## Pion-nucleon partial-wave analysis to 1100 MeV

Richard A. Arndt, John M. Ford,\* and L. David Roper

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

(Received 24 January 1985)

Comprehensive analyses of pion-nucleon elastic scattering data below 1100-MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 23 singleenergy solutions are obtained consists of 3771  $\pi^+ p$  elastic, 4942  $\pi^- p$  elastic, and 717  $\pi^- p$  chargeexchange data. Partial-wave structure is characterized by the location in the complex energy plane of dominant poles and zeros, which are related to  $\pi$ -N resonances. Scattering lengths are extracted from the energy-dependent solution to characterize the low-energy behavior. We describe a method for charge-correcting "nuclear" amplitudes in order to use them in various charge channels; the resultant splitting between  $\pi^+ p$  and  $\pi^- p$  channels is necessary and sufficient to describe the data accurately. Comparison to the Karlsruhe-Helsinki analyses is favorable, although some small differences exist. We describe how the full data base and solution files can be accessed through our scattering analysis interactive dial-in (SAID) computer system at VPI&SU, copies of which also exist at several institutions throughout the world and which can be transferred to any site with a VAX/VMS computer system. In addition to solutions presented here, SAID also encodes the Karlsruhe-Helsinki solution, the Carnegie-Mellon-Berkeley solution, and production partial waves from a recent VPI&SU analysis. The system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base.

## I. INTRODUCTION

We have updated our pion-nucleon partial-wave analysis in the first two resonance regions (up to 1100-MeV laboratory kinetic energy). All of the data and our partial-wave amplitudes are available in great detail on our scattering analysis interactive dial-in (SAID) computer system (see below), which is available at about forty other sites with VAX/VMS computers. This is a report of our energy-dependent and single-energy solutions.

Section II contains a description of the data base used to extract the solutions reported in this paper. Section III describes the parametrization of the energy-dependent solution and Sec. IV describes our method of binning the data and using partial-wave energy derivatives in order to perform 23 single-energy analyses. Section V describes our method for charge-correcting "nuclear" partial waves for use in constructing charge-channel amplitudes; we indicate how the data demand such splitting and how our method appears sufficient to satisfy the data. Section VI reports the scattering lengths extracted from the energydependent analysis, and indicates the range of validity for such a low-energy representation. In Sec. VII we report results for the 24 analyses of this paper, and characterize the dominant energy-dependent features of our solutions in terms of the positions of nearby complex-plane poles and zeros of the partial-wave amplitudes. In Sec. VIII we compare the features of our solutions to those of the Karlsruhe-Helsinki solution.<sup>1</sup> Section IX describes how the SAID facility can be used to explore  $\pi$ -N scattering with several solutions and the data base.

## II. PION-NUCLEON DATA BASE

We have attempted to indicate the dimensions of the data base used for these analyses in Fig. 1 where we present kinematic distribution plots for cross sections and polarization measurements in the three charge channels  $\pi^+ p$ ,  $\pi^- p$ , and  $\pi^- p$  charge exchange (CXS). Each data point is indicated in Fig. 1 as "old" (boxes, before 1975), or "new" (N, after 1974). Figure 2 shows total cross sections, while Fig. 3 shows the real part of the non-spin-flip amplitude [Ref(0)] for  $\pi^+ p$  and  $\pi^- p$  data. Because of the very large number of experiments involved, we make no attempt to detail the data base here. In compiling the data base shown in Figs. 1-3, we have excluded some very old data having large errors (e.g., polarization measurements with errors larger than 0.2), and some totalcross-section data which were incompatible with the bulk of recent, precise measurements; the deleted total cross sections are shown in Fig. 2 with a slanted line drawn through them.

We believe that our data base is the most comprehensive collection of both published and unpublished (but "respectable") data below  $T_{lab} = 1200$  MeV. A detailed examination of the data base is possible through the SAID facility, where references and remarks are encoded. Experiments or single data points which were not included in these analyses are plainly flagged by the SAID programs.

It is important to recognize that, as revealed by Figs. 1-3, the data base used for these analyses is very large and inclusive. Inclusion or omission of single data points, or of selected experiments should not have a large effect



FIG. 1. Pion-nucleon scattering data base for 0–1100 laboratory kinetic energy. These graphs indicate the density and distribution of data with energy and c.m. scattering angle. The boxes indicate old data (pre 1975) and the N's indicate new data (post 1974). (a) Differential cross section and polarization for  $\pi^+ p$  scattering. (b) Differential cross section and polarization for  $\pi^- p$  scattering. (c) Differential cross section and polarization for CXS scattering.



FIG. 2. Total cross section. A slash through a data point indicates that it was not used in these analyses. Curves are predictions for solution FP84. (a) Total cross section for  $\pi^+ p$  and  $\pi^- p$ scattering for  $T_{\rm lab} = 20-520$  MeV. (b) Total cross section for  $\pi^+ p$  and  $\pi^- p$  scattering for  $T_{\rm lab} = 500-1100$  MeV.

on the solutions we obtain; in fact, we find that this is the case.

## III. PARAMETRIZATION OF THE ENERGY-DEPENDENT SOLUTION

Our energy-dependent solution, FP84, is parametrized by a Chew-Mandelstam coupled-channel *K*-matrix form:

$$\Gamma_n = [\rho^{1/2} K (1 - CK)^{-1} \rho^{1/2}]_{11} , \qquad (1)$$



FIG. 3. Real part of the forward non-spin-flip amplitude,  $\operatorname{Re} f(0)$ . Data points are dispersion-theory calculations by Carter *et al.* (Ref. 4). Curves are predictions of solution FP84.

where  $T_n$  is the elastic nuclear *T*-matrix element, *K* is a real symmetric  $2 \times 2$  matrix, and *C* is a  $2 \times 2$  diagonal matrix whose elements are obtained by integrating phase-space factors over appropriate unitarity cuts. Note that  $\rho = \text{Im}C$  is the phase-space factor. We chose *C* to be

$$C_{l} = \int_{0}^{1} \left[ x^{l+1/2} / (x-z) \right] dx / \pi , \qquad (2)$$

where

$$z = (W - W_t) / (W - W_z)$$

W =center-of-mass energy,

l =orbital angular momentum index ,

 $W_t =$  threshold energy

 $=M+\mu$  for the elastic channel

 $=M_{\Delta}+\mu$  for the inelastic channel,

 $W_z =$  subtraction point

 $=M+\mu-150$  MeV for the elastic channel

 $=M+2\mu$  for the inelastic channel,

M = nucleon mass,  $\mu =$  pion mass,

and

 $M_{\Delta} = \Delta$  mass.

We chose as the inelastic channel the lowest orbital  $\pi\Delta$  state to which an elastic  $\pi^-p$  partial wave can couple. An exception is the  $S_{11}$  state, which includes coupling to a second inelastic S-wave  $\eta$  production channel; this can be seen clearly in the  $S_{11}$  amplitudes of Fig. 6(a).

The elastic T matrix given above satisfies elastic unitarity requirements above pion production, about 200-MeV laboratory kinetic energy. Below threshold, a negative phase-space factor for the inelastic reaction can produce small violations of unitarity. We correct this problem to ensure elastic unitarity below 200 MeV by using the real part of the effective K matrix,

$$K_{\rm eff} = \operatorname{Re}[T_n / (1 + iT_n)], \qquad (3)$$

to generate an elastic, unitary T matrix:

$$T_{\text{elastic}} = K_{\text{eff}} / (1 - iK_{\text{eff}}) . \tag{4}$$

The K-matrix elements are parametrized as polynomials in the barycentric energy W and may also contain explicit pole terms. This apparently is flexible enough to encode all observed energy structures while maintaining proper analyticity and unitarity requirements. A high degree of smoothing occurs, as indicated in Fig. 6.

## **IV. BINNING THE DATA:** SINGLE-ENERGY ANALYSES

Data were binned at 23 energies from 30 to 1100 MeV where "single-energy" or "energy-band" analyses were performed. The data base was first pruned with solution FP84, as described in Sec. VII, and linearized partial-wave parameters D and R were obtained. These parameters are related to the partial-wave S matrix by

$$S_I = (\cos R)e^{2iD} . (5)$$

We then represent them at the analysis energy  $T_0$  by

$$D = D_0 + D_p (T - T_0) ,$$

$$R = R_0 + R_n (T - T_0) .$$
(6)

The parameters D, R,  $D_p$ , and  $R_p$  were extracted from solution FP84 at the analysis energy  $T_0$ . The parameters  $D_0$  and  $R_0$  were varied while the parameters  $D_p$  and  $R_p$ were held fixed at their FP84 values at each singleenergy-analysis energy. The number of searched parameters ranged from 4 at 30 MeV to 35 at 1100 MeV. Note that the unsearched parameters for all partial waves were fixed at their FP84 values and not set to zero; in effect giving us a "modified energy-band" analysis, in which l values higher than usual are used at each energy. That is, the partial waves being searched actually varied somewhat over the energy band for each single-energy analysis and partial waves that were not searched sometimes had nonzero values. Contributions from unsearched waves were sometimes important at lower energies where the data were too few to support their direct determination.

These single-energy analyses are relatively form independent and are intended to compliment energydependent solution FP84; any systematic variations between the single-energy partial waves and those of solution FP84 would indicate structure not properly encoded by the energy-dependent fit. In fact, solution FP84 was developed, as described in Sec. VII, to include all such relevant structures.

We believe that the T-matrix errors given in Table IV are proper measures of the data-base uncertainties.

## V. CHARGE CORRECTIONS FOR NUCLEAR PARTIAL-WAVE AMPLITUDES

Nuclear partial waves are modified by Coulomb-barrier factors for use in particular charge channels. We first extract a K matrix from the "nuclear" T matrix as

$$K_n = T_n / (1 + iT_n)$$
, (7)

where  $T_n$  = nuclear T matrix. This K matrix is then multiplied by the appropriate barrier factor in order to calculate a "charge-corrected" T matrix:

$$T_{c} = B_{l}K_{n} / (1 - iB_{l}K_{n})$$
  
=  $B_{l}T_{n} / (1 + iT_{n} - iB_{l}T_{n})$ , (8)

where  $B_l$  is the usual Coulomb-barrier factor:

$$B_0 = 2\pi\eta / (e^{2\pi\eta} - 1)$$
,

where  $\eta = \pm \alpha / V_r$  for  $\pi^{\pm} p$ ,  $\alpha =$  fine-structure constant,  $V_r = (\text{pion laboratory velocity})/c$ , and

$$B_l = B_0 \prod_{j=1}^{l} [1 + (\eta/j)^2]$$

For charge-exchange reactions we use the square root of the  $\pi^- p$  barrier factor.

The dominant effect of these corrections is to suppress low-energy  $\pi^+ p$  partial waves, while enhancing lowenergy  $\pi^- p$  and charge-exchange partial waves. The effects, although nominal, are not small when measured against phase-shift errors obtained for the single-energy fits at low energies. This is illustrated in Table I, which is a tabulation of nuclear,  $\pi^+ p$ , and  $\pi^- p$  phase shifts for the  $S_{31}$  and  $P_{33}$  states at the three lowest energies (30, 50, and 100 MeV). Differences between different charge channels are as large as seven standard deviations.

In order to measure the demand for charge splitting in the data, we compared single-energy analyses below 500 MeV which were done in the following ways:

(c) Combined  $(\pi^+ p, \pi^- p, \text{ and CXS})$  data with both  $I = \frac{1}{2}$  and  $I = \frac{3}{2}$  waves searched (reported analyses).

 $(+) \pi^+ p$  data only with  $I = \frac{3}{2}$  wave searched. (-)  $\pi^- p$  and CXS data with  $I = \frac{1}{2}$  waves plus  $S_{31}$  and  $P_{33}$  waves searched.

