Pion-nucleon partial-wave analysis to 1100 MeV

Richard A. Arndt, John M. Ford,* and L. David Roper

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

(Received 24 January 1985)

Comprehensive analyses of pion-nucleon elastic scattering data below 1100-MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 23 singleenergy solutions are obtained consists of 3771 $\pi^+ p$ elastic, 4942 $\pi^- p$ elastic, and 717 $\pi^- p$ chargeexchange data. Partial-wave structure is characterized by the location in the complex energy plane of dominant poles and zeros, which are related to π -N resonances. Scattering lengths are extracted from the energy-dependent solution to characterize the low-energy behavior. We describe a method for charge-correcting "nuclear" amplitudes in order to use them in various charge channels; the resultant splitting between $\pi^+ p$ and $\pi^- p$ channels is necessary and sufficient to describe the data accurately. Comparison to the Karlsruhe-Helsinki analyses is favorable, although some small differences exist. We describe how the full data base and solution files can be accessed through our scattering analysis interactive dial-in (SAID) computer system at VPI&SU, copies of which also exist at several institutions throughout the world and which can be transferred to any site with a VAX/VMS computer system. In addition to solutions presented here, SAID also encodes the Karlsruhe-Helsinki solution, the Carnegie-Mellon-Berkeley solution, and production partial waves from a recent VPI&SU analysis. The system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base.

I. INTRODUCTION

We have updated our pion-nucleon partial-wave analysis in the first two resonance regions (up to 1100-MeV laboratory kinetic energy). All of the data and our partial-wave amplitudes are available in great detail on our scattering analysis interactive dial-in (SAID) computer system (see below), which is available at about forty other sites with VAX/VMS computers. This is a report of our energy-dependent and single-energy solutions.

Section II contains a description of the data base used to extract the solutions reported in this paper. Section III describes the parametrization of the energy-dependent solution and Sec. IV describes our method of binning the data and using partial-wave energy derivatives in order to perform 23 single-energy analyses. Section V describes our method for charge-correcting "nuclear" partial waves for use in constructing charge-channel amplitudes; we indicate how the data demand such splitting and how our method appears sufficient to satisfy the data. Section VI reports the scattering lengths extracted from the energydependent analysis, and indicates the range of validity for such a low-energy representation. In Sec. VII we report results for the 24 analyses of this paper, and characterize the dominant energy-dependent features of our solutions in terms of the positions of nearby complex-plane poles and zeros of the partial-wave amplitudes. In Sec. VIII we compare the features of our solutions to those of the Karlsruhe-Helsinki solution.¹ Section IX describes how the SAID facility can be used to explore π -N scattering with several solutions and the data base.

II. PION-NUCLEON DATA BASE

We have attempted to indicate the dimensions of the data base used for these analyses in Fig. 1 where we present kinematic distribution plots for cross sections and polarization measurements in the three charge channels $\pi^+ p$, $\pi^- p$, and $\pi^- p$ charge exchange (CXS). Each data point is indicated in Fig. 1 as "old" (boxes, before 1975), or "new" (N, after 1974). Figure 2 shows total cross sections, while Fig. 3 shows the real part of the non-spin-flip amplitude [Ref(0)] for $\pi^+ p$ and $\pi^- p$ data. Because of the very large number of experiments involved, we make no attempt to detail the data base here. In compiling the data base shown in Figs. 1-3, we have excluded some very old data having large errors (e.g., polarization measurements with errors larger than 0.2), and some totalcross-section data which were incompatible with the bulk of recent, precise measurements; the deleted total cross sections are shown in Fig. 2 with a slanted line drawn through them.

We believe that our data base is the most comprehensive collection of both published and unpublished (but "respectable") data below $T_{\rm lab} = 1200$ MeV. A detailed examination of the data base is possible through the SAID facility, where references and remarks are encoded. Experiments or single data points which were not included in these analyses are plainly flagged by the SAID programs.

It is important to recognize that, as revealed by Figs. 1-3, the data base used for these analyses is very large and inclusive. Inclusion or omission of single data points, or of selected experiments should not have a large effect

FIG. 1. Pion-nucleon scattering data base for 0–1100 laboratory kinetic energy. These graphs indicate the density and distribution of data with energy and c.m. scattering angle. The boxes indicate old data (pre 1975) and the N's indicate new data (post 1974). (a) Differential cross section and polarization for $\pi^+ p$ scattering. (b) Differential cross section and polarization for $\pi^- p$ scattering. (c) Differential cross section and polarization for CXS scattering.

FIG. 2. Total cross section. A slash through a data point indicates that it was not used in these analyses. Curves are predictions for solution FP84. (a) Total cross section for $\pi^+ p$ and $\pi^- p$ scattering for $T_{\rm lab} = 20-520$ MeV. (b) Total cross section for $\pi^+ p$ and $\pi^- p$ scattering for $T_{\rm lab} = 500-1100$ MeV.

on the solutions we obtain; in fact, we find that this is the case.

III. PARAMETRIZATION OF THE ENERGY-DEPENDENT SOLUTION

Our energy-dependent solution, FP84, is parametrized by a Chew-Mandelstam coupled-channel *K*-matrix form:

$$\Gamma_{n} = [\rho^{1/2} K (1 - CK)^{-1} \rho^{1/2}]_{11} , \qquad (1)$$

FIG. 3. Real part of the forward non-spin-flip amplitude, $\operatorname{Re} f(0)$. Data points are dispersion-theory calculations by Carter *et al.* (Ref. 4). Curves are predictions of solution FP84.

where T_n is the elastic nuclear *T*-matrix element, *K* is a real symmetric 2×2 matrix, and *C* is a 2×2 diagonal matrix whose elements are obtained by integrating phase-space factors over appropriate unitarity cuts. Note that $\rho = \text{Im}C$ is the phase-space factor. We chose *C* to be

$$C_{l} = \int_{0}^{1} \left[x^{l+1/2} / (x-z) \right] dx / \pi , \qquad (2)$$

where

$$z = (W - W_t) / (W - W_z)$$

W =center-of-mass energy,

l =orbital angular momentum index ,

 $W_t =$ threshold energy

 $=M+\mu$ for the elastic channel

 $=M_{\Delta}+\mu$ for the inelastic channel,

 $W_z =$ subtraction point

 $=M+\mu-150$ MeV for the elastic channel

 $=M+2\mu$ for the inelastic channel,

M = nucleon mass, $\mu =$ pion mass,

and

 $M_{\Delta} = \Delta$ mass .

We chose as the inelastic channel the lowest orbital $\pi\Delta$ state to which an elastic π^-p partial wave can couple. An exception is the S_{11} state, which includes coupling to a second inelastic S-wave η production channel; this can be seen clearly in the S_{11} amplitudes of Fig. 6(a).

The elastic T matrix given above satisfies elastic unitarity requirements above pion production, about 200-MeV laboratory kinetic energy. Below threshold, a negative phase-space factor for the inelastic reaction can produce small violations of unitarity. We correct this problem to ensure elastic unitarity below 200 MeV by using the real part of the effective K matrix,

$$K_{\rm eff} = \operatorname{Re}[T_n / (1 + iT_n)], \qquad (3)$$

to generate an elastic, unitary T matrix:

$$T_{\text{elastic}} = K_{\text{eff}} / (1 - iK_{\text{eff}}) . \tag{4}$$

The K-matrix elements are parametrized as polynomials in the barycentric energy W and may also contain explicit pole terms. This apparently is flexible enough to encode all observed energy structures while maintaining proper analyticity and unitarity requirements. A high degree of smoothing occurs, as indicated in Fig. 6.

