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Reanalysis of Higgs-boson-exchange models of CP violation
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We reexamine the value of e'/e in models where CP violation is due to the exchange of charged
Higgs bosons. Previous work has been flawed by incorrect treatment of the chiral properties of
weak amplitudes. We use the effective-chiral-Lagrangian framework to clear up these aspects. The
resultant value of e'/e is estimated to be in the neighborhood of e'/e= —0.006, although this esti-
mate could be off by a factor of two or three in either direction. This value is consistent with the
present experimental bounds.

I. INTRODUCTION

Theories where CP violation is mediated by charged
Higgs bosons have been discussed by several authors. '

The starting point of recent activity was the observation,
by Deshpande and Sanda, that CP-violating effects are
small in the AS=2 transition mixing E and K, but
large in the direct E—+2~ amplitude, leading to a calcu-
lated value of e'/e, which appears to be much larger than
experiment. Donoghue, Hagelin, and Holstein repeated
and confirmed the analysis using the MIT bag model and
including the effects of the top quark and heavy-Higgs-
boson exchange. Subsequently, Chang, Dupont and
Pham, and Hagelin argued that dispersive effects in the
mass matrix could bring the model closer to experiment.

We have reexamined the model and find that all of the
above analyses contain errors in the handling of the chiral
properties. The work of Dupont and Pham is closest to
the correct procedure, but even they incorrectly treat the
chiral properties of an important matrix element. The
basic point is that in a Higgs-boson-exchange model the
calculated matrix element for the direct K~2m transition
behaves as (3,3) under chiral transformations. As is
shown below, this requires that the physical E~2m. am-
plitude vanishes to lowest order in the low-energy expan-
sion of chiral perturbation theory while dispersive effects
do not vanish. This would produce e'/e=O. Chiral terms
that are higher order in momentum can generate a
nonzero value of e'/e. These are difficult to calculate re-
liably but, when combined with estimates of the dispersive
component to L E mixing, appear to yield a rather
small value of e'/e, consistent with experiment.

II. THE MODEL AND ITS QBSERVABLES

In the Weinberg model of Higgs-boson-mediated CP
violation there exist at least three Higgs doublets. In the
three-doublet version Albright, Smith, and Tye have
characterized the charged-Higgs-boson couplings in terms
of four angles similar to the Kobayashi-Maskawa (KM)
form of the gauge-boson couplings. The dominant CP-
odd AS = 1 and AS =2 operators are given by
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These amplitudes, plus the K E mass matrix M&2, deter-
mine e and e'

b&lf )pe= exp(im/4) +g
2 hm

For the generalization to six quarks and subdominant dia-
grams see Refs. 4 and 5.

The CP-violating observables in %~2m decay are given
in the standard form as
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ImA21e' -=— expi —+5p —5p cog-v'2' 2 ReAo

g'=ImAp/ReAO .

In the Higgs-boson model with the standard (quark-
model) phase convention ImA2 ——0, and the parameters g
and ImM~2/Am determine the pattern of CP violation.

Matrix elements of the CP-odd operators must be cal-
culated. Using the MIT bag model, one finds

2m lm~„=&K'~W~-' K'&

+dispersive effects

that the %~2m matrix element, in addition to certain
amplitudes involved in the long-distance or dispersive part
of M, must vanish to lowest order in chiral symmetry.
This can be demonstrated either by direct calculation, or
by a more formal argument involving the Feinberg-
Kabir-steinberg theorem. First, however, we present the
direct calculation.