TABLE I. Phase shifts at 30, 50, and 100 MeV for  $S_{31}$  and  $P_{33}$  as Coulomb corrected for various charge channels. (N) indicates uncorrected, (+) indicates corrected for  $\pi^+ p$  scattering, and (-) indicates corrected for  $\pi^{-}p$  scattering. Phase shifts are in degrees. Analysis errors are indicated in parentheses beside the (N) values.

| $T_{\rm lab}$           | 30 MeV      | 50 MeV       | 100 MeV      |
|-------------------------|-------------|--------------|--------------|
| $\overline{S_{31}}$ (N) | -3.39(0.07) | - 5.25(0.09) | - 8.86(0.11) |
| $S_{31}(+)$             | -3.33       | -5.07        | -8.52        |
| $S_{31}$ (—)            | -3.61       | -5.43        | -9.01        |
| $P_{33}(N)$             | 2.50(0.03)  | 6.21(0.06)   | 22.37(0.05)  |
| $P_{33}(+)$             | 2.46        | 6.00         | 21.80        |
| $P_{33}$ (-)            | 2.67        | 6.42         | 22.94        |



FIG. 4. Nuclear phase-shift differences for  $S_{31}$  and  $P_{33}$  at single energies below 500 MeV.  $\delta_C$  indicates a phase shift obtained by fitting combined data by searching  $I = \frac{1}{2}$  and  $I = \frac{3}{2}$  waves;  $\delta_+$  indicates a phase shift obtained by fitting  $\pi^+ p$  data only by searching  $I = \frac{3}{2}$  waves;  $\delta_-$  indicates a phase shift obtained by fitting  $\pi^- p$  and CXS data only by searching  $I = \frac{1}{2}$  waves plus  $S_{31}$  and  $P_{33}$ . Plotted errors are from the (-) analyses except for the difference,  $\delta_+ - \delta_C$ , for which the (+) errors were used.

For  $S_{31}$  and  $P_{33}$  we then compared the difference in nuclear phases,  $\delta_+ - \delta_c$ , using errors from the (+) analyses, with the difference in nuclear phases,  $\delta_- - \delta_c$ , using errors from the (-) analyses. These comparisons are plotted in Fig. 4, along with the difference in nuclear phases,  $\delta_- - \delta_+$ , using errors from the (-) analyses. If our Coulomb modifications are proper, all of these phase differences should be consistent with zero. We see nothing systematic in these results which would indicate that the data required further or different Coulomb modifications. Our conclusion from this comparison is that the modifications which we employ are necessary and sufficient to fit all charge channels with a single nuclear amplitude.

## VI. LOW-ENERGY REPRESENTATION: SCATTERING LENGTHS

The low-energy behavior of our energy-dependent solution FP84 can be efficiently represented in terms of a "scattering-length" function defined by

$$[kA(k^2)]^{2l+1} = \tan \delta , \qquad (9)$$

where k=center-of-mass momentum in inverse fm and  $\delta=$ nuclear phase shift. At threshold A(0) is just the conventional scattering length; its values for the S and P states are given in Table II. In Fig. 5 we plot the scattering-length functions  $A(k^2)$  for S and P states below 100 MeV. It is apparent that the functions displayed can be well represented by linear functions of energy. The  $P_{33}$  state, of course, has a resonance at about 190 MeV, so its linearity would vanish quickly above 100 MeV.

Although it is customary to describe low-energy

scattering in terms of scattering lengths, we feel that the full solution should be used for most calculations.

#### VII. PARTIAL-WAVE AMPLITUDES: CHARACTERIZING THE SOLUTIONS

Solution FP84 and the single-energy analyses reported in this paper were begun with an energy-dependent fit FA84 to the unpruned data base. A large number of iterations were performed between FA84 and the singleenergy solutions to ensure that there were no structures suggested by the single-energy fits that were not encoded by the energy-dependent form. In the cycle, energy



0.00



TABLE II. Scattering lengths  $A(k^2=0)$  from solution FP84.

FIG. 6. Partial-wave amplitudes from solution FP84 and from the single-energy analyses. Re T is indicated by  $\Delta$  while Im T is indicated by  $\times.$ 

1200.00

1200.00



derivatives and initial phase parameters were obtained from FA84 for generation of the single-energy fits. This procedure resulted in a solution FA84 containing 121 searched parameters: 64 for the 13  $I = \frac{1}{2}$  waves, and 57 for the 13  $I = \frac{3}{2}$  waves determined by these analyses.

After developing FA84, we examined the effects of pruning the data; a number of single data points contributed very large  $\chi^2$  contributions to FA84. We found that by pruning all data points with  $\chi^2$  contributions in excess of 16 (4 standard deviations), overall  $\chi^2$  could be reduced by about 20% (from 20000 to 15000), while less than 2% of the data were eliminated. The resultant solution, upon reanalysis, changed very slightly but exhibited superior

numerical characteristics ("cleaner" searches).

Solution FP84 was developed by the pruning procedure described above: prune-search-prune-search, etc. The final result, reported in this paper, is a solution with 161 fewer data (9269 vs 9430) and a  $\chi^2$  of 15504 (vs 20136 for FA84). The two solutions are extremely close to each other, as one would expect from such a slight pruning of the data base. Although FA84 is not reported herein, it is encoded on the SAID facility (see below) and can be studied there.

We believe that the pruned data base provides a superior representation for  $\pi N$  scattering below 1100 MeV and, therefore, report solution FP84 as the best energy-

TABLE III. Nuclear partial-wave amplitudes from solution FP84.  $T_r = \text{Re}T_n$ ,  $T_i = \text{Im}T_n$ .