IV. BINNING THE DATA: SINGLE-ENERGY ANALYSES

Data were binned at 23 energies from 30 to 1100 MeV where "single-energy" or "energy-band" analyses were performed. The data base was first pruned with solution FP84, as described in Sec. VII, and linearized partial-wave parameters D and R were obtained. These parameters are related to the partial-wave S matrix by

$$S_I = (\cos R)e^{2iD} . (5)$$

We then represent them at the analysis energy T_0 by

$$D = D_0 + D_p (T - T_0) ,$$

$$R = R_0 + R_n (T - T_0) .$$
(6)

The parameters D, R, D_p , and R_p were extracted from solution FP84 at the analysis energy T_0 . The parameters D_0 and R_0 were varied while the parameters D_p and R_p were held fixed at their FP84 values at each singleenergy-analysis energy. The number of searched parameters ranged from 4 at 30 MeV to 35 at 1100 MeV. Note that the unsearched parameters for all partial waves were fixed at their FP84 values and not set to zero; in effect giving us a "modified energy-band" analysis, in which l values higher than usual are used at each energy. That is, the partial waves being searched actually varied somewhat over the energy band for each single-energy analysis and partial waves that were not searched sometimes had nonzero values. Contributions from unsearched waves were sometimes important at lower energies where the data were too few to support their direct determination.

These single-energy analyses are relatively form independent and are intended to compliment energydependent solution FP84; any systematic variations between the single-energy partial waves and those of solution FP84 would indicate structure not properly encoded by the energy-dependent fit. In fact, solution FP84 was developed, as described in Sec. VII, to include all such relevant structures.

We believe that the T-matrix errors given in Table IV are proper measures of the data-base uncertainties.

V. CHARGE CORRECTIONS FOR NUCLEAR PARTIAL-WAVE AMPLITUDES

Nuclear partial waves are modified by Coulomb-barrier factors for use in particular charge channels. We first extract a K matrix from the "nuclear" T matrix as

$$K_n = T_n / (1 + iT_n)$$
, (7)

where T_n = nuclear T matrix. This K matrix is then multiplied by the appropriate barrier factor in order to calculate a "charge-corrected" T matrix:

$$T_{c} = B_{l}K_{n} / (1 - iB_{l}K_{n})$$

= $B_{l}T_{n} / (1 + iT_{n} - iB_{l}T_{n})$, (8)

where B_l is the usual Coulomb-barrier factor:

$$B_0 = 2\pi\eta / (e^{2\pi\eta} - 1)$$
,

where $\eta = \pm \alpha / V_r$ for $\pi^{\pm} p$, $\alpha =$ fine-structure constant, $V_r = (\text{pion laboratory velocity})/c$, and

$$B_l = B_0 \prod_{j=1}^{l} [1 + (\eta/j)^2]$$

For charge-exchange reactions we use the square root of the $\pi^- p$ barrier factor.

The dominant effect of these corrections is to suppress low-energy $\pi^+ p$ partial waves, while enhancing lowenergy $\pi^- p$ and charge-exchange partial waves. The effects, although nominal, are not small when measured against phase-shift errors obtained for the single-energy fits at low energies. This is illustrated in Table I, which is a tabulation of nuclear, $\pi^+ p$, and $\pi^- p$ phase shifts for the S_{31} and P_{33} states at the three lowest energies (30, 50, and 100 MeV). Differences between different charge channels are as large as seven standard deviations.

In order to measure the demand for charge splitting in the data, we compared single-energy analyses below 500 MeV which were done in the following ways:

(c) Combined $(\pi^+ p, \pi^- p, \text{ and CXS})$ data with both $I = \frac{1}{2}$ and $I = \frac{3}{2}$ waves searched (reported analyses).

 $(+) \pi^+ p$ data only with $I = \frac{3}{2}$ wave searched. (-) $\pi^- p$ and CXS data with $I = \frac{1}{2}$ waves plus S_{31} and P_{33} waves searched.

TABLE I. Phase shifts at 30, 50, and 100 MeV for S_{31} and P_{33} as Coulomb corrected for various charge channels. (N) indicates uncorrected, (+) indicates corrected for $\pi^+ p$ scattering, and (-) indicates corrected for $\pi^{-}p$ scattering. Phase shifts are in degrees. Analysis errors are indicated in parentheses beside the (N) values.

T _{lab}	30 MeV	50 MeV	100 MeV
$\overline{S_{31}}$ (N)	-3.39(0.07)	-5.25(0.09)	- 8.86(0.11)
$S_{31}(+)$	-3.33	-5.07	-8.52
S_{31} (-)	-3.61	-5.43	-9.01
$P_{33}(N)$	2.50(0.03)	6.21(0.06)	22.37(0.05)
$P_{33}(+)$	2.46	6.00	21.80
P_{33} (-)	2.67	6.42	22.94

FIG. 4. Nuclear phase-shift differences for S_{31} and P_{33} at single energies below 500 MeV. δ_C indicates a phase shift obtained by fitting combined data by searching $I = \frac{1}{2}$ and $I = \frac{3}{2}$ waves; δ_+ indicates a phase shift obtained by fitting $\pi^+ p$ data only by searching $I = \frac{3}{2}$ waves; δ_- indicates a phase shift obtained by fitting $\pi^- p$ and CXS data only by searching $I = \frac{1}{2}$ waves plus S_{31} and P_{33} . Plotted errors are from the (-) analyses except for the difference, $\delta_+ - \delta_C$, for which the (+) errors were used.

For S_{31} and P_{33} we then compared the difference in nuclear phases, $\delta_+ - \delta_c$, using errors from the (+) analyses, with the difference in nuclear phases, $\delta_- - \delta_c$, using errors from the (-) analyses. These comparisons are plotted in Fig. 4, along with the difference in nuclear phases, $\delta_- - \delta_+$, using errors from the (-) analyses. If our Coulomb modifications are proper, all of these phase differences should be consistent with zero. We see nothing systematic in these results which would indicate that the data required further or different Coulomb modifications. Our conclusion from this comparison is that the modifications which we employ are necessary and sufficient to fit all charge channels with a single nuclear amplitude.

VI. LOW-ENERGY REPRESENTATION: SCATTERING LENGTHS

The low-energy behavior of our energy-dependent solution FP84 can be efficiently represented in terms of a "scattering-length" function defined by

$$[kA(k^2)]^{2l+1} = \tan \delta , \qquad (9)$$

where k=center-of-mass momentum in inverse fm and $\delta=$ nuclear phase shift. At threshold A(0) is just the conventional scattering length; its values for the S and P states are given in Table II. In Fig. 5 we plot the scattering-length functions $A(k^2)$ for S and P states below 100 MeV. It is apparent that the functions displayed can be well represented by linear functions of energy. The P_{33} state, of course, has a resonance at about 190 MeV, so its linearity would vanish quickly above 100 MeV.

Although it is customary to describe low-energy

scattering in terms of scattering lengths, we feel that the full solution should be used for most calculations.

