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QCD corrections to the decay B =tttX
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First-order perturbative and improved leading-logarithmic corrections to the weak decay B~/X
are calculated. The color-singlet model for the P is used and is shown to avoid a previously encoun-
tered ambiguity in the leading-logarithm approximation. Overall the corrections reduce the predict-
ed rate to a level consistent with experiment.

I. INTRODUCTION II. FIRST-ORDER QCD CORRECTIONS

The nonleptonic decay process 8 +/X ha—s received a
fair amount of attention. It was first suggested' as a suit-
able mode for discovery of the 8 meson. Subsequent
analysis showed it to provide a significant test of "color
suppression, " the suppression of certain channels due to
color mismatch. Calculations of QCD corrections to the
bare weak Hamiltonian indicated that these corrections
are significant, and could lower the pure weak decay rate
from a branching ratio of 1.8% (Ref. 3) down to as low as
0.3% or even much lower. Inasmuch as the present ex-
perimental limits place the branching ratio near 1%, this
process does seem to provide a good testing ground for
QCD.

We have undertaken a calculation aimed at improving
the QCD corrections of Kuhn, Ruckl, and Nussinov.
Their analysis for this process considers the color-singlet
(cc) components of the leading-logarithmic corrections to
the four-quark process b +ccs The—y find. that the coeffi-
cient of the appropriate four-quark operator combination
is very sensitive to the quark masses used, making a pre-
cise prediction unfeasible. Our calculation improves on
this by insisting from the start that the cc state be not
only a color singlet but also of the correct spin and parity.
We then have only a single relevant two-quark, one-meson
operator, whose coefficient is not sensitive to the quark
masses, and is of a reasonable value. We have also includ-
ed all first-order radiative corrections, not only the lead-
ing terms, which allows us to arrive at a predicted rate
which we believe is more reliable than those previously
calculated.

We present in Secs. II and III our calculations of all the
first-order QCD corrections to the quark decay process
b &ps. (We assume—, as others have, that the light quark
in the 8 is an uninvolved spectator. ) The large logarithms
are isolated, and the remaining terms seen to give about a
20% correction to I . In Sec. IV we exhibit the leading-
logarithmic summation calculation. In Sec. V we consid-
er other order-a, corrections to the branching ratio. Our
results are summarized in Sec. VI.

The diagrams we must consider are shown in Fig. 1.
We have classified them as vertex corrections [1(a)], box
diagrams [1(b)], and bremsstrahlung [1(c)]. We must also
consider the self-energy diagrams (not shown), whose ef-
fect on I has been included in the vertex corrections. The
virtual diagrams [1(a) and l(b)] are incorporated as in-
terference terms with the Born term Mo (suitably summed
and averaged over helicities):

Vlb —Ul J
[ i

Mo
I
'+2 Re(MoM, )+ . . ]

16m.mb

=I' fM/

while the bremsstrahlung decay rate which is the same or-
der in o., contributes

I'"= f iM
i

dP, . (2)

E(P+ trtg )
v, u, ~tb(0)

2+mgX
(3)

Here P represents the J/g momentum, J is its spin polar-
ization, mJ its mass, and % =3 is the number of colors.
P(0) is the bound-state wave function at the origin in
coordinate space.

Regularization of the ultraviolet divergences is achieved
via the Pauli-Villars technique. Infrared divergences are
controlled by giving the gluon a mass A., which ultimately

d$3 represents three-body phase space.
The calculation proceeds along standard lines. We use

the zero-binding color-singlet model for the J/g which
means that the c and c quarks are assumed to each carry

the four-momentum of the J/lb, and are assumed to be
a color-singlet (1 ) state. From a calculational stand-
point this amounts to replacing the c and c spinors as fol-
lows:
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mass shell. (We have not investigated renormalization-
scheme dependence of our results. )

The integrals one faces when calculating the box-
diagram amplitudes [1(b)] are essentially the same as those
in the vertex calculation, with A~M, the 8'mass. Thus,
the In(A/m~ ) terms one encounters in the renormalization
procedure appear as In(M/m~) in the box diagrams,
where m~ is a quark mass. These large logarithms are not
compensated by other diagrams and wi11 need to be han-
dled specially via a renormalization-group argument (see
Sec. IV). The contributions due to the numerator of the
8' propagator are of order m& /M relative to the terms
we consider here, and can be ignored.