| $T_{\rm lab}$                                                                                                                                                              | W <sub>c.m.</sub>                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a) $I = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (MeV)                                                                                                                                                                      | (MeV)                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_r(P_{11})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_r(D_{13})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_r(F_{15})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T_r(G_{17})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                 | $T_r(H_{19})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_r(I_{111})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                            | 1103                                                                                                                                                                                                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                               | -0.015 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50                                                                                                                                                                         | 1120                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.024 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100                                                                                                                                                                        | 1161                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.026 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 150                                                                                                                                                                        | 1201                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.014 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200                                                                                                                                                                        | 1239                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.057 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.026 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 250                                                                                                                                                                        | 1277                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.143 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.045 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.010 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 300                                                                                                                                                                        | 1313                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.249 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.073 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.017 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350                                                                                                                                                                        | 1348                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.337 0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.112 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.026 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.003 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400                                                                                                                                                                        | 1340                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.332 0.426                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.165 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.038 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008 0.000                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.004 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 450                                                                                                                                                                        | 1416                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.239 0.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.231 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.053 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010 0.001                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.004 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 500                                                                                                                                                                        | 1449                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.126 0.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.295 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.072 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.013 0.001                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 550                                                                                                                                                                        | 1481                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.031 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.278 0.432                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.097 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.016 0.002                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 600                                                                                                                                                                        | 1512                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.041 0.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.048 0.597                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.128 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.019 0.003                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.006 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 650                                                                                                                                                                        | 1543                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.094 0.578                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.199 0.501                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.169 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.023 0.003                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.006 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.001 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 700                                                                                                                                                                        | 1573                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.132 0.542                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.262 0.334                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.222 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.028 0.005                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.007 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.001 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 750                                                                                                                                                                        | 1602                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.157 \ 0.502$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.236 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.281 0.179                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.033 0.006                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.007 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.002 \ 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 800                                                                                                                                                                        | 1631                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.173 \ 0.458$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.198 0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.310 0.342                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.039 0.007                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.007 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.002 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 850                                                                                                                                                                        | 1660                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.178 0.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.198 \ 0.183$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.192 0.559                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.045 0.009                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.002 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 900                                                                                                                                                                        | 1688                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.176 \ 0.414$<br>$-0.174 \ 0.370$                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.223 0.128                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.090 0.613                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.051 0.011                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.003 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 950                                                                                                                                                                        | 1715                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.163 \ 0.326$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.194 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.272 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.059 0.013                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.003 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1000                                                                                                                                                                       | 1743                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.143 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.156 0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.314 0.326                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.066 0.015                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.004 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1050                                                                                                                                                                       | 1769                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.116 0.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.126 \ 0.026$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.303 \ 0.232$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.074 0.018                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.004 \ 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1100                                                                                                                                                                       | 1796                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.084 0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.104 \ 0.020$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.280 \ 0.173$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.083 0.021                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.009 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.005 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01000 01021                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01000 01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                            | No. of se                                                                                                                                                                                                 | earched                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                            | parame                                                                                                                                                                                                    | eters                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_{\rm lab}$                                                                                                                                                              | <i>W</i> <sub>c.m.</sub>                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_{\rm lab}$ (MeV)                                                                                                                                                        | <i>W</i> <sub>c.m.</sub><br>(MeV)                                                                                                                                                                         | $T_r(S_{11})T_i$                                                                                                                                                                                                                                                                                                                                                                                                    | $T_r(P_{13})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_r(D_{15})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_r(F_{17})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T_r(G_{19})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                 | $T_r(H_{111})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_r(I_{113})T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{(\text{MeV})}{30}$                                                                                                                                                  | (MeV)                                                                                                                                                                                                     | 0.088 0.008                                                                                                                                                                                                                                                                                                                                                                                                         | -0.004 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T_r(G_{19})T_i$<br>-0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{T_r(H_{111})T_i}{-0.000\ 0.000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{T_r(I_{113})T_i}{-0.000\ 0.000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (MeV)                                                                                                                                                                      | (MeV)                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{(\text{MeV})}{30}$                                                                                                                                                  | (MeV)                                                                                                                                                                                                     | 0.088 0.008                                                                                                                                                                                                                                                                                                                                                                                                         | -0.004 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (MeV)<br>30<br>50                                                                                                                                                          | (MeV)<br>1103<br>1120                                                                                                                                                                                     | 0.088 0.008<br>0.108 0.012                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001 0.000 0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.000 0.000<br>-0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -0.000 \ 0.000 \\ -0.000 \ 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -0.000 \ 0.000 \\ -0.000 \ 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (MeV)<br>30<br>50<br>100                                                                                                                                                   | (MeV)<br>1103<br>1120<br>1161                                                                                                                                                                             | 0.088 0.008<br>0.108 0.012<br>0.138 0.019                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                              | 0.001 0.000<br>0.002 0.000<br>0.006 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.000 0.000<br>-0.000 0.000<br>-0.002 0.000<br>-0.003 0.000<br>-0.005 0.000                                                                                                                                                                                                                                                                                                                                                                              | -0.000 0.000<br>-0.000 0.000<br>-0.001 0.000                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (MeV)<br>30<br>50<br>100<br>150                                                                                                                                            | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277                                                                                                                                                     | 0.088 0.008<br>0.108 0.012<br>0.138 0.019<br>0.156 0.025<br>0.169 0.029<br>0.181 0.034                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                        | 0.001 0.000<br>0.002 0.000<br>0.006 0.000<br>0.011 0.000<br>0.016 0.000<br>0.022 0.001                                                                                                                                                                                                                                                                                                                                                                      | -0.000 0.000<br>-0.000 0.000<br>-0.002 0.000<br>-0.003 0.000<br>-0.005 0.000<br>-0.007 0.000                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                          |
| (MeV)<br>30<br>50<br>100<br>150<br>200                                                                                                                                     | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239                                                                                                                                                             | 0.088 0.008<br>0.108 0.012<br>0.138 0.019<br>0.156 0.025<br>0.169 0.029                                                                                                                                                                                                                                                                                                                                             | -0.004 0.000<br>-0.007 0.000<br>-0.018 0.000<br>-0.029 0.001<br>-0.040 0.002                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 0.000<br>0.002 0.000<br>0.006 0.000<br>0.011 0.000<br>0.016 0.000                                                                                                                                                                                                                                                                                                                                                                                     | -0.000 0.000<br>-0.000 0.000<br>-0.002 0.000<br>-0.003 0.000<br>-0.005 0.000                                                                                                                                                                                                                                                                                                                                                                              | -0.000 0.000<br>-0.000 0.000<br>-0.001 0.000<br>-0.002 0.000<br>-0.003 0.000                                                                                                                                                                                                                                                                                                                                                     | -0.000 0.000<br>-0.000 0.000<br>-0.000 0.000<br>-0.001 0.000<br>-0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.000 0.000<br>-0.000 0.000<br>-0.000 0.000<br>-0.000 0.000<br>-0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250                                                                                                                              | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277                                                                                                                                                     | $\begin{array}{c} 0.088 & 0.008 \\ 0.108 & 0.012 \\ 0.138 & 0.019 \\ 0.156 & 0.025 \\ 0.169 & 0.029 \\ 0.181 & 0.034 \\ 0.196 & 0.041 \\ 0.215 & 0.050 \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | -0.000 0.000<br>-0.000 0.000<br>-0.002 0.000<br>-0.003 0.000<br>-0.005 0.000<br>-0.007 0.000                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                          |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300                                                                                                                       | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313                                                                                                                                             | $\begin{array}{c} 0.088 & 0.008 \\ 0.108 & 0.012 \\ 0.138 & 0.019 \\ 0.156 & 0.025 \\ 0.169 & 0.029 \\ 0.181 & 0.034 \\ 0.196 & 0.041 \\ 0.215 & 0.050 \\ 0.241 & 0.064 \end{array}$                                                                                                                                                                                                                                | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \end{array}$                                                                                                                                                                                                                                                             | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \end{array}$                                                                                                                                                                                                                                    | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                        |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450                                                                                                  | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416                                                                                                                     | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088 \end{array}$                                                                                                                                                                                                                        | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \end{array}$                                                                                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \end{array}$                                                                                                                                                                                                                                           | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \end{array}$                                                                                                                                                                                                                  | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                   |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400                                                                                                         | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382                                                                                                                             | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088 \end{array}$                                                                                                                                                                                                                        | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \end{array}$                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \end{array}$                                                                                                                                                                                                                                           | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \end{array}$                                                                                                                                                                                             | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                  |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500<br>550                                                                                    | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416                                                                                                                     | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\end{array}$                                                                                                                                                                                         | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \end{array}$                                                                                                                                                                                                                            | $\begin{array}{ccccccc} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.016 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \end{array}$                                                                                                                                                                                              | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \end{array}$                                                                                                                                                                                                       | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \end{array}$                                                                                                                                                                           | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \end{array}$                                                                                                                                                                                                                                                                | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                 |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500                                                                                           | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449                                                                                                             | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ \end{array}$                                                                                                                                                                      | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \end{array}$                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \end{array}$                                                                                                                                                 | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \end{array}$                                                                                                                                                                                             | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \end{array}$                                                                                                                                                                                                                                                                | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                                  |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650                                                                             | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543                                                                                     | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ \end{array}$                                                                                                                                                      | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \end{array}$                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \end{array}$                                                                                                             | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.004 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.002 \\ 0.005 & 0.003 \end{array}$                                                                                                                                         | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \end{array}$                                                                                                                                                                                                                              | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \end{array}$                                                                                                                                                                                                                                                                                 |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700                                                                      | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573                                                                             | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ \end{array}$                                                                                                                                      | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \end{array}$                                                                                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.009 & 0.000 \end{array}$                                                                                                             | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \end{array}$                                                                                                                                          | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.006 & 0.002 \end{array}$                                                                                                                                                                                                            | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \end{array}$                                                                                                                                                                                                                              |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750                                                               | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602                                                                     | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ \end{array}$                                                                                                                      | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \end{array}$                                                                                                                                                                                        | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.016 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \end{array}$                                                                                                                                | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.009 & 0.000 \end{array}$                                                                                       | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ -0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \end{array}$                                                                                                                        | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.006 & 0.002 \\ 0.008 & 0.002 \end{array}$                                                                                                                                                                                           | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.006 & 0.000 \end{array}$                                                                                                                                                                                                             |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800                                                        | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602<br>1631                                                             | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ \end{array}$                                                                                                      | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.109 & 0.012 \end{array}$                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.009 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \end{array}$                                                                     | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ -0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \end{array}$                                                                                                      | $\begin{array}{cccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.006 & 0.002 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \end{array}$                                                                                                                                                         | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.006 & 0.000 \\ 0.007 & 0.000 \end{array}$                                                                                                                                                                                            |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850                                                 | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602<br>1631<br>1660                                                     | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ \end{array}$                                                                                      | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.109 & 0.012 \\ -0.087 & 0.011 \end{array}$                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.009 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \end{array}$                                                                     | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ \end{array}$                                                                 | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.006 & 0.002 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \end{array}$                                                                                                                                                         | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.009 & 0.000 \end{array}$                                                                                                                                                      |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900                                          | (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688                                                                                                      | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864 \end{array}$                                                                       | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.109 & 0.012 \\ -0.087 & 0.011 \\ -0.041 & 0.039 \end{array}$                                                                                              | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.016 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \\ 0.192 & 0.324 \\ 0.066 & 0.431 \\ -0.098 & 0.422 \end{array}$                                                                                             | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \end{array}$                                                                         | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ \end{array}$                                                | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.006 & 0.002 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \end{array}$                                                                                                                      | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.009 & 0.000 \\ 0.010 & 0.000 \\ 0.010 & 0.000 \end{array}$                                                                                                                        |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950                                   | (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715                                                                                                 | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\end{array}$                                                       | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.109 & 0.012 \\ -0.087 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \end{array}$                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.009 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \\ -0.007 & 0.000 \\ -0.006 & 0.000 \end{array}$                   | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ \end{array}$                               | $\begin{array}{ccccc} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.006 & 0.002 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \\ 0.021 & 0.008 \end{array}$                                                                                                     | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.006 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.009 & 0.000 \\ 0.010 & 0.000 \\ 0.012 & 0.000 \end{array}$                                                                                                       |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950<br>1000                           | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602<br>1631<br>1660<br>1688<br>1715<br>1743                             | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ \end{array}$                                   | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.097 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \\ -0.105 & 0.164 \\ \end{array}$                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \\ -0.006 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \end{array}$                   | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ 0.033 & 0.021 \\ \end{array}$                                   | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \\ 0.021 & 0.008 \\ 0.025 & 0.010 \\ \end{array}$                  | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.009 & 0.000 \\ 0.011 & 0.000 \\ 0.012 & 0.000 \\ 0.014 & 0.000 \end{array}$                                                                      |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950<br>1000<br>1050                   | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602<br>1631<br>1660<br>1688<br>1715<br>1743<br>1769                     | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.300 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ \end{array}$                  | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.087 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \\ -0.105 & 0.164 \\ -0.140 & 0.160 \\ \end{array}$                   | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.011 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \\ 0.192 & 0.324 \\ 0.066 & 0.431 \\ -0.098 & 0.422 \\ -0.194 & 0.337 \\ -0.224 & 0.253 \\ -0.225 & 0.192 \end{array}$     | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \\ -0.006 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \\ 0.002 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ 0.033 & 0.026 \\ \end{array}$                                   | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \\ 0.021 & 0.008 \\ 0.025 & 0.010 \\ 0.029 & 0.012 \\ \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.010 & 0.000 \\ 0.011 & 0.000 \\ 0.014 & 0.000 \\ 0.016 & 0.000 \\ 0.016 & 0.000 \end{array}$                  |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950<br>1000                           | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602<br>1631<br>1660<br>1688<br>1715<br>1743                             | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.300 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ \end{array}$                  | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.097 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \\ -0.105 & 0.164 \\ \end{array}$                                                                         | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.011 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \\ 0.192 & 0.324 \\ 0.066 & 0.431 \\ -0.098 & 0.422 \\ -0.194 & 0.337 \\ -0.224 & 0.253 \\ -0.225 & 0.192 \end{array}$     | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \\ -0.006 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \\ -0.002 & 0.001 \\ 0.002 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ 0.033 & 0.021 \\ \end{array}$                                   | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \\ 0.021 & 0.008 \\ 0.025 & 0.010 \\ \end{array}$                                  | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.009 & 0.000 \\ 0.011 & 0.000 \\ 0.012 & 0.000 \\ 0.014 & 0.000 \\ 0.014 & 0.000 \\ \end{array}$                                                 |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950<br>1000<br>1050<br>1100           | (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715 1743 1769 1796                                                                                  | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.300 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ \end{array}$                  | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.087 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \\ -0.105 & 0.164 \\ -0.140 & 0.160 \\ \end{array}$                   | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.011 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \\ 0.192 & 0.324 \\ 0.066 & 0.431 \\ -0.098 & 0.422 \\ -0.194 & 0.337 \\ -0.224 & 0.253 \\ -0.225 & 0.192 \end{array}$     | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \\ -0.006 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \\ 0.002 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ 0.033 & 0.026 \\ \end{array}$                                   | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \\ 0.021 & 0.008 \\ 0.025 & 0.010 \\ 0.029 & 0.012 \\ \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.010 & 0.000 \\ 0.011 & 0.000 \\ 0.014 & 0.000 \\ 0.016 & 0.000 \\ 0.016 & 0.000 \end{array}$                  |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950<br>1000<br>1050<br>1100<br>No. of | (MeV)<br>1103<br>1120<br>1161<br>1201<br>1239<br>1277<br>1313<br>1348<br>1382<br>1416<br>1449<br>1481<br>1512<br>1543<br>1573<br>1602<br>1631<br>1660<br>1688<br>1715<br>1743<br>1769<br>1796<br>searched | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ -0.383 & 0.550\\ \end{array}$ | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.109 & 0.012 \\ -0.087 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \\ -0.105 & 0.164 \\ -0.140 & 0.160 \\ -0.157 & 0.156 \\ \end{array}$ | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.016 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \\ 0.192 & 0.324 \\ 0.066 & 0.431 \\ -0.098 & 0.422 \\ -0.194 & 0.337 \\ -0.224 & 0.253 \\ -0.225 & 0.192 \\ -0.215 & 0.151 \\ \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.008 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.009 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.003 & 0.000 \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \\ 0.002 & 0.002 \\ 0.005 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ 0.033 & 0.026 \\ 0.042 & 0.031 \\ \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.012 & 0.008 \\ 0.025 & 0.010 \\ 0.029 & 0.012 \\ 0.033 & 0.014 \\ \end{array}$                 | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.003 & 0.000 \\ 0.003 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.010 & 0.000 \\ 0.011 & 0.000 \\ 0.014 & 0.000 \\ 0.018 & 0.000 \end{array}$ |
| (MeV)<br>30<br>50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900<br>950<br>1000<br>1050<br>1100<br>No. of | (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715 1743 1769 1796                                                                                  | $\begin{array}{c} 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.300 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ \end{array}$                  | $\begin{array}{c} -0.004 & 0.000 \\ -0.007 & 0.000 \\ -0.018 & 0.000 \\ -0.029 & 0.001 \\ -0.040 & 0.002 \\ -0.050 & 0.003 \\ -0.061 & 0.004 \\ -0.070 & 0.005 \\ -0.080 & 0.006 \\ -0.080 & 0.006 \\ -0.088 & 0.008 \\ -0.096 & 0.010 \\ -0.102 & 0.012 \\ -0.108 & 0.013 \\ -0.113 & 0.015 \\ -0.116 & 0.015 \\ -0.115 & 0.014 \\ -0.109 & 0.012 \\ -0.087 & 0.011 \\ -0.041 & 0.039 \\ -0.041 & 0.130 \\ -0.105 & 0.164 \\ -0.140 & 0.160 \\ -0.157 & 0.156 \\ \end{array}$ | $\begin{array}{c} 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.006 & 0.000 \\ 0.011 & 0.000 \\ 0.011 & 0.000 \\ 0.022 & 0.001 \\ 0.028 & 0.001 \\ 0.028 & 0.001 \\ 0.036 & 0.002 \\ 0.046 & 0.004 \\ 0.059 & 0.007 \\ 0.074 & 0.012 \\ 0.095 & 0.021 \\ 0.121 & 0.036 \\ 0.153 & 0.063 \\ 0.190 & 0.111 \\ 0.217 & 0.196 \\ 0.192 & 0.324 \\ 0.066 & 0.431 \\ -0.098 & 0.422 \\ -0.194 & 0.337 \\ -0.224 & 0.253 \\ -0.225 & 0.192 \end{array}$                      | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.007 & 0.000 \\ -0.009 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.010 & 0.000 \\ -0.000 & 0.000 \\ -0.009 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.008 & 0.000 \\ -0.007 & 0.000 \\ -0.006 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.005 & 0.000 \\ -0.004 & 0.000 \\ -0.002 & 0.001 \\ -0.000 & 0.001 \\ 0.002 & 0.003 \\ 0.008 & 0.004 \\ 0.012 & 0.006 \\ 0.016 & 0.008 \\ 0.020 & 0.011 \\ 0.024 & 0.014 \\ 0.028 & 0.017 \\ 0.033 & 0.026 \\ \end{array}$                                   | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.002 & 0.000 \\ -0.002 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.003 & 0.000 \\ -0.002 & 0.000 \\ -0.000 & 0.000 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.003 & 0.001 \\ 0.008 & 0.002 \\ 0.011 & 0.003 \\ 0.014 & 0.005 \\ 0.018 & 0.006 \\ 0.021 & 0.008 \\ 0.025 & 0.010 \\ 0.029 & 0.012 \\ \end{array}$ | $\begin{array}{c} -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ -0.001 & 0.000 \\ -0.001 & 0.000 \\ -0.000 & 0.000 \\ -0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.001 & 0.000 \\ 0.002 & 0.000 \\ 0.003 & 0.000 \\ 0.005 & 0.000 \\ 0.005 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.007 & 0.000 \\ 0.010 & 0.000 \\ 0.011 & 0.000 \\ 0.014 & 0.000 \\ 0.016 & 0.000 \\ 0.016 & 0.000 \\ \end{array}$               |