VII. PARTIAL-WAVE AMPLITUDES: CHARACTERIZING THE SOLUTIONS

Solution FP84 and the single-energy analyses reported in this paper were begun with an energy-dependent fit FA84 to the unpruned data base. A large number of iterations were performed between FA84 and the singleenergy solutions to ensure that there were no structures suggested by the single-energy fits that were not encoded by the energy-dependent form. In the cycle, energy

0.00

TABLE II. Scattering lengths $A(k^2=0)$ from solution FP84.

FIG. 6. Partial-wave amplitudes from solution FP84 and from the single-energy analyses. Re T is indicated by Δ while Im T is indicated by $\times.$

1200.00

1200.00

derivatives and initial phase parameters were obtained from FA84 for generation of the single-energy fits. This procedure resulted in a solution FA84 containing 121 searched parameters: 64 for the 13 $I = \frac{1}{2}$ waves, and 57 for the 13 $I = \frac{3}{2}$ waves determined by these analyses.

After developing FA84, we examined the effects of pruning the data; a number of single data points contributed very large χ^2 contributions to FA84. We found that by pruning all data points with χ^2 contributions in excess of 16 (4 standard deviations), overall χ^2 could be reduced by about 20% (from 20 000 to 15 000), while less than 2% of the data were eliminated. The resultant solution, upon reanalysis, changed very slightly but exhibited superior

numerical characteristics ("cleaner" searches).

Solution FP84 was developed by the pruning procedure described above: prune-search-prune-search, etc. The final result, reported in this paper, is a solution with 161 fewer data (9269 vs 9430) and a χ^2 of 15504 (vs 20136 for FA84). The two solutions are extremely close to each other, as one would expect from such a slight pruning of the data base. Although FA84 is not reported herein, it is encoded on the SAID facility (see below) and can be studied there.

We believe that the pruned data base provides a superior representation for πN scattering below 1100 MeV and, therefore, report solution FP84 as the best energy-

TABLE III. Nuclear partial-wave amplitudes from solution FP84. $T_r = \text{Re}T_n$, $T_i = \text{Im}T_n$.

