ: . mD'

(21b)

5) and 53 are the phases of the amplitudes A) and A3 in
I = —,

' and —,
' states, respectively.

Since the expressions on the right-hand side of (10) are
real we can extract A'& ' and 2 3 ', the amplitudes without
final-state interactions, by using (20) with 5) and 53 set
equal to zero in conjunction with (10). One then obtains

2m~

We finally set s =ma .
Table III shows Rpp and Rp+ evaluated with the am-

plitudes of (25) for different values of FID. A compar-
ison with Table I shows that the effect of final-state in-

F/D
—2.0
—2.1
—2.2
—2.3
—2.4
—2.5
—2.6
—2.7

ROO

0.26
0.25
0.23
0.2 1

0.20
0.19
0.18
0.17

Ro+
8.34
6.85
5.8 1

5.05
4.48
4.03
3.67
3.37

TABLE III. R 00 and R0+ with final-state interactions.
y = 1.2 CxeV and m = 1.4 CxeV are used.
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teractions has been to decrease the value of Rp+ for any
given value of F/D. Clearly a simultaneous fit to both
Rpp and Rp+ can be obtained with F/D in the neighbor-
hood of —2.4. In computing the numbers in Table III we
have used rather a broad kappa with y=1.2 GeV such
that 5~ ——145 at s =mD .

V. CONCLUSION

Since helicity-suppressed quark graphs are usually ig-
nored in D~Km decays, our goal in this paper was to in-
troduce W-exchange (flavor-annihilation) diagrams into
the theory in a systematic manner. The application of
soft theorems of current algebra to D~Etr decays entails
large extrapolations through kinematic regions populated
by resonances. We assume that the resonant behavior is
approximated by vector resonances D*, F*, and E*, and
apply the soft theorems to a smooth amplitude from
which the resonant parts have been removed. We expect
this to be a reasonably reliable procedure to incorporate
K* in the theory. The final amplitudes so obtained, Eq.
(10), differ slightly from those predicted by a model with
D and I'* poles alone and unconstrained by current alge-
bra, Eq. (12). The net effect with the real amplitudes is to
lead to an improved, though not a completely satisfactory,

fit to the ratios Rpp and Rp+.
Proceeding further we evaluated the magnitudes of the

three amplitudes, the scale having been set by vacuum
saturation of the matrix element F defined in (11). Since
a simultaneous fit to Rpp and Rp+ could not be secured
we find that the theory reasonably well explains the mag-
nitudes of (D +IC—n+) and (D+~K sr+) amplitudes,
but the troublesome (D ~K rr ) amplitude is about two
standard deviations below the experimental value.

We finally build in the unitarization of the amplitudes
through final-state interactions. We find that a satisfacto-
ry fit to both Rpp and Rp+ can be obtained with
F/D= —2.4 and rather a broad 0+ kappa meson in
I = —, channel.
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