| ~                      |                                   |                                      |                                      |                              | (1-)                   | r 3                                |                           |                                      |
|------------------------|-----------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------|------------------------------------|---------------------------|--------------------------------------|
| $T_{\rm lab}$<br>(MeV) | <i>W</i> <sub>c.m.</sub><br>(MeV) |                                      | $T_r(P_{31})T_i$                     | $T_r(D_{33})T_i$             | $(b) T T_r(F_{35})T_i$ | $T = \frac{3}{2}$ $T_r(G_{37})T_i$ | $T_{r(H_{39}})T_i$        | $T_r(I_{311})T_i$                    |
|                        |                                   | ·                                    | 1,(13])11                            |                              | 1 (1 35/1)             |                                    | - P(H <sub>39</sub> ) - 1 |                                      |
| 30                     | 1103                              |                                      | -0.006 0.000                         | -0.000 0.000                 | -0.000 0.000           | -0.000 0.000                       | -0.000 0.000              | 0.000 0.000                          |
| 50                     | 1120                              |                                      | -0.013 0.000                         | -0.001 0.000                 | -0.000 0.000           | -0.000 0.000                       | -0.000 0.000              | 0.000 0.000                          |
| 100                    | 1161                              |                                      | -0.037 0.001                         | -0.004 0.000                 | -0.002 0.000           | -0.000 0.000                       | -0.000 0.000              | 0.000 0.000                          |
| 150                    | 1201                              |                                      | -0.065 0.004                         | -0.006 0.000                 | -0.004 0.000           | -0.001 0.000                       | -0.000 0.000              | 0.000 0.000                          |
| 200                    | 1239                              |                                      | -0.093 0.009                         | -0.008 0.000                 | -0.005 0.000           | -0.001 0.000                       | -0.001 0.000              | 0.000 0.000                          |
| 250                    | 1277                              |                                      | -0.122 0.016                         | -0.008 0.000                 | -0.007 0.000           | -0.002 0.000                       | -0.001 0.000              | 0.000 0.000                          |
| 300                    | 1313                              |                                      | -0.148 0.025                         | -0.006 0.001                 | -0.008 0.000           | -0.002 0.000                       | -0.001 0.000              | 0.000 0.000                          |
| 350                    | 1348                              |                                      | -0.173 0.036                         | -0.003 0.002                 | -0.009 0.000           | -0.002 0.000                       | -0.001 0.000              | 0.001 0.000                          |
| 400                    | 1382                              |                                      | -0.196 0.048                         | 0.001 0.006                  | $-0.010 \ 0.001$       | -0.002 0.000                       | -0.001 0.000              | 0.001 0.000                          |
| 450                    | 1416                              |                                      | -0.217 0.062                         | 0.006 0.012                  | -0.010 0.001           | -0.002 0.000                       | -0.001 0.000              | 0.001 0.000                          |
| 500                    | 1449                              |                                      | -0.237 0.075                         | 0.011 0.020                  | -0.009 0.002           | -0.002 0.000                       | -0.001 0.000              | 0.001 0.000                          |
| 550                    | 1481                              |                                      | -0.255 0.089                         | 0.015 0.030                  | -0.008 0.003           | -0.002 0.000                       | -0.000 0.000              | 0.002 0.000                          |
| 600                    | 1512                              |                                      | -0.271 0.101                         | 0.019 0.043                  | -0.006 0.004           | -0.001 0.000                       | 0.001 0.000               | 0.002 0.000                          |
| 650                    | 1543                              |                                      | -0.286 0.113                         | 0.020 0.059                  | $-0.004 \ 0.005$       | -0.001 0.000                       | 0.001 0.000               | 0.002 0.000                          |
| 700                    | 1573                              | •                                    | -0.298 0.123                         | 0.017 0.078                  | -0.001 0.007           | 0.000 0.000                        | 0.002 0.000               | 0.003 0.001                          |
| 750                    | 1602                              |                                      | -0.308 0.131                         | 0.008 0.099                  | 0.003 0.010            | 0.001 0.000                        | 0.003 0.000               | 0.003 0.001                          |
| 800                    | 1631                              |                                      | -0.317 0.138                         | -0.009 0.119                 | 0.008 0.014            | 0.001 0.000                        | 0.004 0.000               | 0.004 0.001                          |
| 850                    | 1660                              |                                      | -0.323 0.143                         | -0.032 0.132                 | 0.014 0.020            | 0.002 0.000                        | 0.005 0.000               | 0.004 0.001                          |
| 900                    | 1688                              |                                      | -0.326 0.145                         | -0.059 0.137                 | 0.021 0.029            | 0.003 0.000                        | 0.006 0.000               | 0.005 0.002                          |
| 950                    | 1715                              |                                      | -0.328 0.145                         | -0.084 0.133                 | 0.028 0.042            | 0.004 0.000                        | 0.007 0.000               | 0.005 0.002                          |
| 1000                   | 1743                              |                                      | -0.326 0.142                         | -0.104 0.123                 | 0.033 0.061            | 0.005 0.000                        | 0.009 0.000               | 0.006 0.003                          |
| 1050                   | 1769                              |                                      | -0.321 0.135                         | -0.119 0.110                 | 0.033 0.087            | 0.006 0.000                        | 0.010 0.000               | 0.006 0.004                          |
| 1100                   | 1796                              |                                      | -0.312 0.125                         | -0.128 0.096                 | 0.019 0.119            | 0.007 0.000                        | 0.011 0.000               | 0.007 0.004                          |
|                        | No. of se                         | earched                              |                                      |                              |                        | 1 · · ·                            |                           |                                      |
|                        | param                             |                                      | 6                                    | 6                            | 4                      | 2                                  | 2                         | 3                                    |
|                        | -                                 |                                      |                                      |                              |                        |                                    |                           |                                      |
|                        |                                   |                                      |                                      |                              |                        |                                    |                           |                                      |
| $T_{\rm lab}$          | <i>W</i> <sub>c.m.</sub>          |                                      |                                      |                              |                        |                                    |                           |                                      |
| (MeV)                  | (MeV)                             | $T_r(S_{31})T_i$                     | $T_{r}(P_{33})T_{i}$                 | $T_r(D_{35})T_i$             | $T_r(F_{37})T_i$       | $T_r(G_{39})T_i$                   | $T_r(H_{311})T_i$         | $T_r(I_{313})T_i$                    |
| 30                     | 1103                              | -0.062 0.004                         | 0.043 0.002                          | 0.000 0.000                  | 0.000 0.000            | 0.000 0.000                        | -0.000 0.000              | 0.000 0.000                          |
| 50                     | 1120                              | -0.090 0.008                         | 0.102 0.010                          | 0.001 0.000                  | 0.000 0.000            | 0.000 0.000                        | -0.000 0.000              | 0.000 0.000                          |
| 100                    | 1161                              | -0.154 0.024                         | 0.350 0.143                          | 0.002 0.000                  | 0.001 0.000            | 0.001 0.000                        | -0.000 0.000              | 0.000 0.000                          |
| 150                    | 1201                              | $-0.211 \ 0.047$                     | 0.462 0.691                          | 0.001 0.000                  | 0.002 0.000            | 0.001 0.000                        | -0.000 0.000              | 0.000 0.000                          |
| 200                    | 1231                              | $-0.261 \ 0.073$                     | $-0.125 \ 0.984$                     | -0.002 0.000                 | 0.005 0.000            | 0.002 0.000                        | 0.000 0.000               | 0.000 0.000                          |
| 250                    | 1237                              | $-0.303 \ 0.102$                     | -0.446 0.726                         | -0.006 0.000                 | 0.008 0.000            | 0.003 0.000                        | 0.000 0.000               | 0.001 0.000                          |
| 300                    | 1313                              | -0.338 0.132                         | -0.500 0.509                         | -0.011 0.000                 | 0.012 0.000            | 0.003 0.000                        | 0.000 0.000               | 0.001 0.000                          |
| 350                    | 1313                              | -0.366 0.161                         | $-0.483 \ 0.370$                     | -0.017 0.000                 | 0.016 0.000            | 0.004 0.000                        | 0.001 0.000               | 0.001 0.000                          |
| 400                    | 1348                              | -0.388 0.187                         | $-0.447 \ 0.276$                     | -0.024 0.001                 | 0.021 0.001            | 0.004 0.000                        | 0.001 0.000               | 0.001 0.000                          |
| 400                    | 1382                              | -0.388 0.187<br>-0.404 0.210         | $-0.404 \ 0.206$                     | $-0.031 \ 0.001$             | 0.027 0.001            | 0.003 0.000                        | 0.001 0.000               | 0.001 0.000                          |
|                        | 1410                              | -0.404 0.210<br>-0.413 0.228         | -0.356 0.153                         | $-0.038 \ 0.001$             | 0.035 0.002            | 0.003 0.000                        | 0.002 0.000               | 0.001 0.000                          |
| 500<br>550             | 1449                              | -0.413 0.228<br>-0.414 0.239         | $-0.302 \ 0.133$                     | $-0.045 \ 0.001$             | 0.043 0.002            | 0.002 0.000                        | 0.002 0.000               | 0.001 0.000                          |
|                        |                                   | -0.414 0.239<br>-0.400 0.242         | -0.302 0.114<br>-0.244 0.090         | -0.043 0.002<br>-0.051 0.003 | 0.053 0.005            | 0.002 0.000                        | 0.003 0.000               | 0.001 0.000                          |
| 600<br>650             | 1512                              |                                      | -0.186 0.084                         | $-0.058 \ 0.003$             | 0.064 0.007            | -0.000 0.000                       | 0.005 0.001               | 0.000 0.000                          |
| 650                    | 1543<br>1573                      | $-0.358 \ 0.242$<br>$-0.276 \ 0.273$ | $-0.135 \ 0.084$<br>$-0.135 \ 0.096$ | $-0.064 \ 0.003$             | 0.077 0.011            | $-0.001 \ 0.001$                   | 0.006 0.002               | $-0.000 \ 0.000$                     |
| 700<br>750             |                                   | $-0.276 \ 0.273$<br>$-0.210 \ 0.386$ |                                      | -0.064 0.004<br>-0.070 0.005 | 0.092 0.011            | $-0.003 \ 0.001$                   | 0.007 0.002               | $-0.000 \ 0.000$                     |
| 750                    | 1602                              |                                      | $-0.099 \ 0.121$<br>$-0.080 \ 0.149$ | -0.076 0.003                 | 0.109 0.025            | -0.003 0.001                       | 0.008 0.002               | $-0.001 \ 0.000$                     |
| 800                    | 1631                              | -0.242 0.504                         |                                      |                              | 0.129 0.025            | -0.004 0.001<br>-0.006 0.002       | 0.010 0.003               | -0.001 0.000<br>-0.002 0.000         |
| 850                    | 1660                              |                                      |                                      | $-0.081 \ 0.007$             |                        |                                    | 0.011 0.004               | $-0.002 \ 0.000$<br>$-0.002 \ 0.001$ |
| 900                    | 1688                              |                                      | -0.077 0.186                         | -0.085 0.007                 | 0.151 0.053            | -0.007 0.002                       |                           |                                      |
| 950                    | 1715                              | -0.367 0.576                         | -0.081 0.193                         | -0.089 0.008                 | 0.174 0.078            | -0.009 0.003                       | 0.013 0.007               | -0.003 0.001                         |
| 1000                   | 1743                              | -0.382 0.578                         | -0.085 0.195                         | -0.092 0.009                 | 0.198 0.114            | -0.011 0.004                       | 0.015 0.009               | -0.004 0.001                         |
| 1050                   | 1769                              | -0.390 0.578                         | -0.088 0.193                         | -0.094 0.009                 | 0.215 0.163            | -0.012 0.004                       |                           | -0.004 0.001                         |
| 1100                   | 1796                              | -0.396 0.577                         | -0.088 0.189                         | -0.096 0.010                 | 0.220 0.227            | -0.014 0.005                       | 0.018 0.013               | -0.005 0.001                         |
| No. of                 | searched                          |                                      |                                      |                              | <i>y</i>               |                                    |                           |                                      |
|                        | meters                            | 8                                    | 8                                    | 4                            | 5                      | 3                                  | 3                         | 3                                    |
| r                      |                                   | -                                    | -                                    | •                            | -                      | -                                  | -                         |                                      |

TABLE III. (Continued).