$T_{\rm lab}$	W _{c.m}	· ·			(a) $I = \frac{1}{2}$	······································		
(MeV)	(MeV)	• •	$T_r(P_{11})T_i$	$T_r(D_{13})T_i$	$T_r(F_{15})T_i$	$T_r(G_{17})T_i$	$T_r(H_{19})T_i$	$T_r(I_{111})T_i$
30	1103		-0.015 0.000	0.001 0.000	-0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
50	1120		-0.024 0.001	0.001 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
100	1161		-0.026 0.001	0.006 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
150	1201		0.001 0.000	0.014 0.000	0.002 0.000	0.001 0.000	0.000 0.000	0.000 0.000
200	1239		0.057 0.005	0.026 0.001	0.005 0.000	0.002 0.000	0.001 0.000	0.000 0.000
250	12//		0.143 0.030	0.045 0.003	0.010 0.000	0.004 0.000	0.002 0.000	0.000 0.000
300	1313		0.249 0.100	0.073 0.009	0.017 0.000	0.005 0.000	0.002 0.000	0.000 0.000
350	1348		0.337 0.242	0.112 0.021	0.026 0.001	0.006 0.000	0.003 0.000	0.000 0.000
400	1302		0.332 0.420	0.103 0.048	0.038 0.002	0.008 0.000	0.004 0.000	0.000 0.000
400 500	1410		0.239 0.300	0.231 0.103	0.033 0.003	0.010 0.001	0.004 0.000	0.000 0.000
550	1449		0.031 0.625	0.235 0.225	0.072 0.009	0.015 0.001	0.005 0.000	
600	1512		-0.041 0.608	0.048 0.597	0.128 0.028	0.010 0.002	0.005 0.000	-0.000 0.000
650	1543		-0.094 0.578	-0.199.0.501	0.128 0.028	0.019 0.003	0.000 0.000	-0.001 0.000
700	1573		-0.132 0.542	-0.262 0.334	0.222 0.094	0.028 0.005	0.007 0.000	-0.001 0.001
750	1602		-0.157 0.502	-0.236 0.230	0.222 0.091	0.033 0.006	0.007 0.000	-0.002 0.001
800	1631		-0.173 0.458	-0.198 0.189	0.310 0.342	0.039 0.007	0.007 0.000	-0.002 0.002
850	1660		-0.178 0.414	-0.198 0.183	0.192 0.559	0.045 0.009	0.008 0.000	-0.002 0.003
900	1688		-0.174 0.370	-0.223 0.128	-0.090 0.613	0.051 0.011	0.008 0.000	-0.003 0.003
950	1715		$-0.163 \ 0.326$	-0.194 0.067	-0.272 0.470	0.059 0.013	0.008 0.000	-0.003 0.004
1000	1743		-0.143 0.285	-0.156 0.039	-0.314 0.326	0.066 0.015	0.008 0.000	-0.004 0.005
1050	1769		-0.116 0.248	-0.126 0.026	$-0.303 \ 0.232$	0.074 0.018	0.008 0.000	-0.004 0.007
1100	1796		-0.084 0.215	-0.104 0.020	-0.280 0.173	0.083 0.021	0.009 0.000	$-0.005 \ 0.008$
	No. of se	earched						
	param	eters	6	9	6	4	2	3
T_{lab} (MeV)	$W_{\rm c.m.}$ (MeV)	$T_r(S_{11})T_i$	$T_r(P_{13})T_i$	$T_r(D_{15})T_i$	$T_r(F_{17})T_i$	$T_r(G_{19})T_i$	$T_r(H_{111})T_i$	$T_r(I_{113})T_i$
$\frac{T_{\rm lab}}{({\rm MeV})}$	$\frac{W_{\rm c.m.}}{({\rm MeV})}$	$T_r(S_{11})T_i$	$T_r(P_{13})T_i$	$T_r(D_{15})T_i$	$T_r(F_{17})T_i$	$T_r(G_{19})T_i$	$T_r(H_{111})T_i$	$\frac{T_r(I_{113})T_i}{-0.000\ 0.000}$
$\frac{T_{\rm lab}}{({\rm MeV})}$ $\frac{30}{50}$	<i>W</i> _{c.m.} (MeV) 1103 1120	$\frac{T_r(S_{11})T_i}{0.088 \ 0.008} \\ 0.108 \ 0.012$	$\frac{T_r(P_{13})T_i}{-0.004 \ 0.000}$ $-0.007 \ 0.000$	$\frac{T_r(D_{15})T_i}{0.001 \ 0.000}$	$\frac{T_r(F_{17})T_i}{-0.000 \ 0.000}$ $-0.000 \ 0.000$	$\frac{T_r(G_{19})T_i}{-0.000 \ 0.000}$ $-0.000 \ 0.000$	$\frac{T_r(H_{111})T_i}{-0.000\ 0.000}$ $-0.000\ 0.000$	$\frac{T_r(I_{113})T_i}{-0.000\ 0.000}$ $-0.000\ 0.000$
$\frac{T_{\rm lab}}{({\rm MeV})}$ $\frac{30}{50}$ 100	W _{c.m.} (MeV) 1103 1120 1161	$\frac{T_r(S_{11})T_i}{0.088 \ 0.008} \\ 0.108 \ 0.012 \\ 0.138 \ 0.019$	$T_r(P_{13})T_i$ -0.004 0.000 -0.007 0.000 -0.018 0.000	$\begin{array}{c} T_r(D_{15})T_i \\ \hline 0.001 \ 0.000 \\ 0.002 \ 0.000 \\ 0.006 \ 0.000 \end{array}$	$T_r(F_{17})T_i$ -0.000 0.000 -0.000 0.000 -0.002 0.000	$T_r(G_{19})T_i$ $-0.000 \ 0.000$ $-0.000 \ 0.000$ $-0.001 \ 0.000$	$T_r(H_{111})T_i$ $-0.000 \ 0.000$ $-0.000 \ 0.000$ $-0.000 \ 0.000$	$\begin{array}{c} T_r(I_{113})T_i \\ \hline -0.000 \ 0.000 \\ -0.000 \ 0.000 \\ -0.000 \ 0.000 \end{array}$
T_{lab} (MeV) 30 50 100 150	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025	$T_r(P_{13})T_i$ $-0.004 \ 0.000$ $-0.007 \ 0.000$ $-0.018 \ 0.000$ $-0.029 \ 0.001$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000 \end{array}$	$T_r(F_{17})T_i$ $-0.000 \ 0.000$ $-0.000 \ 0.000$ $-0.002 \ 0.000$ $-0.003 \ 0.000$	$T_r(G_{19})T_i$ $-0.000 \ 0.000$ $-0.000 \ 0.000$ $-0.001 \ 0.000$ $-0.002 \ 0.000$	$T_r(H_{111})T_i$ $-0.000 \ 0.000$ $-0.000 \ 0.000$ $-0.000 \ 0.000$ $-0.001 \ 0.000$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.000 \ 0.000\end{array}$
$ T_{1ab} (MeV) 30 50 100 150 200 $	W _{c.m.} (MeV) 1103 1120 1161 1201 1239	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029	$T_r(P_{13})T_i$ $-0.004 \ 0.000$ $-0.007 \ 0.000$ $-0.018 \ 0.000$ $-0.029 \ 0.001$ $-0.040 \ 0.002$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000 \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000 \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000 \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.000 \ 0.000\end{array}$
$ \begin{array}{r} T_{1ab} \\ (MeV) \\ \hline 30 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ \end{array} $	W _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034	$\begin{array}{c} T_r(P_{13})T_i\\ -0.004 \ 0.000\\ -0.007 \ 0.000\\ -0.018 \ 0.000\\ -0.029 \ 0.001\\ -0.040 \ 0.002\\ -0.050 \ 0.003 \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001 \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000 \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000 \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000 \end{array}$
$\begin{array}{c} T_{\rm lab} \\ ({\rm MeV}) \\ \hline 30 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ \end{array}$	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041	$\begin{array}{c} T_r(P_{13})T_i\\ -0.004 \ 0.000\\ -0.007 \ 0.000\\ -0.018 \ 0.000\\ -0.029 \ 0.001\\ -0.040 \ 0.002\\ -0.050 \ 0.003\\ -0.061 \ 0.004 \end{array}$	$T_r(D_{15})T_i$ 0.001 0.000 0.002 0.000 0.006 0.000 0.011 0.000 0.016 0.000 0.022 0.001 0.028 0.001	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000 \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.000 \ 0.000\\ -0.001 \ 0.000\\ -0.002 \ 0.000\\ -0.002 \ 0.000\\ -0.003 \ 0.000 \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000 \end{array}$
$\begin{array}{c} T_{1ab} \\ (MeV) \\ \hline \\ 30 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ \end{array}$	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050	$\begin{array}{c} T_r(P_{13})T_i\\ -0.004 \ 0.000\\ -0.007 \ 0.000\\ -0.018 \ 0.000\\ -0.029 \ 0.001\\ -0.040 \ 0.002\\ -0.050 \ 0.003\\ -0.061 \ 0.004\\ -0.070 \ 0.005 \end{array}$	$T_r(D_{15})T_i$ 0.001 0.000 0.002 0.000 0.006 0.000 0.011 0.000 0.016 0.000 0.022 0.001 0.028 0.001 0.036 0.002	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000\\ -0.009 & 0.000 \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000 \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382	$\begin{array}{c} T_r(S_{11})T_i\\ 0.088 \ 0.008\\ 0.108 \ 0.012\\ 0.138 \ 0.019\\ 0.156 \ 0.025\\ 0.169 \ 0.029\\ 0.181 \ 0.034\\ 0.196 \ 0.041\\ 0.215 \ 0.050\\ 0.241 \ 0.064 \end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006 \end{array}$	$T_r(D_{15})T_i$ 0.001 0.000 0.002 0.000 0.006 0.000 0.011 0.000 0.016 0.000 0.022 0.001 0.028 0.001 0.028 0.001 0.036 0.002 0.046 0.004	$\begin{array}{c} T_r(F_{17})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088	$\begin{array}{c} T_r(P_{13})T_i\\ \hline -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008 \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134	$\begin{array}{c} T_r(P_{13})T_i\\ \hline -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010 \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012 \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.002 & 0.001 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.002 & 0.000\end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 500	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.002 & 0.001\\ -0.000 & 0.001\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.002 & 0.000\\ -0.000 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 550 600	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268 0.221 0.407	$\begin{array}{c} T_r(P_{13})T_i\\ \hline -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036 \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline 0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.004 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.002 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.001\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 550 600 650	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268 0.221 0.407 0.153 0.354	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ \hline \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.000 & 0.000\\ -0.00$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.002 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.001\\ 0.003 & 0.001\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268 0.221 0.407 0.153 0.354 0.178 0.325	$\begin{array}{c} T_r(P_{13})T_i\\ \hline -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.116 & 0.015\\ -0.116 & 0.015\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.000 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.000 & 0.000\\ -0.00$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.008 & 0.004\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.002 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.001\\ 0.003 & 0.001\\ 0.006 & 0.002\\ 0.002 & 0.002\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 600 650 700 750	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268 0.221 0.407 0.153 0.354 0.178 0.325 0.258 0.364	$\begin{array}{c} T_r(P_{13})T_i\\ \hline -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.115 & 0.014\\ 0 & 0.014\\ 0 & 0.014\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.021 \ 0.006\\ 0.026\\ 0.006\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.006\\ 0.016\\ 0.00$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.000 & 0.000\\ -0.009 & 0.000\\ -0.000 & 0.000\\ -0.00$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ -0.012 & 0.006\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.001\\ 0.003 & 0.001\\ 0.006 & 0.002\\ 0.008 & 0.002\\ 0.008 & 0.002\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.006 & 0.000\\ 0.006 & 0.000\\ 0.006 & 0.000\\ 0.006 & 0.000\\ \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800	<i>W</i> _{c.m.} (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268 0.221 0.407 0.153 0.354 0.178 0.325 0.258 0.364 0.327 0.532 0.212 0.796	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.115 & 0.014\\ -0.109 & 0.012\\ 0.027 & 0.012\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.011 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.034\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ \hline \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ 0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.0000 & 0.001\\ 0.0000 & 0.000\\ 0.0000 &$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.001\\ 0.003 & 0.001\\ 0.006 & 0.002\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.011 & 0.003\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.001 & 0.$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.000 & 0.000\\ 0$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 850 600	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660	$T_r(S_{11})T_i$ 0.088 0.008 0.108 0.012 0.138 0.019 0.156 0.025 0.169 0.029 0.181 0.034 0.196 0.041 0.215 0.050 0.241 0.064 0.277 0.088 0.330 0.134 0.417 0.268 0.221 0.407 0.153 0.354 0.178 0.325 0.258 0.364 0.327 0.532 0.213 0.786 0.062 0.264	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.115 & 0.014\\ -0.109 & 0.012\\ -0.087 & 0.011\\ 0.041 & 0.003\end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.153 \ 0.063\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ 0.008\ 0.431\\ 0.008\ 0.431\\ 0.008\ 0.431\\ 0$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.00$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ 0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.011\\ \hline \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.003 & 0.001\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.014 & 0.005\\ \hline \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.009 & 0.000\\ 0.009 & 0.000\\ 0.009 & 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715	$\begin{array}{c} T_r(S_{11})T_i\\ \hline 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ 0.252 & 0.776\end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ \hline -0.004 \ 0.000\\ -0.007 \ 0.000\\ -0.018 \ 0.000\\ -0.029 \ 0.001\\ -0.040 \ 0.002\\ -0.050 \ 0.003\\ -0.061 \ 0.004\\ -0.070 \ 0.005\\ -0.080 \ 0.006\\ -0.088 \ 0.008\\ -0.096 \ 0.010\\ -0.102 \ 0.012\\ -0.108 \ 0.013\\ -0.113 \ 0.015\\ -0.116 \ 0.015\\ -0.115 \ 0.014\\ -0.087 \ 0.011\\ -0.041 \ 0.039\\ 0.041 \ 0.120\end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.011 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.153 \ 0.063\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ -0.098 \ 0.422\\ 0.194 \ 0.322\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.007 & 0.000\\ -0.007 & 0.000\\ \hline \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ 0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.014\\ 0.028 & 0.017\\ \hline \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.006 & 0.002\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.018 & 0.006\\ \hline 0.021 & 0.009\\ \hline \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.009 & 0.000\\ 0.009 & 0.000\\ 0.010 & 0.000\\ 0.012 & 0.000\\ \hline \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715 1743	$\begin{array}{c} T_r(S_{11})T_i\\ \hline 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.353 & 0.574\\ \end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.116 & 0.015\\ -0.115 & 0.014\\ -0.109 & 0.012\\ -0.087 & 0.011\\ -0.041 & 0.039\\ -0.041 & 0.130\\ -0.105 & 0.164\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.011 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ -0.098 \ 0.422\\ -0.194 \ 0.337\\ -0.224 \ 0.253\end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.007 & 0.000\\ -0.006 & 0.000\\ -0.005 & 0.000\\ \hline \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.000 & 0.001\\ -0.000 & 0.001\\ 0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.014\\ 0.028 & 0.017\\ 0.033 & 0.021 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.003 & 0.001\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.018 & 0.006\\ 0.021 & 0.008\\ 0.025 & 0.010 \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.003 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.009 & 0.000\\ 0.012 & 0.000\\ 0.014 & 0.000\\ 0.014 & 0.000\\ \hline \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715 1743 1769	$\begin{array}{c} T_r(S_{11})T_i\\ \hline 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.602\\ \end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.116 & 0.015\\ -0.115 & 0.014\\ -0.109 & 0.012\\ -0.087 & 0.011\\ -0.041 & 0.039\\ -0.041 & 0.130\\ -0.105 & 0.164\\ -0.140 & 0.160\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.011 \ 0.000\\ 0.022 \ 0.001\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ -0.098 \ 0.422\\ -0.194 \ 0.337\\ -0.224 \ 0.225 \ 0.192\end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.007 & 0.000\\ -0.006 & 0.000\\ -0.005 & 0.000\\ -0.006 & 0.000\\ -0.000 & 0.000\\ -0.00$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.014\\ 0.028 & 0.017\\ 0.033 & 0.021\\ 0.037 & 0.026 \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.018 & 0.006\\ 0.021 & 0.008\\ 0.025 & 0.010\\ 0.020 & 0.012\\ \hline \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.003 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.009 & 0.000\\ 0.010 & 0.000\\ 0.012 & 0.000\\ 0.014 & 0.000\\ 0.016 & 0.000\\ \end{array}$