The last box diagram presents an additional problem.
The gluon exchanged between the two charmed quarks
contains a Coulomb part. Because the two quarks have
equal momenta, this introduces a pole into the amplitude.
Schematically, if the quarks have a relative momentum q,
the Coulomb amplitude has a pole of the form

If we naively proceed with this amplitude (with q =0),
this pole appears as 1/A, . Following Caswell, Lepage, and
Sapirstein, we assume that the Coulomb part of the gluon
exchange has already been incorporated in the J/f wave
function. One might picture a Bethe-Salpeter approach,
for example, where the gluon potential includes both a
Coulomb part and a long-range confining part. The static
Coulomb potential of this gloon exchange has then al-
ready been included in the J/tP wave function. To avoid
double counting, we subtract this contribution from this
diagram. We follow Ref. 6 in this respect.

Aside from the above, the calculation of the virtual
corrections is straightforward. We find it useful to com-
pare our results to the Born term, ' namely (see Fig. 1 for
momentum labels),

86F g (0)mg

FIG. 1. Lowest-order QCD corrections to the process
b~(cc )s: (a) vertex corrections, with momentum labels shown;

{b) box diagrams; (c) one of the four bremsstrahlung diagrams.

which we write as

( )
8GF g (0)m~

I'p =cpEp .

goes to zero. Thus the gluon propagator goes through the
transformations

pA dI
k2 k2 g2 k2 g2 k2 A2 322 (k2 L )2

We note that I ' ' is indirectly dependent on a„since the
determination of P (0) from experiment includes QCD
corrections in the theoretical formula. Then we find for
the analogous quantities

I y ——(F/2) g [2Re(Mo*M) )]

The box diagrams contain UV divergences which cancel
among themselves; the self-energy counterterms cancel the
vertex UV divergences in the usual fashion. The associat-
ed wave function renormalization is performed on the where

as
=cp

2~
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+1 +V1++V2++B1++B2++B3++g4 ~

We list below the various virtual contributions I';, in a shorthand which is defined in the Appendix:

Fv1 F0[—2q p ~ i D—
i —5 +2 ln( m b m c /~ )1 +28 tpM~& 2C—,„,X",',

Fv2 Fo——[2r.p Ap —D2 —5+21n(m, m, /A, )]+282~M2 2C—2p„&2

F~~ ——Fo[ 2r.q—A3 D—3+in(M /mbm, ) —2 ]+283pM3+C3p N3',

FB2 FO[2p q ~i+4Di —41n(M Imbm, )+4]+28, M4

FQ 3 —Fo [ 2r p 32
—+4D2 —4 ln(M !m,m, )+4]+282&M5

F~q ——F0[in(M /m, ) ——,—21n(m, /A, )] .

(8b)

(8c)

(8d)

strange-quark energy in the center-of-mass frame.
The decay rate for hard bremsstrahlung is found by in-

tegrating
~
Mz

~

over the remaining spectrum Th. is in-
tegration was performed numerically.

III. FIRST-ORDER QCD: NUMERICAL RESULTS

For input, we have used the quark masses mb ——4.73
GeV and m, =1.55 GeV. Where it did not lead to a
singularity, the strange-quark mass was set to zero. As is
well known, the mass singularities (lnm, ) present in indi-
vidual terms should cancel out. This we found to be the
case. There was no dependence on the strange-quark mass
over a range from 0.01 to 0.5 GeV. Our numerical results
use m, =0.5, consistent with our policy of assuming zero
binding energy (m, =mx ).

For the J/@ wave function at the origin, a quantity
determined by J/g~e+e, we use a value whose deter-
mination includes first-order QCD corrections. Our ini-
tial determinations are ealeulated with o,, =0.22. With
this value, we findN —1

2X
(soft) s

~B ~0+0
2m g (0)=5.29&& 10 GeV

2

We have omitted in these expressions the UV-divergent
terms which cancel among the terms listed. We have in-
cluded the IR-divergent terms, some of which are seen to
cancel because of our unique kinematic situation (p, =p, ). -
In particular, the IR-divergent integrals A1 and A2 cancel
completely. The remaining IR terms, contained in
Fo[ 2r q —33+2 ln(mbm, /A, )], cancel with the soft-
gluon bremsstrahlung.