FIG. 7. Partial-wave amplitudes from solution FP84 plotted against the Karlsruhe-Helsinki solution. A vertical K is used to denote ReT while a slanted K denotes ImT.

| Each solution is characterized by a binning range (in parentheses), by the number of searched parameters ( $N_{par}$ ), $\chi^2$ , | s listed for $\chi^2(ED)$ are the $\chi^2$ for FP84 for the selected data set and the $\chi^2$ after linearizing and before searching FP84. |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| TABLE IV. Searched partial waves from single-energy analyses. E                                                                    | and the number of data $(N_{data})$ used for analysis. The two numbers li                                                                   |  |

| etore searching FP84.                                                                                                                                                                                                                  | 110), $N_{data} = 128$ ,<br>D)=(205,271)                                                                                                                        | Im T                  | $0.019\pm0.003$   | $0.024\pm0.002$  | $0.000\pm0.003$   | $0.001 \pm 0.002$ | $0.001 \pm 0.002$ | 0.144±0.002       | -265), $N_{\rm data} = 168$ ,                                       | D) = (298, 315)                                                        | $\operatorname{Im} T$ | $0.038 \pm 0.003$ | $0.101 \pm 0.002$ | $0.031 \pm 0.005$ | $0.002 \pm 0.002$ | $0.018 \pm 0.003$ | $0.725 \pm 0.002$ | -425) $N_{\rm data} = 348,$                                    | D = (673, 671)                                                         | $\operatorname{Im} T$ | 0.066±0.004       | $0.189 \pm 0.002$ | $0.432\pm0.008$   | $0.006\pm0.003$  | 0.050±0.004      | $0.276\pm0.002$  | $0.049 \pm 0.003$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|
| after linearizing and b                                                                                                                                                                                                                | C10, $T_{\text{lab}} = 100$ MeV (88–110), $N_{\text{data}} = 128$ ,<br>$N_{\text{par}} = 6$ , $\chi^2 = 182$ , $\chi^2(\text{ED}) = (205,271)$                  | ReT                   | $0.136\pm0.003$   | $-0.154\pm0.002$ | $-0.015\pm0.003$  | $-0.027\pm0.002$  | $-0.034\pm0.001$  | $0.351 \pm 0.002$ | C25, $T_{lab} = 250$ MeV (240–265), $N_{data} = 168$ ,              | $N_{\rm par} = 6, \ \chi^2 = 276, \ \chi^2({\rm ED}) = (298, 315)$     | ReT                   | 0.191±0.004       | $-0.300\pm0.002$  | $0.143 \pm 0.004$ | $-0.048\pm0.002$  | $-0.128\pm0.003$  | $-0.447\pm0.002$  | C40, $T_{\rm lab} = 400$ MeV (375-425) $N_{\rm data} = 348$ ,  | $V_{par} = 9, \chi^2 = 648, \chi^2(ED) = (673, 671)$                   | ReT                   | $0.243\pm0.007$   | $-0.390\pm0.003$  | $0.326 \pm 0.006$ | $-0.075\pm0.005$ | $-0.200\pm0.003$ | $-0.447\pm0.002$ | $0.160 \pm 0.002$ |
| a set and the $\chi^{*}$                                                                                                                                                                                                               | C10,                                                                                                                                                            | Wave                  | $S_{11}$          | $S_{31}$         | $P_{11}$          | $P_{13}$          | $P_{31}$          | $P_{33}$          | C25,                                                                | V                                                                      | Wave                  | S <sub>11</sub>   | $S_{31}$          | $P_{11}$          | $P_{13}$          | $P_{31}$          | $P_{33}$          | C40,                                                           |                                                                        | Wave                  | $S_{11}$          | $S_{31}$          | $P_{11}$          | $P_{13}$         | $P_{31}$         | $P_{33}$         | $D_{13}$          |
| r rrvs4 ior the selected dat                                                                                                                                                                                                           | $65), \ N_{data} = 168, \\ 3D) = (293, 321)$                                                                                                                    | $\operatorname{Im} T$ | $0.013 \pm 0.002$ | $0.009\pm0.002$  | $0.001 \pm 0.002$ | $0.000 \pm 0.002$ | $0.012 \pm 0.002$ |                   | $(-210), N_{\text{data}} = 71,$                                     | D = (110, 111)                                                         | $\operatorname{Im} T$ | 0.039±0.006       | $0.071 \pm 0.003$ | $0.003 \pm 0.004$ | $0.001 \pm 0.003$ | $0.011 \pm 0.003$ | $0.984 \pm 0.003$ | $-370$ ), $N_{\text{data}} = 248$ ,                            | ED)=(442,447)                                                          | $\operatorname{Im} T$ | $0.052 \pm 0.003$ | $0.164\pm0.002$   | $0.245\pm0.004$   | $0.006\pm0.003$  | $0.035\pm0.004$  | $0.376\pm0.002$  | $0.019 \pm 0.003$ |
| IOT $\chi^{-}(EU)$ are the $\chi^{-}$ IO                                                                                                                                                                                               | $\frac{\text{C5, } T_{\text{lab}} = 50 \text{ MeV } (35-65), N_{\text{data}} = 168, N_{\text{par}} = 5, \chi^2 = 294, \chi^2(\text{ED}) = (293, 321)$           | ReT                   | $0.113\pm0.002$   | $-0.092\pm0.002$ | $-0.024\pm0.001$  | $-0.013\pm0.001$  | $0.107 \pm 0.001$ |                   | C20, $T_{\text{lab}} = 200$ MeV (190–210), $N_{\text{data}} = 71$ , | $N_{\text{par}} = 6, \ \chi^2 = 103, \ \chi^2(\text{ED}) = (110, 111)$ | ReT                   | 0.193±0.013       | $-0.256\pm0.004$  | $0.033 \pm 0.038$ | $-0.035\pm0.014$  | $-0.103\pm0.007$  | $-0.126\pm0.006$  | C35, $T_{\rm lab} = 350$ MeV (330–370), $N_{\rm data} = 248$ , | $N_{\text{par}} = 9, \ \chi^2 = 410, \ \chi^2(\text{ED}) = (442, 447)$ | ReT                   | $0.220 \pm 0.004$ | $-0.370\pm0.002$  | $0.344\pm0.004$   | $-0.080\pm0.003$ | $-0.169\pm0.003$ | $-0.484\pm0.002$ | $0.116\pm 0.002$  |
| numbers listed                                                                                                                                                                                                                         | -                                                                                                                                                               | Wave                  | $S_{11}$          | $S_{31}$         | $P_{11}$          | $P_{31}$          | $P_{33}$          |                   | C                                                                   |                                                                        | Wave                  | S <sub>11</sub>   | $S_{31}$          | $P_{11}$          | $P_{13}$          | $P_{31}$          | $P_{33}$          | C                                                              |                                                                        | Wave                  | $S_{11}$          | $S_{31}$          | $P_{11}$          | $P_{13}$         | $P_{31}$         | $P_{33}$         | $D_{13}$          |
| and the number of data ( $N_{data}$ ) used for analysis. The two numbers listed for $\chi^{-}(ED)$ are the $\chi^{-}$ for $\Gamma F 84$ for the selected data set and the $\chi^{-}$ after linearizing and before searching $F P 84$ . | 40), $N_{\text{data}} = 125$ ,<br>3D)=(179,194)                                                                                                                 | $\operatorname{Im} T$ | $0.008 \pm 0.002$ | $0.004\pm0.002$  | $0.000\pm0.002$   | $0.002\pm0.002$   |                   |                   | $-160$ , $N_{data} = 67$ ,                                          | D) = (140, 144)                                                        | $\operatorname{Im} T$ | $0.023 \pm 0.003$ | 0.050±0.004       | $0.000\pm0.003$   | $0.001 \pm 0.003$ | $0.005\pm0.003$   | 0.689±0.002       | $-315$ ), $N_{data} = 333$ ,                                   | ED) = (488, 492)                                                       | $\operatorname{Im} T$ | 0.038±0.002       | $0.134\pm0.002$   | $0.088 \pm 0.003$ | $0.004\pm0.002$  | $0.026\pm0.003$  | $0.515\pm0.002$  | 0.009±0.003       |
| number of data (19 data) u                                                                                                                                                                                                             | $\frac{\text{C3}, \ T_{\text{lab}} = 30 \ \text{MeV} \ (20-40), \ N_{\text{data}} = 125}{N_{\text{par}} = 4, \ \chi^2 = 168, \ \chi^2(\text{ED}) = (179, 194)}$ | ReT                   | $0.090 \pm 0.001$ | $-0.060\pm0.001$ | $-0.011\pm0.001$  | $0.043 \pm 0.001$ |                   |                   | C15, $T_{\text{lab}} = 150$ MeV (140–160), $N_{\text{data}} = 67$ , | $N_{\text{par}} = 6, \ \chi^2 = 126, \ \chi^2(\text{ED}) = (140, 144)$ | ReT                   | 0.150±0.003       | $-0.218\pm0.008$  | $0.001 \pm 0.005$ | $-0.030\pm0.003$  | $-0.069\pm0.006$  | 0.463±0.002       | C30, $T_{\rm lab} = 300$ MeV (285–315), $N_{\rm data} = 333$ , | $N_{\text{par}} = 8, \ \chi^2 = 445, \ \chi^2(\text{ED}) = (488, 492)$ | ReT                   | $0.190\pm 0.002$  | $-0.339\pm0.002$  | $0.247\pm0.002$   | $-0.065\pm0.002$ | $-0.151\pm0.002$ | $-0.500\pm0.002$ | 0.077±0.002       |
| and the                                                                                                                                                                                                                                | -                                                                                                                                                               | Wave                  | $S_{11}$          | $S_{31}$         | $P_{11}$          | $P_{33}$          |                   |                   | CI                                                                  |                                                                        | Wave                  | S <sub>11</sub>   | $S_{31}$          | $P_{11}$          | $P_{13}$          | $P_{31}$          | $P_{33}$          | Ğ                                                              |                                                                        | Wave                  | $S_{11}$          | $S_{31}$          | $P_{11}$          | $P_{13}$         | $P_{31}$         | $P_{33}$         | $D_{13}$          |