$\begin{array}{c} T_{\rm iab} \\ ({\rm MeV}) \\ \hline 30 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 550 \\ 600 \\ 650 \\ 700 \\ 750 \\ 800 \\ 850 \\ 900 \\ 950 \\ 1000 \\ 1050 \\ 1100 \end{array}$	$\begin{array}{c} W_{c.m.} \\ (MeV) \\ \hline 1103 \\ 1120 \\ 1161 \\ 1201 \\ 1239 \\ 1277 \\ 1313 \\ 1348 \\ 1382 \\ 1416 \\ 1449 \\ 1481 \\ 1512 \\ 1543 \\ 1573 \\ 1602 \\ 1631 \\ 1660 \\ 1688 \\ 1715 \\ 1743 \\ 1769 \\ 1796 \\ \hline \end{array}$	$\begin{array}{c} T_r(S_{11})T_i\\ \hline 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ -0.383 & 0.550\\ \end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ \hline\\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ \hline\\ -0.080 & 0.006\\ -0.088 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.116 & 0.015\\ -0.115 & 0.014\\ -0.109 & 0.012\\ -0.087 & 0.011\\ -0.041 & 0.039\\ -0.041 & 0.130\\ -0.105 & 0.164\\ -0.140 & 0.160\\ -0.157 & 0.156\\ \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.012 \ 0.001\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ -0.098 \ 0.422\\ -0.194 \ 0.337\\ -0.224 \ 0.253\\ -0.225 \ 0.192\\ -0.215 \ 0.151\end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.008 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.007 & 0.000\\ -0.006 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.003 & 0.000\\ \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.014\\ 0.028 & 0.017\\ 0.033 & 0.026\\ 0.042 & 0.031\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.018 & 0.006\\ 0.021 & 0.008\\ 0.025 & 0.010\\ 0.029 & 0.012\\ 0.033 & 0.014\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_l\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.010 & 0.000\\ 0.012 & 0.000\\ 0.014 & 0.000\\ 0.016 & 0.000\\ 0.018 & 0.000\\ \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050	Wc.m. (MeV) 1103 1120 1161 1201 1239 1277 1313 1348 1382 1416 1449 1481 1512 1543 1573 1602 1631 1660 1688 1715 1743 1769 1796	$\begin{array}{c} T_r(S_{11})T_i\\ \hline 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ -0.383 & 0.550\\ \end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ \hline\\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.116 & 0.015\\ -0.115 & 0.014\\ -0.109 & 0.012\\ -0.087 & 0.011\\ -0.041 & 0.039\\ -0.041 & 0.130\\ -0.157 & 0.156\\ \hline\end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.012 \ 0.001\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.001\\ 0.028 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ -0.098 \ 0.422\\ -0.194 \ 0.337\\ -0.224 \ 0.253\\ -0.225 \ 0.192\\ -0.215 \ 0.151\\ \end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.006 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ \hline \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.000 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.014\\ 0.028 & 0.017\\ 0.033 & 0.021\\ 0.037 & 0.026\\ 0.042 & 0.031\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.018 & 0.006\\ 0.021 & 0.008\\ 0.025 & 0.010\\ 0.029 & 0.012\\ 0.033 & 0.014\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.010 & 0.000\\ 0.012 & 0.000\\ 0.014 & 0.000\\ 0.018 & 0.000\\ 0.018 & 0.000\\ \hline \end{array}$
Tiab (MeV) 30 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1000	$\begin{array}{r} W_{c.m.} \\ (MeV) \\ \hline \\ 1103 \\ 1120 \\ 1161 \\ 1201 \\ 1239 \\ 1277 \\ 1313 \\ 1348 \\ 1382 \\ 1416 \\ 1449 \\ 1481 \\ 1512 \\ 1543 \\ 1573 \\ 1602 \\ 1631 \\ 1660 \\ 1688 \\ 1715 \\ 1743 \\ 1769 \\ 1796 \\ \hline \\ searched \\ uneters \end{array}$	$\begin{array}{c} T_r(S_{11})T_i\\ 0.088 & 0.008\\ 0.108 & 0.012\\ 0.138 & 0.019\\ 0.156 & 0.025\\ 0.169 & 0.029\\ 0.181 & 0.034\\ 0.196 & 0.041\\ 0.215 & 0.050\\ 0.241 & 0.064\\ 0.277 & 0.088\\ 0.330 & 0.134\\ 0.417 & 0.268\\ 0.221 & 0.407\\ 0.153 & 0.354\\ 0.178 & 0.325\\ 0.258 & 0.364\\ 0.327 & 0.532\\ 0.213 & 0.786\\ -0.063 & 0.864\\ -0.252 & 0.776\\ -0.335 & 0.674\\ -0.369 & 0.600\\ -0.383 & 0.550\\ \end{array}$	$\begin{array}{c} T_r(P_{13})T_i\\ \hline \\ -0.004 & 0.000\\ -0.007 & 0.000\\ -0.018 & 0.000\\ -0.029 & 0.001\\ -0.040 & 0.002\\ -0.050 & 0.003\\ -0.061 & 0.004\\ -0.070 & 0.005\\ -0.080 & 0.006\\ -0.088 & 0.008\\ -0.096 & 0.010\\ -0.102 & 0.012\\ -0.108 & 0.013\\ -0.113 & 0.015\\ -0.116 & 0.015\\ -0.115 & 0.014\\ -0.190 & 0.012\\ -0.087 & 0.011\\ -0.041 & 0.130\\ -0.157 & 0.156\\ \hline \end{array}$	$\begin{array}{c} T_r(D_{15})T_i\\ \hline 0.001 \ 0.000\\ 0.002 \ 0.000\\ 0.006 \ 0.000\\ 0.011 \ 0.000\\ 0.011 \ 0.000\\ 0.016 \ 0.000\\ 0.022 \ 0.001\\ 0.028 \ 0.001\\ 0.036 \ 0.002\\ 0.046 \ 0.004\\ 0.059 \ 0.007\\ 0.074 \ 0.012\\ 0.095 \ 0.021\\ 0.121 \ 0.036\\ 0.153 \ 0.063\\ 0.153 \ 0.063\\ 0.190 \ 0.111\\ 0.217 \ 0.196\\ 0.192 \ 0.324\\ 0.066 \ 0.431\\ -0.098 \ 0.422\\ -0.194 \ 0.337\\ -0.224 \ 0.253\\ -0.225 \ 0.192\\ -0.215 \ 0.151\end{array}$	$\begin{array}{c} T_r(F_{17})T_i\\ \hline \\ -0.000 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.007 & 0.000\\ -0.009 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.010 & 0.000\\ -0.009 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.008 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.004 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ \hline \end{array}$	$\begin{array}{c} T_r(G_{19})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.005 & 0.000\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.001\\ -0.002 & 0.002\\ 0.005 & 0.003\\ 0.008 & 0.004\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.012 & 0.006\\ 0.016 & 0.008\\ 0.020 & 0.011\\ 0.024 & 0.014\\ 0.028 & 0.017\\ 0.033 & 0.021\\ 0.037 & 0.026\\ 0.042 & 0.031\\ \end{array}$	$\begin{array}{c} T_r(H_{111})T_i\\ \hline \\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.002 & 0.000\\ -0.002 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.003 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ 0.001 & 0.001\\ 0.001 & 0.001\\ 0.003 & 0.001\\ 0.008 & 0.002\\ 0.011 & 0.003\\ 0.014 & 0.005\\ 0.018 & 0.006\\ 0.021 & 0.008\\ 0.025 & 0.010\\ 0.029 & 0.012\\ 0.033 & 0.014\\ \end{array}$	$\begin{array}{c} T_r(I_{113})T_i\\ \hline -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.000 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.001 & 0.000\\ -0.000 & 0.000\\ 0.000 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.001 & 0.000\\ 0.002 & 0.000\\ 0.003 & 0.000\\ 0.003 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.005 & 0.000\\ 0.007 & 0.000\\ 0.007 & 0.000\\ 0.012 & 0.000\\ 0.014 & 0.000\\ 0.018 & 0.000\\ 0.018 & 0.000\\ \end{array}$