The predominant feature of the virtual contributions is
the large logarithms in the box diagrams referred to ear-
lier. Because (a, /2m. )ln(M /m~ ) —1, the perturbative
approach is not meaningful at this level. Fortunately,
however, we are able to use renormalization-group argu-
ments to sum these logarithmic contributions. This we do
in Sec. IV.

The bremsstrahlung contribution [Fig. 1(c)] is divided
into "soft" (k &k~) and "hard" (k ~k ) gluons. The
general form of the bremsstrahlung decay rate is lengthy
and is omitted here. For the soft gluons, we find the
familiar-looking result

r

X
m k dkdeosO rv Qv

0 kp r.k q-k
(9)

where we have summed over the gluon helieities. The in-
tegral can be evaluated yielding

(SOft) s
~B — &0+0 2'

X —1

2X

IB+2 ln
mbms

A,
2

—4 ln(m, /A, )ln(2E/m, ) (10)

where I'B is finite as A, ~O. The IR divergences are seen
to cancel between (10) and (8). In this expression, E is the

We neglect the Kobayashi-Maskawa mixing angles in
all the following. These factors cancel in the branching
ratio, under the assumption that b ~cx dominates.

All our algebraic calculations were done twice by hand
and checked a second time via the algebraic-manipulation
program REDUCE. The numerical results were cheeked
for convergence and for lack of dependence on the cutoff
k

Our numerical results are presented in Table I. The
corrections are seen to be large and negative, leading to an
unphysical result in this order. The fact that the brems-
strahlung contribution is negative is an artifact of the IR-
regularization procedure Alarge .positive ln( m /A, ) con-
tribution has been subtracted from the soft bremsstrah-
lung; in the literature one usually incorporates I B' " into
the nonradiative decay rate.

The large and negative result comes almost entirely
from the large logarithms in the box diagrams. Combin-
ing these terms, we find that
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Diagram Contribution to I /I &

TABLE I. Contributions to I from the various first-order ra-
diative diagrams. a, =0.22. The contributions are given as
multiples of I 0 even though most ter'ms are not algebraically
proportional to I 0.

g
2 2

y=p lnZ =16
~p 16~2 16~2

The function p(g), given by

(17)

bc vertex
cs vertex
Box 1

Box 2
Box 3
Box 4

Soft bremsstrahlung
Hard bremsstrahlung
Total

—0.07
0.14
0.81

—1.23
—1.89

0.20

—0.83
0.46

—2.41

p(g) =p
Bp

is known to be (for small g)

p(g)=—,b„,
16m

where

b„= 33—2n

3

(19)

I (1)logs
V

I-(o)
3&s X —1

ln(M /m, mbm, )

= —2.22 . (12)

n is the number of quark flavors entering into the renor-
malization of g.

It is worth commenting on the large value we obtain for
the parameter d. If one analyzes the four-quark process
b~ccs in terms of SU(3)-flavor components, one finds
(our y is —y~ of Gaillard and Lee"):

Thus, omitting these terms, we find a modest (19%) de-
crease in I from the remaining terms. We treat the large
logarithms in more detail in the following section.

IV. LEADING LOGARITHMIC CAI-CULATION

The general form of the Green's function for the pro-
cess bangs is

S6=Au~ILub+ J qu, Lub+ J &u pub
Plb

where R =(1+y5)/2, L =(1—y5)/2. Note that we only
have two-quark (and one-meson) operators, since the [cc]
state is represented by a spin-one polarization vector J&.
This is a fundamental difference between our calculation
and that of Ref. 2. We have seen that A receives large
logarithmic contributions in first-order QCD, while 8 and
C are small and can be perturbatively calculated. Ignor-
ing the latter two terms, and ignoring the quark masses,
we expect the coefficient A to satisfy the Callan-
Symanzik equation, ' namely,

dg ——d27 ——4 .
(20)

Our calculation differs from that of Kuhn et a/. in that
we start with this color-singlet combination and then con-
sider the leading-logarithmic renormalizations to this am-
plitude, while they first renormalize the four-quark ampli-
tudes and then take the color-singlet combination. To
first order in perturbation theory, these approaches are
identical; in the leading-logarithmic approximation they
are quite different. We claim that our approach is more
realistic bemuse we consider only the appropriate color,
spin, and parity combination from the outset.