PION-NUCLEON PARTIAL-WAVE ANALYSIS TO 1100 MeV

1095

| CdS, $T_{ab} = 200$ MeV (43:2 - 350, $MeV (43:2 - 550, MeV = 345, N_{abc} = 353, N_{c} (ED) = (661, 715), M_{abc} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 353, N_{c} (ED) = (661, 715), M_{abc} = 12, N_{c} = 325, N_{c} = 12, N_{c} = 12, N_{c} = 325, N_{c} = 12, N_{c} = 12, N_{c} = 325, N_{c} = 12, N_{c} = 12$ |                                                   |                                                              |          |                                                                                                    |                                                        |                 |                                                                                                   |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Wave         KeI         Int         Wave         Si $0.282\pm0.011$ $0.096\pm0.003$ Si $0.168\pm0.003$ Si $0.168\pm0.003$ Si $0.168\pm0.003$ Si $0.168\pm0.003$ Si $0.168\pm0.003$ Si $0.150\pm0.003$ Si $0.1$ $0.101\pm0.003$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $_{ab} = 450 \text{ MeV}$<br>= 12, $\chi^2 = 385$ | $(425-475), N_{data} = 245,$<br>5, $\chi^2(ED) = (460, 472)$ | C50      | $T_{\text{lab}} = 500 \text{ MeV} (475-$<br>$N_{\text{par}} = 14, \chi^2 = 773, \chi^2(\text{F})$  | $-525$ ), $N_{\text{data}} = 441$ ,<br>3D = (837, 882) | C55,<br>^       | $T_{\text{lab}} = 550$ MeV (535-<br>$V_{\text{par}} = 18, \chi^2 = 568, \chi^2$ (I                | $-565$ ), $N_{data} = 395$ ,<br>3D) = (631,715)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ReT                                               | ImI                                                          | Wave     | Kel                                                                                                | ImI                                                    | Wave            | Ke.I                                                                                              | Im T                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.267±0.008                                       |                                                              | $S_{11}$ | $0.282 \pm 0.011$                                                                                  | $0.096 \pm 0.009$                                      | $S_{11}$        | $0.376 \pm 0.010$                                                                                 | $0.255\pm0.013$                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.401\pm0.003$                                  |                                                              | $S_{31}$ | $-0.409\pm0.004$                                                                                   | $0.221 \pm 0.003$                                      | $S_{31}$        | $-0.411\pm0.005$                                                                                  | $0.236\pm0.004$                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.252±0.008                                       |                                                              | $P_{11}$ | $0.168 \pm 0.009$                                                                                  | $0.568 \pm 0.013$                                      | $P_{11}$        | $0.018\pm0.020$                                                                                   | $0.629 \pm 0.010$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.109\pm0.006$                                  |                                                              | $P_{13}$ | $-0.133\pm0.008$                                                                                   | $0.019\pm0.003$                                        | $P_{13}$        | $-0.111\pm0.013$                                                                                  | $0.014\pm0.004$                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.214\pm0.003$                                  | -                                                            | $P_{31}$ | $-0.234\pm0.004$                                                                                   | $0.074 \pm 0.006$                                      | $P_{31}$        | $-0.252\pm0.004$                                                                                  | $0.086 \pm 0.003$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.406\pm0.002$                                  |                                                              | $P_{33}$ | $-0.353\pm0.003$                                                                                   | $0.150 \pm 0.003$                                      | $P_{33}$        | $-0.301\pm0.003$                                                                                  | $0.110 \pm 0.003$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.221\pm0.004$                                   |                                                              | $D_{13}$ | $0.299 \pm 0.009$                                                                                  | $0.225\pm0.008$                                        | $D_{13}$        | $0.253 \pm 0.010$                                                                                 | $0.422 \pm 0.006$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.073±0.003                                       |                                                              | $D_{15}$ | $0.087\pm0.006$                                                                                    | $0.036\pm0.007$                                        | $D_{15}$        | $0.115\pm0.005$                                                                                   | $0.028 \pm 0.006$                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.003\pm0.002$                                   |                                                              | $D_{33}$ | $0.006\pm0.002$                                                                                    | $0.018 \pm 0.003$                                      | $D_{33}$        | $0.017\pm0.002$                                                                                   | $0.033\pm0.003$                                  |
| $ \begin{array}{cccc} C65, \ T_{\rm lab} = 650 \ {\rm MeV} \ (635-665), \ N_{\rm data} = 285, \\ N_{\rm pat} = 23, \ \chi^2 = 478, \ \chi^2({\rm ED}) = (579,566) \\ {\rm Wave} \ \ ReT \ \ Im T \ \ Mathbf{Wave} \ \ ReT \ \ Im T \ \ Mathbf{Wave} \ \ N_{\rm at} = 23, \ \chi^2 = 478, \ \chi^2({\rm ED}) = (579,566) \\ {\rm Wave} \ \ \ ReT \ \ \ Im T \ \ \ Mathbf{Wave} \ \ \ N_{\rm bit} = 23, \ \chi^2 = 478, \ \chi^2({\rm ED}) = (579,566) \\ {\rm Wave} \ \ \ \ ReT \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                                                              | $F_{15}$ | $0.089 \pm 0.004$                                                                                  | $0.012 \pm 0.003$                                      | $F_{15}$        | $0.109 \pm 0.004$                                                                                 | $0.029 \pm 0.005$                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $_{ab} = 600 \text{ MeV}$<br>= 20, $\chi^2 = 458$ | $(585-615), N_{data} = 322, X^2(ED) = (517,521)$             | C65      | $T_{\text{lab}} = 650 \text{ MeV} (635-$<br>$N_{\text{nor}} = 23, \chi^2 = 478, \chi^2 (\text{E})$ | -665), $N_{\text{data}} = 285$ ,<br>3D) = (579,566)    | C70,<br>A       | $T_{\text{lab}} = 700 \text{ MeV} (685-$<br>$V_{\text{nor}} = 27, \chi^2 = 342, \chi^2 \text{II}$ | $-715$ ), $N_{data} = 246$ ,<br>SD) = (434, 441) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ReT                                               | ImT                                                          | Wave     | ReT                                                                                                | $\operatorname{Im} T$                                  | Wave            | ReT                                                                                               | $\operatorname{Im} T$                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.214±0.022                                       |                                                              | $S_{11}$ | $0.096\pm0.018$                                                                                    | $0.506\pm0.026$                                        | S <sub>11</sub> | $0.202 \pm 0.037$                                                                                 | $0.311\pm0.036$                                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-0.387\pm0.000$                                  |                                                              | $S_{31}$ | $-0.357\pm0.011$                                                                                   | $0.248 \pm 0.010$                                      | $S_{31}$        | $-0.284\pm0.020$                                                                                  | $0.262 \pm 0.017$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.046\pm0.024$                                  |                                                              | $P_{11}$ | $-0.026\pm0.024$                                                                                   | $0.623 \pm 0.011$                                      | $P_{11}$        | $-0.073\pm0.027$                                                                                  | $0.568 \pm 0.027$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.105\pm0.01$                                   |                                                              | $P_{13}$ | $-0.160\pm0.011$                                                                                   | $0.028 \pm 0.004$                                      | $P_{13}$        | $-0.126\pm0.015$                                                                                  | $0.018\pm0.005$                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-0.269\pm0.008$                                  |                                                              | $P_{31}$ | $-0.274\pm0.010$                                                                                   | $0.090 \pm 0.008$                                      | $P_{31}$        | $-0.344\pm0.018$                                                                                  | $0.156\pm0.018$                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.248\pm0.00$                                   |                                                              | $P_{33}$ | $-0.206\pm0.007$                                                                                   | $0.082 \pm 0.006$                                      | $P_{33}$        | $-0.112\pm0.009$                                                                                  | $0.083 \pm 0.005$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.017\pm0.01$                                    |                                                              | $D_{13}$ | $-0.186\pm0.012$                                                                                   | $0.431 \pm 0.019$                                      | $D_{13}$        | $-0.269\pm0.026$                                                                                  | $0.374 \pm 0.027$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.134\pm0.005$                                   |                                                              | $D_{15}$ | $0.163 \pm 0.007$                                                                                  | $0.056 \pm 0.008$                                      | $D_{15}$        | $0.201\pm0.012$                                                                                   | $0.093 \pm 0.019$                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.019\pm0.004$                                   | _                                                            | $D_{33}$ | $0.027\pm0.008$                                                                                    | $0.068 \pm 0.007$                                      | $D_{33}$        | $0.008 \pm 0.007$                                                                                 | $0.084 \pm 0.006$                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.123±0.010                                       |                                                              | $F_{15}$ | $0.147 \pm 0.008$                                                                                  | $0.028 \pm 0.006$                                      | $F_{15}$        | $0.207 \pm 0.011$                                                                                 | $0.076 \pm 0.011$                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.047\pm0.002$                                   | -                                                            | $F_{35}$ | $0.003\pm0.004$                                                                                    | $0.000\pm0.003$                                        | $F_{35}$        | $0.001 \pm 0.006$                                                                                 | $0.005\pm0.005$                                  |
| $0.015\pm0.004$ $0.003\pm0.003$ $G_{17}$ $G_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                              | $F_{37}$ | $0.068 \pm 0.004$                                                                                  | $0.008\pm0.003$                                        | $F_{37}$        | $0.077 \pm 0.004$                                                                                 | $0.010 \pm 0.007$                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                 |                                                              | $G_{19}$ | $0.015\pm0.004$                                                                                    | $0.003\pm0.003$                                        | G17             | $0.028 \pm 0.008$                                                                                 | $0.005 \pm 0.018$                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                              |          |                                                                                                    |                                                        | $G_{19}$        | $0.006\pm0.005$                                                                                   | $0.000\pm0.003$                                  |

1096

TABLE IV. (Continued).