T	W				(b) <i>i</i>	<u>3</u>		
(MeV)	(MeV)		$T_{r}(P_{31})T_{i}$	$T_r(D_{33})T_i$	$T_r(F_{35})T_i$	$\frac{1}{T_r(G_{37})T_i}$	$T_{r(H_{i})}T_{i}$	$T_r(I_{311})T_i$
	(1120 /)		- / <- 51 / - /	- / (- 55) - 1				
30	1103		-0.006 0.000	-0.000 0.000	-0.000 0.000	-0.000 0.000	-0.000 0.000	0.000 0.000
50	1120		-0.013 0.000	-0.001 0.000	-0.000 0.000	-0.000 0.000	-0.000 0.000	0.000 0.000
100	1161		-0.037 0.001	-0.004 0.000	-0.002 0.000	-0.000 0.000	-0.000 0.000	0.000 0.000
150	1201		-0.065 0.004	-0.006 0.000	-0.004 0.000	-0.001 0.000	-0.000 0.000	0.000 0.000
200	1239		-0.093 0.009	-0.008 0.000	-0.005 0.000	-0.001 0.000	-0.001 0.000	0.000 0.000
250	1277		-0.122 0.016	-0.008 0.000	-0.007 0.000	-0.002 0.000	-0.001 0.000	0.000 0.000
300	1313		-0.148 0.025	-0.006 0.001	-0.008 0.000	-0.002 0.000	-0.001 0.000	0.000 0.000
350	1348		-0.173 0.036	-0.003 0.002	-0.009 0.000	-0.002 0.000	-0.001 0.000	0.001 0.000
400	1382		-0.196 0.048	0.001 0.006	-0.010 0.001	-0.002 0.000	-0.001 0.000	0.001 0.000
450	1416		-0.217 0.062	0.006 0.012	-0.010 0.001	-0.002 0.000	-0.001 0.000	0.001 0.000
500	1449		-0.237 0.075	0.011 0.020	-0.009 0.002	-0.002 0.000	-0.001 0.000	0.001 0.000
550	1481		-0.255 0.089	0.015 0.030	-0.008 0.003	-0.002 0.000	-0.000 0.000	0.002 0.000
600	1512		-0.271 0.101	0.019 0.043	-0.006 0.004	-0.001 0.000	0.001 0.000	0.002 0.000
650	1543		-0.286 0.113	0.020 0.059	$-0.004 \ 0.005$	-0.001 0.000	0.001 0.000	0.002 0.000
700	1573	4	-0.298 0.123	0.017 0.078	-0.001 0.007	0.000 0.000	0.002 0.000	0.003 0.001
750	1602		-0.308 0.131	0.008 0.099	0.003 0.010	0.001 0.000	0.003 0.000	0.003 0.001
800	1631		-0.317 0.138	-0.009 0.119	0.008 0.014	0.001 0.000	0.004 0.000	0.004 0.001
850	1660		-0.323 0.143	-0.032 0.132	0.014 0.020	0.002 0.000	0.005 0.000	0.004 0.001
900	1688		-0.326 0.145	-0.059 0.137	0.021 0.029	0.003 0.000	0.006 0.000	0.005 0.002
950	1715		-0.328 0.145	-0.084 0.133	0.028 0.042	0.004 0.000	0.007 0.000	0.005 0.002
1000	1743		-0.326 0.142	-0.104 0.123	0.033 0.061	0.005 0.000	0.009 0.000	0.006 0.003
1050	1769		-0.321 0.135	-0.119 0.110	0.033 0.087	0.006 0.000	0.010 0.000	0.006 0.004
1100	1796		-0.312 0.125	-0.128 0.096	0.019.0.119	0.007.0.000	0.011 0.000	0.007 0.004
1100	1170		0.512 0.125	0.120 0.090	0.017 0.117	0.007 0.000	0.011 0.000	0.007 0.001
	No. of s	earched						
	naram	eters	6	6	4	2	2	3
	param		0	U U		2	2	5
					1. 			
T_{lab}	W _{cm}							
(MeV)	(MeV)	$T_r(S_{31})T_i$	$T_r(P_{33})T_i$	$T_r(D_{35})T_i$	$T_{r}(F_{37})T_{i}$	$T_{r}(G_{39})T_{i}$	$T_r(H_{311})T_i$	$T_r(I_{313})T_i$
					0.000.0.000	0.000.0.000	0.000.0.000	0.000.0.000
30	1103	-0.062 0.004	0.043 0.002	0.000 0.000	0.000 0.000	0.000 0.000	-0.000 0.000	0.000 0.000
50	1120	-0.090 0.008	0.102 0.010	0.001 0.000	0.000 0.000	0.000 0.000	-0.000 0.000	0.000 0.000
100	1161	-0.154 0.024	0.350 0.143	0.002 0.000	0.001 0.000	0.001 0.000	-0.000 0.000	0.000 0.000
150	1201	-0.211 0.047	0.462 0.691	0.001 0.000	0.002 0.000	0.001 0.000	$-0.000 \ 0.000$	0.000 0.000
200	1239	-0.261 0.073	-0.125 0.984	-0.002 0.000	0.005 0.000	0.002 0.000	0.000 0.000	0.000 0.000
250	1277	$-0.303 \ 0.102$	-0.446 0.726	-0.006 0.000	0.008 0.000	0.003 0.000	0.000 0.000	0.001 0.000
300	1313	-0.338 0.132	-0.500 0.509	-0.011 0.000	0.012 0.000	0.003 0.000	0.000 0.000	0.001 0.000
350	1348	-0.366 0.161	-0.483 0.370	-0.017 0.000	0.016 0.000	0.004 0.000	0.001 0.000	0.001 0.000
400	1382	-0.388 0.187	-0.447 0.276	-0.024 0.001	0.021 0.001	0.004 0.000	0.001 0.000	0.001 0.000
450	1416	-0.404 0.210	-0.404 0.206	-0.031 0.001	0.027 0.001	0.003 0.000	0.001 0.000	0.001 0.000
500	1449	-0.413 0.228	-0.356 0.153	-0.038 0.001	0.035 0.002	0.003 0.000	0.002 0.000	0.001 0.000
550	1481	-0.414 0.239	$-0.302 \ 0.114$	-0.045 0.002	0.043 0.003	0.002 0.000	0.003 0.000	0.001 0.000
600	1512	-0.400 0.242	-0.244 0.090	-0.051 0.003	0.053 0.005	0.001 0.000	0.004 0.001	0.001 0.000
650	1543	-0.358 0.242	-0.186 0.084	-0.058 0.003	0.064 0.007	-0.000 0.000	0.005 0.001	0.000 0.000
700	1573	-0.276 0.273	-0.135 0.096	-0.064 0.004	0.077 0.011	-0.001 0.001	0.006 0.002	-0.000 0.000
750	1602	-0.210 0.386	-0.099 0.121	-0.070 0.005	0.092 0.016	-0.003 0.001	0.007 0.002	-0.000 0.000
800	1631	-0.242 0.504	-0.080 0.149	-0.076 0.006	0.109 0.025	-0.004 0.001	0.008 0.003	$-0.001 \ 0.000$
850	1660	-0.302 0.555	-0.075 0.171	-0.081 0.007	0.129 0.036	-0.006 0.002	0.010 0.004	-0.002 0.000
900	1688	-0.343 0.571	-0.077 0.186	-0.085 0.007	0.151 0.053	-0.007 0.002	0.011 0.006	-0.002 0.001
050	1715	0.267 0.571	0.001 0.100	0.000 0.007	0.174 0.079	0.000 0.002	0.013.0.007	0.002.0.001
93U 1000	1/10	-0.30/ 0.3/6	-0.081 0.193	-0.089 0.008	$0.1/4 \ 0.0/8$		$0.015 \ 0.007$	
1000	1743	-0.382 0.578	-0.085 0.195	-0.092 0.009	0.198 0.114		0.015 0.009	
1000	1/09	-0.390 0.578	-0.088 0.193		0.215 0.163	-0.012 0.004	0.016 0.011	-0.004 0.001
1100	1/96	-0.396 0.5/7	-0.088 0.189	-0.090 0.010	0.220 0.227	-0.014 0.005	0.018 0.013	-0.005 0.001
No - C				•	/			
INO. OF	searched	0	0	4	F	2	2	2
para	meters	ð	ð	4	5 .	3	3	3