The (3,3) operator not only generates a direct K~2m.
amplitude, but also produces a nonzero K—+vacuum ma-
trix element (a "tadpole" ). This means that both the dia-
grams of Figs. 1(a) and 1(b) must be included in the physi-
cal %~2m matrix element. In order to calculate this am-
plitude, first note that the direct K—+vacuum, K—+m, and
K—+2~ amplitudes are given by

—=gAzx +dispersive effects,

2
A p(K )= ( iL 'iK )

2
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A (Ks ~0)=i 2F fAx

A (Kl ~vr )=fAx (15)

where the matrix elements Azz, A~„are given by

A~@——6& 10 GeV

A~~=0.4 GeV
(10)

fAx2F

while the strong scattering amplitude for Km scattering,
~, (q&)+K (k&)~nb(q2)+K&(k2), is

Up to this point, the analysis of Refs. 2 and 3 remain
valid. However, it is not correct to use the naive PCAC
(partial conservation of axial vector current) relation

Amp(KI ~~ ri ) = — Amp(Ks~m )
2I'

to connect with the physical K +2mamplitu—des. . (This
will be discussed more fully in the next section. ) Previous
work using this incorrect step and neglecting dispersive
effects has found

=5.2 ln
(ImM &2 )/b, m

Therefore
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which is far above the experimental limit

—= —0.003+0.005(+0.005) . (14)

This disagreement forms the basis for the rejection of the
Higgs-boson-exchange models that is usually cited. How-
ever, now we turn to a more careful treatment of the
chiral properties.

III. CHIRAL SYMMETRY, TADPOLES,
AND THE FEINBERG-KABIR-WEINBERG THEOREM

The b,S=1 operator W =' contains a left-handed d
quark plus a right-handed s quark and therefore
transforms as (3~,3R ) under the left- and right-handed ro-
tations of chiral SU(3). This fact will be used to show

'i

FIG. 1. In a Higgs-boson model the %~2~ transition ampli-
tude consists of a direct term (a) plus a pole diagram involving
Em. scattering followed by a weak K-vacuum tadpole (b).
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Evaluation of the pole diagram, Fig. 1(b), yields

(16)

ever, this is not really the final answer. Only the lowest-
order predictions in the low-energy expansion of chiral
SU(3) have thus far been considered. In general, arnpli-
tudes such as that for Ea scattering can have a depen-
dence on higher powers of the four momentum.
Equivalently there can exist effective weak Lagrangians
with a greater number of derivatives. For example,=' can have the expansion

='=a Tr[(A6+ikz)M)

A(Ks 77 m )
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Thus the sum of Figs. 1(a) and 1(b) produces an exact can-
cellation and the physical E—+2m. decay amplitude van-
ishes. '

In order to understand why this cancellation must
occur, we examine the effective Lagrangians of chiral
SU(3). The K~nm(n .=0, 1,2, . . . ) matrix elements of
the CP-odd Higgs-boson interaction can be expressed in
terms of the effective Lagrangian

W~s='=c Tr[(z,+iz, )M]+H c.
where

sz~y~/F„M=e

(18)

with P" being the fields of the pseudoscalar octet. Ex-
panding, this yields the amplitudes of Eq. (15). However
this (3,3) operator is similar in form to the mass terms in
the strong-interaction effective Lagrangian

W „,=Tr[(a+bkg)M]+H. c.

In fact, by a chiral rotation one can diagonalize the sum
of W™=1+W as, without introducing any strangeness
changing effects elsewhere in the Lagrangian, thus remov-
ing any AS=1 transition to all orders. This situation is a
familiar one in chiral theories" and in ordinary field
theories. Moreover, the theorem of Feinberg, Kabir, and

steinberg guarantees that, even if one uses states defined
before the diagonalization of W, one always obtains a
vanishing result for on-shell amplitudes. This explains
the cancellation of Figs. 1(a) and 1(b).

The relevance of the (3,3) transformation property and
its effect on the K~2m transition was first pointed out by
Dupont and Pham, who subsequently argued that SU(3)
breaking can change the matrix elements into those of the
form (8L, 1). This is certainly possible, although not the
only solution (as discussed below). However, they did not
note that the (3,3) operator can make a nonvanishing con-
tribution to matrix elements involving an q . This is be-
cause using an SU(3)-singlet field Pz one can construct
the effective Lagrangian

+ Tr[(A6+i A7)M()1'M t) M]+1

A
7 p

(22)

where A has the dimension of a mass. At low energies,
contributions of the second term are suppressed compared
to the first by a power of q /A =mx /A . Evidence and
theory suggest, however, that A, =O(1 GeV). ' Because
the mass term and the Higgs-boson AS = 1 Lagrangian are
not the same operators at the quark level, there is no
reason to expect that the higher-order terms will appear in
the same ratio to each other as do the lowest-order La-
grangian. This implies that one should not be able to re-
move these terms by a chiral rotation, and a nonzero value
of EL, ~em will be produced.