The solution to Eq. (13) is then"

2

A(M/p, g)= 1+ bin(M /p )
16m

—d/2b

Ap

Projecting out the color-singlet (cc) component involves
the combination

2d8~ —dg = 16 .

p +P —y A=0.8 8
Bp Bg

(14)
( )

d/2b-
a, (M)

(21)

p is the renormalization mass, which can enter 2 only in
the combination (M/p). If we write

A (M,p, g) =Z(M, p,g)Ao(M, g),

then our first-order calculation has shown us that, for
small g,

g
2

Z= 1 —16 1n(M/p) .
16m

The anomalous dimension y is then

p=(m, zmbm, )~~~=m, . ( )

(The latter approximate equality is, presumably, acciden-

22

In order to evaluate (21) we must choose the scale p, . A
logical choice would be the b-quark mass, m~ ——4.73 GeV.
However, if we use this as the scale in Eq. (12), we find
that the remaining "nonleading" perturbative contribu-
tions amount to more than half the Born amplitude, be-
cause nonleading logarithms such as in(mt, /m, ) are still
large. A more reasonable result is obtained if one chooses
the value which appears naturally in this calculation,
namely,
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tal. ) We have seen that the nonleading contributions are
then only 19% of the Born amplitude, and can more real-
istically be treated perturbatively. a, at this scale is 0.22
if the lowest-order QCD scale parameter ALo is chosen to
be 50 MeV.

With this choice of scale, we must renormalize in steps
from the 8' mass M down to p as the relevant number of
quark flavors decreases. We then have for our final am-
plitude in the leading-logarithm approximation

. —d/2b6 . —d/2b~a, (m, )
' a, (mb )

A (M/p, g) =

a, (p)
—d/2b4

~oa, (mb)

sides this, the experimental total decay rate is too uncer-
tain at this point. Guberina, Peccei, and Ruckl' have cal-
culated the 0 (a, ) corrections to the total rate for a heavy
quark decaying into hght quarks, neglecting the light-
quark masses. Their corrections amount to around 10%.
Ignoring terms of order m, /mb should be valid to
10—20% of this correction, so we expect that applying
their result will be sufficiently accurate here.

We assume the total decay rate is determined by the
processes b~cx, where x =(pv), (ev), (rv), and 3 times
(du) and (sc). DeGrand and Toussaint give the purely
weak rate for this process in the form

5 2
mb GF 2 2 2I b, ~&

— 3 [5f(m, /mb)+4g(4m, /mb )]
192m

=0.54Ap . (23) =I OA (Sf +4g), (27)

V. DISCUSSIQN

The decay width given in Eq. (24) is only the leading-
logarithm approximation. We have also calculated the
nonleading 0 (a, ) corrections, which should be combined
with this. As we have seen, these corrections are negative,

I '""=—0.19I' '= —8.8~10 ' GeV . (25)

Note that we have only considered interference between
the (nonleading) virtual amplitude and the uncorrected
Born amplitude. In principle, a more realistic result
would be obtained from interference with the corrected
Born term [Eq. (23)]. However, we have no details of the
corrections (via leading logarithms) to the brernsstrahlung
amplitudes, and would be unable to consistently treat the
infrared region if we used a corrected Born amplitude at
this stage. Work is in progress on this point.

Combining (24) and (25), we find a decay width for
direct decay of b into P of

I d;„„——47~10 ' GeV .

One can similarly calculate the rate for g' production, us-

ing the appropriate wave function at the origin, as derived
from the experimental width for f'~e+e . Using the
observed branching ratio for g'~g, we find that the
direct rate above should be augmented by about 25% due
to such cascades (cascades from the P' will be the princi-
pal cascade channel). Our predicted rate for b~gx is
then

I b g
——0.59&&10 ' GeV .

In order to calculate a branching ratio valid to 0(a, ),
we must know the total decay rate to this order. We use
a theoretical result, not an experimental rate, because we
want to avoid uncertainty as to the Kobayashi-Maskawa
mixing angles; they drop out in a theory/theory ratio. Be-

One then finds

I'"g'=0.292I' '=1.35& 10 ' GeV .