# RICHARD A. ARNDT, JOHN M. FORD, AND L. DAVID ROPER

| $IV_{\text{par}} = 20, \lambda = 30^{+}, \lambda$                                                                    | C75, $T_{\rm lab} = 750$ MeV (730-770), $N_{\rm data} = 448$ ,<br>$N_{\rm par} = 28$ , $\chi^2 = 584$ , $\chi^2 (\rm ED) = (670, 664)$<br>$D_{\rm a} T$ | C80,<br>Nave    | N, $T_{lab} = 800$ MeV (785–815), $N_{data} = 415$ ,<br>$N_{par} = 28$ , $\chi^2 = 607$ , $\chi^2 (ED) = (712,704)$<br>$R_{eT}$ $I_{mT}$ | -815), $N_{data} = 415$ ,<br>(D)=(712,704)<br>Im T | C85,<br>N<br>Wave | , $T_{\text{lab}} = 850 \text{ MeV} (830-870)$ , $N_{\text{data}} = 439$ ,<br>$N_{\text{par}} = 28$ , $\chi^2 = 664$ , $\chi^2(\text{ED}) = (716, 795)$<br>$R_{eT}$ Im T | -870), $N_{\text{data}} = 439$ ,<br>3D) = (716,795)<br>Im T |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Ian                                                                                                                  | 7 1111                                                                                                                                                  | Mayo            | INI                                                                                                                                      | 7 1111                                             | 2101              | 101                                                                                                                                                                      | 7 1117                                                      |
| $0.343 \pm 0.018$                                                                                                    | $0.365 \pm 0.022$                                                                                                                                       | $S_{11}$        | $0.372 \pm 0.015$                                                                                                                        | $0.536\pm0.017$                                    | $S_{11}$          | $0.231 \pm 0.017$                                                                                                                                                        | $0.786 \pm 0.017$                                           |
| $-0.214\pm0.014$                                                                                                     | $0.393 \pm 0.008$                                                                                                                                       | $S_{31}$        | $-0.247\pm0.017$                                                                                                                         | $0.517\pm0.011$                                    | $S_{31}$          | $-0.299\pm0.017$                                                                                                                                                         | $0.552\pm0.013$                                             |
| $-0.150\pm0.013$                                                                                                     | $0.530 \pm 0.018$                                                                                                                                       | $P_{11}$        | $-0.165\pm0.013$                                                                                                                         | $0.475\pm0.012$                                    | $P_{11}$          | $-0.170\pm0.016$                                                                                                                                                         | $0.417\pm0.015$                                             |
| $-0.110\pm0.007$                                                                                                     | $0.013 \pm 0.003$                                                                                                                                       | $P_{13}$        | $-0.096\pm0.010$                                                                                                                         | $0.010 \pm 0.003$                                  | $P_{13}$          | $-0.070\pm0.012$                                                                                                                                                         | $0.009\pm0.004$                                             |
| $-0.289\pm0.010$                                                                                                     | $0.129 \pm 0.010$                                                                                                                                       | $P_{31}$        | $-0.327\pm0.012$                                                                                                                         | $0.150 \pm 0.012$                                  | $P_{31}$          | $-0.316\pm0.012$                                                                                                                                                         | $0.134 \pm 0.012$                                           |
| $-0.105\pm0.005$                                                                                                     | $0.138 \pm 0.006$                                                                                                                                       | $P_{33}$        | $-0.081\pm0.007$                                                                                                                         | $0.159 \pm 0.008$                                  | $P_{33}$          | $-0.073\pm0.007$                                                                                                                                                         | $0.177 \pm 0.009$                                           |
| $-0.216\pm0.016$                                                                                                     | $0.290 \pm 0.016$                                                                                                                                       | $D_{13}$        | $-0.200\pm0.011$                                                                                                                         | $0.219\pm0.012$                                    | $D_{13}$          | $-0.192\pm0.012$                                                                                                                                                         | $0.190 \pm 0.015$                                           |
| $0.224\pm0.009$                                                                                                      | $0.165\pm0.012$                                                                                                                                         | $D_{15}$        | $0.198\pm0.008$                                                                                                                          | $0.312 \pm 0.008$                                  | $D_{15}$          | $0.061 \pm 0.007$                                                                                                                                                        | $0.407\pm0.010$                                             |
| $0.018 \pm 0.004$                                                                                                    | $0.086\pm0.005$                                                                                                                                         | $D_{33}$        | $-0.008\pm0.006$                                                                                                                         | $0.120 \pm 0.007$                                  | $D_{33}$          | $-0.026\pm0.006$                                                                                                                                                         | $0.131 \pm 0.006$                                           |
| $-0.076\pm0.005$                                                                                                     | $0.006\pm0.003$                                                                                                                                         | $D_{35}$        | $-0.077\pm0.007$                                                                                                                         | $0.006\pm0.003$                                    | $D_{35}$          | $-0.082\pm0.006$                                                                                                                                                         | $0.007\pm0.003$                                             |
| $0.283\pm0.006$                                                                                                      | $0.170 \pm 0.006$                                                                                                                                       | $F_{15}$        | $0.311 \pm 0.007$                                                                                                                        | $0.344 \pm 0.006$                                  | $F_{15}$          | $0.181 \pm 0.006$                                                                                                                                                        | $0.568 \pm 0.006$                                           |
| $0.001\pm0.003$                                                                                                      | $0.010\pm0.004$                                                                                                                                         | $F_{35}$        | $0.009\pm0.003$                                                                                                                          | $0.019 \pm 0.004$                                  | $F_{35}$          | $0.017\pm0.003$                                                                                                                                                          | $0.022 \pm 0.004$                                           |
| $0.091 \pm 0.003$                                                                                                    | $0.014\pm0.004$                                                                                                                                         | $F_{27}$        | $0.116\pm0.003$                                                                                                                          | $0.026\pm0.004$                                    | $F_{37}$          | $0.136\pm0.003$                                                                                                                                                          | $0.036\pm0.005$                                             |
| $0.015 \pm 0.008$                                                                                                    | $0.006\pm0.010$                                                                                                                                         | GIT             | $0.024\pm0.007$                                                                                                                          | 0,006±0.007                                        | G <sub>17</sub>   | $0.040\pm0.007$                                                                                                                                                          | $0.003\pm0.003$                                             |
| $0.005\pm0.003$                                                                                                      | $0.002\pm0.004$                                                                                                                                         | $G_{19}$        | $0.015\pm0.003$                                                                                                                          | $0.001 \pm 0.004$                                  | G <sub>19</sub>   | $0.024\pm0.005$                                                                                                                                                          | $0.016\pm0.004$                                             |
| C90, $T_{\text{lab}} = 900$ MeV (880–920), $N_{\text{data}} = 484$ ,<br>$N = -20$ $v^2 - 612$ $v^2$ (FD) = (755 849) | (FD) = (755, 849)                                                                                                                                       | S               | C95, $T_{\text{lab}} = 950 \text{ MeV} (925-975), N_{\text{data}} = 604, N_{\text{Mata}} = 34 v^2 = 772 v^2 (\text{FD}) = (834.911)$     | 975), $N_{\text{data}} = 604$ ,<br>3D)=(834.911)   | C99, N            | C99, $T_{\text{lab}} = 999$ MeV (970–1030), $N_{\text{data}} = 572$ ,<br>$N_{\text{acc}} = 35$ , $r^2 = 785$ , $r^2$ (FD)=(942,992)                                      | -1030), $N_{data} = 572$ ,<br>ED) = (942, 992)              |
| $\operatorname{Re} T$                                                                                                | ImT                                                                                                                                                     | Wave            | ReT                                                                                                                                      | ImT                                                | Wave              | ReT                                                                                                                                                                      | ImT                                                         |
| $-0.059\pm0.014$                                                                                                     | $0.867 \pm 0.016$                                                                                                                                       | S <sub>11</sub> | $-0.249\pm0.023$                                                                                                                         | $0.751 \pm 0.023$                                  | $S_{11}$          | $-0.370\pm0.022$                                                                                                                                                         | $0.659\pm0.021$                                             |
| $-0.421\pm0.017$                                                                                                     | $0.547 \pm 0.017$                                                                                                                                       | $S_{31}$        | $-0.364\pm0.024$                                                                                                                         | $0.573 \pm 0.018$                                  | $S_{31}$          | $-0.409\pm0.025$                                                                                                                                                         | $0.584 \pm 0.026$                                           |
| $-0.191\pm0.015$                                                                                                     | 0.302±0.015                                                                                                                                             | $P_{11}$        | $-0.148\pm0.030$                                                                                                                         | $0.331 \pm 0.028$                                  | $P_{11}$          | $-0.141\pm0.030$                                                                                                                                                         | $0.261 \pm 0.024$                                           |
| $-0.091\pm0.018$                                                                                                     | $0.045\pm0.009$                                                                                                                                         | $P_{13}$        | $-0.043\pm0.017$                                                                                                                         | $0.131 \pm 0.013$                                  | $P_{13}$          | $-0.088\pm0.012$                                                                                                                                                         | $0.182 \pm 0.011$                                           |
| $-0.330\pm0.013$                                                                                                     | $0.125\pm0.013$                                                                                                                                         | $P_{31}$        | $-0.316\pm0.018$                                                                                                                         | $0.140\pm0.018$                                    | $P_{31}$          | $-0.327\pm0.020$                                                                                                                                                         | $0.143\pm0.020$                                             |
| $-0.073\pm0.010$                                                                                                     | $0.147\pm0.009$                                                                                                                                         | $P_{33}$        | $-0.079\pm0.013$                                                                                                                         | $0.193\pm0.012$                                    | $P_{33}$          | $-0.085\pm0.014$                                                                                                                                                         | $0.198\pm0.011$                                             |
| $-0.204\pm0.012$                                                                                                     | $0.143\pm0.016$                                                                                                                                         | $D_{13}$        | $-0.176\pm0.015$                                                                                                                         | $0.082 \pm 0.018$                                  | $D_{13}$          | $-0.127\pm0.012$                                                                                                                                                         | $0.057\pm0.014$                                             |
| $-0.112\pm0.008$                                                                                                     | 0.429±0.006                                                                                                                                             | $D_{15}$        | $-0.188\pm0.013$                                                                                                                         | $0.330\pm0.013$                                    | $D_{15}$          | $-0.207\pm0.014$                                                                                                                                                         | $0.263 \pm 0.014$                                           |
| $-0.101\pm0.009$                                                                                                     | $0.157\pm0.007$                                                                                                                                         | $D_{33}$        | $-0.085\pm0.010$                                                                                                                         | $0.125\pm0.011$                                    | $D_{33}$          | $-0.110\pm0.012$                                                                                                                                                         | $0.130 \pm 0.012$                                           |
| $-0.046\pm0.007$                                                                                                     | $0.002\pm0.003$                                                                                                                                         | $D_{35}$        | $-0.097\pm0.011$                                                                                                                         | $0.010\pm0.003$                                    | $D_{35}$          | $-0.090\pm0.011$                                                                                                                                                         | $0.008\pm0.003$                                             |
| $-0.095\pm0.008$                                                                                                     | $0.604\pm0.008$                                                                                                                                         | $F_{15}$        | $-0.292\pm0.016$                                                                                                                         | $0.479\pm0.013$                                    | $F_{15}$          | $-0.335\pm0.014$                                                                                                                                                         | $0.326\pm0.013$                                             |
| $0.006\pm0.005$                                                                                                      | $0.040\pm0.004$                                                                                                                                         | $F_{35}$        | $0.032 \pm 0.006$                                                                                                                        | $0.040\pm0.005$                                    | $F_{35}$          | $0.030\pm0.006$                                                                                                                                                          | $0.058\pm0.007$                                             |
| $0.131\pm0.005$                                                                                                      | $0.061 \pm 0.006$                                                                                                                                       | $F_{37}$        | $0.176\pm0.007$                                                                                                                          | $0.076 \pm 0.007$                                  | $F_{37}$          | $0.197\pm0.006$                                                                                                                                                          | $0.112\pm0.009$                                             |
| $0.031 \pm 0.008$                                                                                                    | $0.011 \pm 0.007$                                                                                                                                       | $G_{17}$        | $0.058 \pm 0.007$                                                                                                                        | $0.009 \pm 0.007$                                  | $G_{17}$          | $0.060\pm0.006$                                                                                                                                                          | $0.022\pm0.009$                                             |
| $0.018 \pm 0.007$                                                                                                    | $0.023\pm0.003$                                                                                                                                         | $G_{19}$        | $0.014\pm0.006$                                                                                                                          | $0.018 \pm 0.005$                                  | $G_{19}$          | $0.018\pm0.006$                                                                                                                                                          | $0.018\pm0.005$                                             |
|                                                                                                                      |                                                                                                                                                         | G <sub>39</sub> | $-0.008\pm0.006$                                                                                                                         | $0.003 \pm 0.003$                                  | G39               | $-0.010\pm0.006$                                                                                                                                                         | $0.001\pm0.006$                                             |
|                                                                                                                      |                                                                                                                                                         | $H_{111}$       | $0.023 \pm 0.006$                                                                                                                        | $0.011\pm0.005$                                    | $H_{111}$         | $0.012\pm0.006$                                                                                                                                                          | $0.001\pm0.007$                                             |
|                                                                                                                      |                                                                                                                                                         |                 |                                                                                                                                          |                                                    |                   |                                                                                                                                                                          |                                                             |

<u>32</u>

## PION-NUCLEON PARTIAL-WAVE ANALYSIS TO 1100 MeV

1097

| 120), $N_{\text{data}} = 420$ ,<br>= (945,945)                                                                                                         | $\operatorname{Im} T$ | 0.526±0.037       | $0.619\pm0.048$  | $0.224\pm0.030$  | $0.159 \pm 0.025$ | $0.122 \pm 0.038$ | $0.193\pm0.023$   | $0.038\pm0.022$  | $0.118 \pm 0.024$ | $0.102 \pm 0.026$ | $0.008\pm0.005$  | $0.199 \pm 0.022$ | $0.098 \pm 0.011$ | $0.219\pm0.020$   | $0.042 \pm 0.010$ | $0.020 \pm 0.009$ | $0.017 \pm 0.012$ | $0.002 \pm 0.007$ | $0.013\pm0.008$   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| C110, $T_{\text{lab}} = 1100$ MeV (1080–1120), $N_{\text{data}} = 420$ ,<br>$N_{\text{nore}} = 35$ , $\chi^2 = 730$ , $\chi^2 (\text{ED}) = (945,945)$ | ReT                   | $-0.406\pm0.044$  | $-0.403\pm0.045$ | $-0.089\pm0.033$ | $-0.138\pm0.019$  | $-0.309\pm0.037$  | $-0.075\pm0.032$  | $-0.155\pm0.019$ | $-0.240\pm0.019$  | $-0.114\pm0.017$  | $-0.088\pm0.025$ | $-0.261\pm0.020$  | $0.006\pm0.011$   | $0.233\pm0.017$   | $0.078 \pm 0.007$ | $0.063 \pm 0.007$ | $-0.013\pm0.011$  | $0.020\pm0.006$   | $0.023 \pm 0.007$ |
| C110,                                                                                                                                                  | Wave                  | S <sub>11</sub>   | $S_{31}$         | $P_{11}$         | $P_{13}$          | $P_{31}$          | $P_{33}$          | $D_{13}$         | $D_{15}$          | $D_{33}$          | $D_{35}$         | $F_{15}$          | $F_{35}$          | $F_{37}$          | $G_{17}$          | $G_{19}$          | $G_{39}$          | $H_{111}$         | $H_{311}$         |
| $-1080)$ $N_{data} = 680,$<br>) = (1072, 1068)                                                                                                         | lm T                  | $0.622 \pm 0.040$ | $0.585\pm0.032$  | $0.329\pm0.029$  | $0.142 \pm 0.018$ | $0.140\pm0.031$   | $0.184 \pm 0.012$ | $0.035\pm0.025$  | $0.214 \pm 0.024$ | $0.103 \pm 0.014$ | 0.009±0.004      | $0.230\pm0.022$   | $0.083 \pm 0.007$ | $0.168 \pm 0.014$ | $0.055\pm0.013$   | $0.018 \pm 0.009$ | $0.004\pm0.006$   | $0.002 \pm 0.006$ | 0.015±0.005       |
| C105, $T_{\text{lab}} = 1050$ MeV (1020–1080) $N_{\text{data}} = 680$ ,<br>$N_{\text{nor}} = 35$ , $\chi^2 = 943$ , $\chi^2(\text{ED}) = (1072,1068)$  | ReT                   | $-0.272\pm0.041$  | $-0.391\pm0.042$ | $-0.116\pm0.029$ | $-0.115\pm0.026$  | $-0.330\pm0.030$  | $-0.090\pm0.020$  | $-0.124\pm0.014$ | $-0.237\pm0.023$  | $-0.129\pm0.013$  | $-0.095\pm0.016$ | $-0.257\pm0.022$  | $0.025 \pm 0.006$ | $0.216\pm0.010$   | $0.074\pm0.006$   | $0.041 \pm 0.007$ | $-0.012\pm0.006$  | $0.019 \pm 0.006$ | 0.019±0.003       |
| C105,                                                                                                                                                  | Wave                  | S <sub>11</sub>   | $S_{31}$         | $P_{11}$         | $P_{13}$          | $P_{31}$          | $P_{33}$          | $D_{13}$         | $D_{15}$          | $D_{33}$          | $D_{35}$         | $F_{15}$          | $F_{35}$          | $F_{37}$          | G <sub>17</sub>   | G <sub>19</sub>   | G <sub>39</sub>   | $H_{111}$         | $H_{311}$         |