It is unfortunate that techniques do not exist to calcu-
late these higher-order terms directly. The best that we
can do is to make a crude estimate that the naive quark-
model results are suppressed by q /A, or more specifical-
ly

2A+~ Pl+
Im A (KL ~~ 1r ) = if —

z2F
(23)
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For any octet weak interaction [either CP conserving or
violating and either (3,3) or (8,1)] one has

&K'iII iZ)= (25)

We will subsequently use A =1 GeV, but this could be
incorrect by a factor of a couple in either direction. Thus
one must be cautious in interpreting the results.

The Feinberg-Kabir-%'einberg theorem also requires
that the contribution of ~ and q to the imaginary part of
the KLKs mass difference vanish if the interaction has
chiral structure (3,3). This can easily be seen to occur for
the m, g poles in the long distance component. One
writes

~„=ay„Tr[(X,+iz, )M], (21) and the overall value is

which cannot be diagonalized away. In the chiral limit
this would be the dominant contribution to the di.spersive
calculation of IrniM&2. In the next section we will show
how to properly include this term.

At this stage we have apparently obtained e'/e=O, be-
cause the only CP violation is in the mass matrix. How-
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One sees that use of the Gell-Mann —Okubo relation re-
quires the ~ and g poles to exactly cancel. In this case
one does not expect much of a correction from higher-
order effects in the chiral theory, because of the generality
of the relation Eq. (25). However SU(3) breaking could
significantly modify this cancellation.

On the other hand, the pole contribution of the rj' does
not have to vanish. The effective Lagrangian given in Eq.
(21) cannot be removed by a chiral rotation and can lead
to a finite dispersive contribution to lmllf iz. The problem
here is in calculating the K-g matrix element, which is
not related to that of K~m by any symmetry. Use of
the quark model leads to the prediction for the CP
violating interaction

(27)

More generally, for the CP-conserving interaction one
parametrizes the result similarly in terms of a parameter p

2mx ImMtz
~ v

16 1= 3P z zf~sc
Ply —Vl 1l

2 1/2
16mF~ mg Is

=2X 10 pfA (29)

The factor in large parentheses is the PCAC value for
(n ~H~ i ~K ) in terms of the experimental K +2~-
decay rate.

IV. ANALYSIS OF CP VIOLATION
IN THE HIGGS-BOSON MODEL

Here we put together the discussions of the previous
two sections to predict e'/e in the Higgs-boson model.
The dominant contribution to IruM &2 will turn out not to
be the short-distance operator H =, but rather the
dispersive g pole, a situation pointed out by DuPont and
Pham. This in fact is easily understandable, as H
has larger matrix elements than H =, and, in general,
long-distance effects in Miz are known to be quite large. '

Thus, comparing the q' pole to the short-distance opera-
tor in In~iz, we find

rmM»
I v' m~ 3=12p ln — —— )&1 .

ImM12
~ short distance

(30)

Thus we keep only the g' pole in the estimate of e'/e. An
important feature here is that H~' i governs the dom-
inant CP-odd contributions to the mass matrix and the
direct K—+2m transitions, so that both the CP-violating
angles as well as the bag matrix element cancels in taking
the ratio e'/e. What remains is primarily a quark-model

(g'
~
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~

K'& = —2( —', )'"p(~'
~

H~s'',
~

K'& . (2S)

(If the "penguin" interaction, or some other effective
s —+d transition, were dominant one would have p=1.)
The imaginary part of the mass matrix from the q' pole is
then