[The latter result uses the value of g (0) given in Eq.
(11).]

where A is a mixing-angle expression which cancels
when we take the branching ratio, and f and g are func-
tions arising in the determination of the light-fermion
(e,p, d) and heavy-fermion (c,r) final states, respectively.
Setting m, =m, for convenience, one finds numerically
that f=0.46 and g =0.12. We note that these functions
would be unity if m, =0, indicating that the mass effects
are appreciable. In the absence of a more detailed calcula-
tion than that performed by Guberina, Peccei, and Ruckl,
we proceed with their results.

Guberina, Peccei, and Ruckl find the 0(a, ) correction
to the upper ( bc) vertex to be

2es
3m

25
4

For the lower vertex, to be applied only to the nonleptonic
decays, they find

(29)

Box diagrams do not contribute, because the colors on the
two fermion legs are uncorrelated, so that the amplitude
will be proportional to the trace of a single color matrix,
which vanishes. Nonleptonic decays will therefore be
suppressed by the factor

'QNL= 1+r +ri (30)

while semileptonic processes include the factor

ps' ——1+r„. (31)

We assume formulas (28) and (29) to hold, to sufficient
accuracy, when I p includes mass effects. Incorporating
these corrections in Eq. (27), we get

,t~
——I"OA (3ftlNL+2f tlsL+3gvlNL+gtlsL) . (32)

With a, =0.22 and A = 1 (as assumed throughout the pa-
per), we find
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I b ]}=1.34& 10 GeV

(33)

r, ~ =0.44% .
~b au

The value in Eq. (33) depends on our choice of scale p,
as well as on our choice of the QCD parameter ALo. If
we choose a larger p, such as m~ or mb, the nonleading
logarithms in the O(a, ) amplitude are large and render
the perturbative approach unreliable. We adopt the cri-
terion that the proper scale should leave the perturbative
contribution as small as reasonably possible, and Eq. (33)
represents our preferred solution. If we maintain p=m„
but change ALO, reasonable results are obtained for a
small range in ALo. For ALo ——25 MeV, a, (m, )=0.183,
and the nonleading corrections are proportionately small-
er. For this case, after adjusting g (0) and I b,a, we find
a branching ratio of 0.74%. Increasing A~o to 100 MeV
[a,(m, )=0.28] in our analysis leads to a perturbative
(nonleading) correction which is larger than the leading-
logarithm approximation. The decay rate in this case is
negative, underlining the need for still-higher-order terms
when a, is this large.

VI. CONCLUSIONS

We have seen that there remains some uncertainty in
the b~gX branching ratio due to uncertainty in scales.
However, reasonable scales give good results, on the order
of one-half percent. The experimental branching ratio is
(1.0+o 4)% (Ref. 4), and our results are in agreement with
this. Furthermore, our analysis has demonstrated an im-
proved leading-logarithm approximation whose predic-
tions are, we believe, more reliable than those previously
published. The fact that this approximation is insensitive
to the quark masses is reassuring. It is reasonable to anti-
cipate that 0 (a, ) contributions would add or subtract no
more than a few tenths of a percent from our result, based
on the size of the first-order terms calculated here.
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Ai=——l7T
2

,B)p, II (Al)

Here,

with

& ln(py /A, )
dg0 p

2 (A2)

and

py =ps+a(1 —X);
' Pyp~3'

B]p ——
O p

2

(A3)

(A4)

I„,= ——,
' [g„„[ln(A Imbm, )+ —,

' D)]+2C,„]-,
with

f ' pyypyvd
1pv (A6)

and

1

D) —— ln(py Imbm )dy . (A7)

The integrals A, B, C, and D are found in Ref. 13. The
integrals A2, etc., arising in the other virtual diagrams,
can be found by making the appropriate substitutions in
mom enta.

The quantities Mt' and tV/'" appearing in Eq. (8) are
somewhat lengthy functions of the external four-
momenta. We omit them here. For the same reason we
omit the full expression for the square of the bremsstrah-
lung amplitude. The soft-gluon contribution, Eq. (9), in-
volves a tricky integral which is given in Ref. 14.

APPENDIX

We outline here the notation used in the expressions
[Eq. (8)] for the contributions of the virtual diagrams. In
the interest of brevity, we do not list the lengthy algebraic
expressions which are obtained from the traces. The in-
terested reader can obtain these from the authors.

Starting with the first vertex diagram in Fig. 1(a), one
faces the following integrals when evaluating M:

, dk Il, k„,k„k I

(k —2p.k)(k —2q k)(k —L)
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