TABLE IV. (Continued).

dependent fit. Characterized by charge channel, FP84 resulted in the following  $\chi^2$ /data:  $\pi^+p=5708/3709$ ,  $\pi^-p=8267/4860$ , and CXS=1528/700.

In Fig. 6 we plot the partial waves of solution FP84 for 0-1200 MeV (our FP84 analysis end point is 1100 MeV), along with the results of our single-energy analyses. In Table III the partial-wave amplitudes of solution FP84 are tabulated at those energies where single-energy fits were obtained. As we have indicated throughout this report, agreement between FP84 and the single-energy fits is convincing of a consistent picture (Figs. 6 and 7).

In Table IV we present partial waves, with errors, for the single-energy analyses. Only those partial waves with searched parameters are given; other waves taken from FP84 are given in Table III.

Figure 8 is a brief summary of how well the FP84 solution fits the angular data. Figures 2 and 3 show the fits for energy data.

Our method of parametrizing FP84 allows us to analytically continue the partial-wave amplitudes into the complex total-energy (W) plane and to locate the structures, poles and zeros, which give the on-shell features shown in Fig. 6. In Table V we enumerate the complex-plane positions (ReW, ImW) for poles and zeros of all partial waves through l=3 and for  $1300 \le \text{Re}W \le 1900$  MeV and  $-200 \le \text{Im}W \le 0$  MeV. In addition to the poles and zeros of Table V, on-shell structure is strongly influenced by the  $\pi\Delta$  branch cut which starts at W=(1360,-51) MeV, and by the  $\eta$  production threshold at 1489 MeV (for the  $S_{11}$  state only). Some of the poles and zeros may be intimately connected with these thresholds.

In Fig. 9 we map  $\ln(T^2)$  extended into the complex energy plane to illustrate how prominent features of the onshell partial waves are influenced by nearby poles and zeros of the T matrix.

Generally there is a close association between the poles of Table V and  $\pi N$  resonances given in the baryon table of the Particle Data Group.<sup>2</sup> Some of the structures, however, are too complicated to be described by simple resonance forms; therefore, we are presently engaged in a more extensive study of the complex-plane topology for solution FP84.

## VIII. COMPARISON WITH KARLSRUHE-HELSINKI SOLUTIONS

In Fig. 7 partial waves through l=3 from solution FP84 are plotted with values obtained by the Karlsruhe-Helsinki (KH) group.<sup>1</sup> Comparison reveals good agreement below 600 MeV, and fair agreement above 600 MeV. In particular, FP84 does not contain some of the smaller structures of the KH solution. Some of this can be attributed to the higher degree of smoothing which is intrinsic to our method; comparison with our single-energy analyses, however, suggests that these structures are not being demanded by the data. Some of the structures are possibly noise in the KH solutions.

The principal difference between our method and that of the KH group is in the larger amount of dispersiontheoretic data used by the KH group to constrain their solutions. We use only the real part of the forward ampli-

| TABLE V. Complex-plane positions for prominent partial-                                      |
|----------------------------------------------------------------------------------------------|
| wave poles $(P)$ and zeros $(Z)$ . Positions are in c.m. energy                              |
| $(\operatorname{Re} W, \operatorname{Im} W)$ MeV. Resonances are from the baryon table (Ref. |
| 2) and indicate their (one-four)-star rating.                                                |

| State                  | Resonances | Pole $(P)$ , or Zero $(Z)$ |
|------------------------|------------|----------------------------|
| <i>S</i> <sub>11</sub> | 1535****   | $P_1$ (1461, -70)          |
|                        | 1650****   | $Z_1$ (1580, -69)          |
|                        |            | $P_2$ (1660, -61)          |
| <b>P</b> <sub>11</sub> | 1440****   | $Z_1$ (1200,0)             |
|                        | 1710***    | $P_1$ (1359, -100)         |
|                        |            | $P_2$ (1410, -80)          |
| · .                    |            | $Z_2$ (1880, -70)          |
| <b>P</b> <sub>13</sub> | 1540*      | $Z_1$ (1691, -15)          |
|                        | 1720****   | $P_1$ (1705, -40)          |
| $D_{13}$               | 1520****   | $P_1$ (1510, -61)          |
|                        | 1700***    | $Z_1$ (1651, -46)          |
|                        |            | $P_2$ (1670, -40)          |
|                        |            | $Z_2$ (1890, -141)         |
| <b>D</b> <sub>15</sub> | 1675****   | $P_1$ (1661, -71)          |
| F <sub>15</sub>        | 1680****   | $P_1$ (1680, -60)          |
| <b>S</b> <sub>31</sub> | 1620****   | $Z_1$ (1585, -34)          |
|                        |            | $P_1$ (1599, -60)          |
| <b>P</b> <sub>33</sub> | 1232****   | $P_1$ (1210, -50)          |
|                        | 1600**     | $Z_1$ (1590, -60)          |
|                        | 1920***    | $P_2$ (1581, -150)         |
| <b>D</b> <sub>33</sub> | 1700****   | $Z_1$ (1360, -21)          |
|                        |            | $P_1$ (1668, -160)         |
| F <sub>35</sub>        | 1905****   | $Z_1$ (1557, -52)          |
| •                      |            | $P_1$ (1830, -90)          |
| <b>F</b> <sub>37</sub> | 1950****   | $P_1$ (1858, -119)         |

tude<sup>3</sup> to complement real scattering data. The KH analyses are also much more ambitious, covering an energy range nearly three times that which we cover. Our primary emphasis is the precise encoding of scattering data in our more limited energy range through solutions which have proper direct-channel analytic properties, and which can be analytically extended into the complex energy plane to reveal dominant dynamical features such as poles and zeros of the resultant partial waves. It is encouraging that these two quite different approaches produce such similar results.

## IX. THE SAID FACILITY: EXPLORING THE SOLUTIONS

A package of programs and data files known as SAID (scattering analyses interactive dial-in) is used to encode these  $\pi$ -nucleon analyses, including pion-production analyses,<sup>4</sup> as well as recent analyses of nucleon-nucleon and



FIG. 8. Our FP84 solution versus some of the angular data. P=polarization, CXS=charge-exchange reaction. The data shown are within ±1° of the selected angle. (a) Differential cross sections for  $\pi^+p$ . (b) Polarizations for  $\pi^+p$ . (c) Differential cross sections for  $\pi^-p$  elastic. (d) Polarizations for  $\pi^-p$  elastic. (e) Differential cross sections for  $\pi^-p$  charge exchange. (f) Polarizations for  $\pi^-p$  charge exchange.

 $K^+$ -nucleon data below a few GeV. The programs run interactively on computers at VPI&SU and on many VAX11-780/VMS systems throughout the world. The programs allow use of any of many solutions, including ones which may be entered by the user, to calculate any of the multitude of quantities which are predicted by the solution (observables or partial-wave amplitudes). These, in turn, can be used to plan experiments, examine the data base, and ascertain disparities and uncertainties in the solutions. The system can be used with any computer terminal and a number of terminal types are supported for graphics output (including color graphics on the NEC APC). Most of the plots presented in this report were generated through SAID. Copies of SAID are available upon request on small VAX backup tapes.

The SAID package also contains a set of FORTRAN subroutines which use an interpolating array written for SAID to provide a very accurate reconstruction of onshell amplitudes in calculations. Users who need on-shell  $\pi N$  amplitudes at a number of kinematic points can simply call these subroutines when necessary from their programs. This package (subroutines and interpolating array) can be obtained on computer tape from the authors.







FIG. 9. Complex-plane mapping for selected partial waves. Re W goes from 1300 to 1900 MeV except for  $P_{33}$  where it goes from 1100 to 1700 MeV. Im W goes from -200 to 0 MeV (the physical axis). The quantity being mapped is  $\ln(T^2)$ ; prominent poles (P), and zeros (Z) are indicated as described in Sec. VII. The  $\pi\Delta$  cut is extended to the left, except for the second view of  $P_{11}$  which shows it extending to the right. The partial-wave amplitudes are plotted above the contour plots.



FIG. 9. (Continued).

#### ACKNOWLEDGMENTS

This work was sponsored by the United State Department of Energy under Contract No. DE-AS05-76-ER04928. The authors wish to express their gratitude to Professor B. M. K. Nefkens at UCLA for useful discussions about the data base, and, especially, to Professor G. Höhler at Institüt für Kernphysik (Karlsruhe) for many useful discussions of the data base and several other general aspects of the  $\pi N$  scattering problem. One author (R.A.A.) would like to thank Professor G. Chew at University of California, Berkeley, for the inspiration to present our results in the form of the complex-plane mappings shown in Fig. 9. Another author (J.M.F.) wishes to thank Teledyne Brown Engineering of Huntsville, Alabama, for allowing him leaves of absence to pursue this work.

- \*Permanent address: Brown-Teledyne Engineering, Cummings Research Park, Huntsville, AL 35807.
- <sup>1</sup>Karlsruhe-Helsinki (KH) solution: G. Höhler, F. Kaiser, R. Koch, and E. Pietarinen, *Handbook of Pion-Nucleon Scattering* (Fachsinformationszentrum, Karlesruhe, Germany, 1979), Physics Data 12-1; R. Koch, in *Baryon 1980*, proceedings of the 4th International Conference on Baryon Resonances, Toronto, edited by N. Isgur (University of Toronto, Toronto, 1981); R. Koch and E. Pietarinen, Nucl. Phys. A336, 331 (1980). The KH solution mentioned in this paper is the high-

energy one; the low-energy solution is also available in the SAID facility. Carnegie-Mellon-Berkeley (CMB) solution: R. L. Kelly and R. E. Cutkosky, Phys. Rev. D 20, 2782 (1979); R. E. Cutkosky *et al.*, *ibid.* 20, 2804 (1979); 20, 2839 (1979); R. E. Cutkosky, in *Baryon 1980* (Ref. 1), p. 19.

<sup>2</sup>Particle Data Group, Rev. Mod. Phys. 56, S1 (1984).

- <sup>3</sup>A. A. Carter and J. R. Carter, Rutherford Laboratory Report No. RL-73-024, 1973 (unpublished).
- <sup>4</sup>D. Mark Manley, Richard A. Arndt, Yogesh Goradia, and Vigdor Teplitz, Phys. Rev. D 30, 904 (1984).