Clebsch-Gordan coefficient and our estimate of the chiral
suppression factor mx /A .The relevant formulas are
given in Eqs. (29) and (23), which yield

1 mx

(ImMiz)/b. m p

1=0.12—,
P

(31)

where the numerical estimate employs p=1, A=1 GeV.
Converting this into a prediction for e' then yields

1 0.006
e 20 (ImM, z)/b, m+g p

(32)

The result is slightly larger than the experimental
value —Eq. (14)—but easily consistent with the 2o. upper
bound. Recalling that the estimate of the chiral suppres-
sion factor q /A is only a crude one and could certainly
be wrong by a factor of 2 or 3, we conclude that the
Higgs-boson model of CP violation is not ruled out by the
experimental value of E /F. .

Note that the pattern of CP-violating effects is very dif-
ferent from those of the KM model. This is primarily
due to the different chiral structure of the amplitudes. In
the KM m.odel the long-distance contribution to ImM&: is
fundamentally tied up with the phase of the K~2m am-
plitude, with an overall effect that is small compared to
the box diagram. In the Higgs-boson model, the real and
imaginary portions of Miz arise from different physical
origins, and information on the size of dispersive effects
in ReM» plays no role in ImM». In addition the phase
of K—+2m is quite different from that of K~@',g, z1', due
to the chiral features described in Sec. III. The formalism
used to analyze long-distance effects in the KM model'" is
not applicable and must be modified as described above.
Note that we have given our analysis to lowest order in
SU(3) breaking. Inclusion of higher-order SU(3) effects
would involve modifications of Eqs. (25) and (27) in addi-
tion to zl, g' mixing. These can affect our estimate of e'/e
in a complicated way depending on the nature of the
modifications and the value of p. For some choices of the
parameters involved, the change can be a factor of 2 or 3,
in either direction. However, given the theoretical uncer-
tainty this does not change our basic conclusion given
above.

We also emphasize that our estimate of e'/e is not
meant as a prediction of this quantity in the Higgs-boson
model. Besides the uncertainties explicitly mentioned
above [the unknown value of p, the estimate of the chiral
suppression, higher-order SU(3) effects], there are other
dispersive intermediate states, such as m.m, which we have
not included. Indeed, it is impossible to make a reliable
prediction given the present lack of understanding of
low-energy physics. However the calculations are suffi-
cient to justify our claim that the model cannot be ruled
out on the basis of e'/e. To rule out the model one must
be able to say with confidence that the theoretical predic-
tions are well outside the experimental limits. However,
our work shows that when the calculation is consistently
done, the natural range of e'/e is within or close to the
present limits and that the theoretical uncertainties are
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necessarily large. Given this situation it appears that, as
far as we can ascertain from bounds on e'/e, the model is
viable.

V. CONCLUSION

In conclusion let us summarize our work. In agreement
with all previous analyses, the AS=2 box diagram is seen
to be a very small source of CI' violation in Higgs-boson
models. Much more important is the AS=1 "penguin"
diagram, which generates CI' violation both in the direct
K~2m amplitude, and also in the K K mass matrix via
long-distance dispersive effects. We have studied these ef-
fects using the methods of effective chiral Lagrangians
and we feel that this work is the first analysis to correctly
account for chiral symmetry. We find that to lowest or-
der in a momentum-dependent expansion of chiral sym-

metric operators the direct E—+2~ amplitude vanishes but
the dispersive contributions to Indlf ~2 (such as the q' pole)
remain nonzero. At this level, the model would produce a
nonvanishing v'alue of e, but would have e'/e=O. We
have also estimated the value of e' that can arise to higher
order in the chiral expansion, and have found it to be
small and well within the present experimental bounds.
The uncertainty in this number is, however, considerable
and thus it should be viewed primarily as an estimate and
not as a firm prediction of the model. Nevertheless, the
natural range of e'/e is small enough that, contrary to
previous claims, this feature cannot be used to rule out the
Higgs-boson-exchange model of CP violation.
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