TABLE III. (Continued).

FIG. 7. Partial-wave amplitudes from solution FP84 plotted against the Karlsruhe-Helsinki solution. A vertical K is used to denote ReT while a slanted K denotes ImT.

۲ ² ,	4.	
the number of searched parameters $(N_{\text{par}}), \lambda$	² after linearizing and before searching FP8	
entheses), by	set and the J	,
ange (in pare	elected data	
y a binning 1	P84 for the s	
iracterized b	the χ^2 for F	
olution is cha	r $\chi^2(\text{ED})$ are	
es. Each sc	rs listed for	
ergy analyse	two numbe	
a single-ene	lysis. The	
waves fron	sed for ana	
shed partial	ata (N _{data}) u	
IV. Searc	umber of da	
TABLE	and the m	

$\begin{array}{c} 0), \ N_{\text{data}} = 128, \\ 0 = (205, 271) \\ \text{Im } T \end{array}$	0.019 ± 0.003 0.024 ± 0.002 0.000 ± 0.003 0.001 ± 0.002 0.001 ± 0.002 0.144 ± 0.002	65), $N_{\text{data}} = 168$, = (298, 315) Im T	0.038 ± 0.003 0.101 ± 0.002 0.031 ± 0.005 0.002 ± 0.002 0.018 ± 0.003 0.725 ± 0.002	25) $N_{\text{data}} = 348$, t) = (673, 671) Im T	0.066 ± 0.004 0.189 ± 0.002 0.432 ± 0.008 0.006 ± 0.003 0.050 ± 0.004 0.276 ± 0.002 0.049 ± 0.003
$T_{\rm ab} = 100 \text{ MeV} (88-11)$ $a_{\rm t} = 6, \chi^2 = 182, \chi^2 (\text{ED})$	$\begin{array}{c} 0.136\pm\!0.003\\ -0.154\pm\!0.002\\ -0.015\pm\!0.003\\ -0.027\pm\!0.002\\ -0.034\pm\!0.001\\ 0.351\pm\!0.002\end{array}$	$_{lab}^{T} = 250 \text{ MeV} (240-2)$ $_{ar} = 6, \chi^2 = 276, \chi^2 (ED)$ Re T	$\begin{array}{c} 0.191\pm\!0.004\\ -0.300\pm\!0.002\\ 0.143\pm\!0.004\\ -0.048\pm\!0.002\\ -0.128\pm\!0.003\\ -0.128\pm\!0.003\\ -0.447\pm\!0.002\end{array}$	$\Gamma_{lab} = 400 \text{ MeV} (375-4)$ $P_{par} = 9, \chi^2 = 648, \chi^2 (EL)$ ReT	$\begin{array}{c} 0.243\pm 0.007\\ - 0.390\pm 0.003\\ 0.326\pm 0.006\\ - 0.075\pm 0.005\\ - 0.200\pm 0.003\\ - 0.447\pm 0.002\\ 0.160\pm 0.002\\ \end{array}$
C10, N _F Wave	$P_{13}^{S_{11}}$	C25, $T_{\rm N_p}$ Wave	$P_{31}^{S_{11}}$	C40, 7 N Wave	$egin{array}{c} S_{11} \\ S_{31} \\ P_{11} \\ P_{13} \\ P_{33} \\ D_{13} \end{array} \\ D_{13} \end{array}$
5). $N_{data} = 168$, D)=(293,321) Im T	0.013 ± 0.002 0.009 ± 0.002 0.001 ± 0.002 0.000 ± 0.002 0.0012 ± 0.002	$^{-210}$, $N_{data} = 71$, O = (110,111) Im T	$\begin{array}{c} 0.039 \pm 0.006 \\ 0.071 \pm 0.003 \\ 0.003 \pm 0.004 \\ 0.001 \pm 0.003 \\ 0.011 \pm 0.003 \\ 0.984 \pm 0.003 \end{array}$	370), $N_{\text{data}} = 248$, D) = (442,447) Im T	0.052 ± 0.003 0.164 ± 0.002 0.245 ± 0.004 0.206 ± 0.003 0.035 ± 0.004 0.376 ± 0.002 0.019 ± 0.003
5, $T_{\rm lab} = 50$ MeV (35–6 $N_{\rm par} = 5$, $\chi^2 = 294$, χ^2 (E) Re T	0.113 ± 0.002 -0.092 ±0.002 -0.024 ±0.001 -0.013 ±0.001 0.107 ±0.001), $T_{\text{lab}} = 200 \text{ MeV}$ (190– $N_{\text{par}} = 6, \chi^2 = 103, \chi^2(\text{E})$ Re T	$\begin{array}{c} 0.193\pm\!0.013\\ -0.256\pm\!0.004\\ 0.033\pm\!0.003\\ -0.035\pm\!0.014\\ -0.103\pm\!0.007\\ -0.126\pm\!0.006\end{array}$, $T_{\text{lab}} = 350 \text{ MeV} (330-$ $N_{\text{par}} = 9, \chi^2 = 410, \chi^2/\text{E}$ Re T	$\begin{array}{c} 0.220\pm0.004\\ -0.370\pm0.002\\ 0.344\pm0.004\\ -0.080\pm0.003\\ -0.169\pm0.003\\ -0.484\pm0.002\\ 0.116\pm0.002\\ 0.116\pm0.002\end{array}$
Wave	$P_{31}^{S_{11}}$	C20 Wave	$egin{smallmatrix} S_{11} \\ S_{31} \\ P_{11} \\ P_{31} \\ P_{33} \end{bmatrix}$	C35 Wave	$egin{array}{c} S_{11} \\ S_{31} \\ P_{11} \\ P_{13} \\ P_{33} \\ D_{13} \end{array}$
$^{2}(\text{ED}) = (179, 194)$ Im T	0.008 ± 0.002 0.004 ± 0.002 0.000 ± 0.002 0.002 ± 0.002	$^{2}(\text{ED}) = (140, I_{\text{data}} = 67, I_{\text{data}}) = (140, I_{\text{data}})$ Im T	0.023 ± 0.003 0.050 ± 0.004 0.000 ± 0.003 0.001 ± 0.003 0.005 ± 0.003 0.689 ± 0.002	$85-315$), $N_{data} = 333$, $\chi^2(\text{ED}) = (488,492)$ Im T	0.038 ± 0.002 0.134 ± 0.002 0.088 ± 0.003 0.004 ± 0.002 0.026 ± 0.003 0.515 ± 0.003 0.515 ± 0.003 0.009 ± 0.003
$\frac{1}{N_{\text{par}}} = \frac{1}{30} \frac{1}{\text{MeV}} = \frac{1}{2} \frac$	0.090 ± 0.001 -0.060 ± 0.001 -0.011 ± 0.001 0.043 ± 0.001	15, $T_{\text{lab}} = 150$ MeV ($N_{\text{par}} = 6$, $\chi^2 = 126$, λ Re T	$\begin{array}{c} 0.150\pm 0.003\\ -0.218\pm 0.008\\ 0.001\pm 0.005\\ -0.030\pm 0.003\\ -0.069\pm 0.006\\ 0.463\pm 0.002\end{array}$	0, $T_{\text{lab}} = 300 \text{ MeV}$ (2 $N_{\text{par}} = 8, \chi^2 = 445, \zeta$	$\begin{array}{c} 0.190\pm0.002\\ -0.339\pm0.002\\ 0.247\pm0.002\\ -0.065\pm0.002\\ -0.151\pm0.002\\ -0.500\pm0.002\\ 0.077\pm0.002\\ 0.077\pm0.002\end{array}$
Wave	$S_{11} S_{31} S_{31} P_{11} P_{11} P_{33}$	C	$egin{smallmatrix} S_{11} \\ S_{31} \\ P_{11} \\ P_{31} \\ P_{33} \\ P_{33} \end{bmatrix}$	C3 Wave	$egin{array}{c} S_{11} \\ S_{31} \\ P_{11} \\ P_{13} \\ P_{33} \\ P_{33} \\ D_{13} \\ D_{13} \end{array}$

PION-NUCLEON PARTIAL-WAVE ANALYSIS TO 1100 MeV

1095

C4: Wave	5, $T_{\rm lab} = 450$ MeV (425- $N_{\rm par} = 12$, $\chi^2 = 385$, χ^2 (I Re T	$(475), N_{\text{data}} = 245,$ (10) = (460, 472) 1 m T	C5(Wave), $T_{\rm lab} = 500$ MeV (475– $N_{\rm par} = 14$, $\chi^2 = 773$, χ^2 (E Re T	525), $N_{\text{data}} = 441$, (D)=(837,882) Im T	C55, Nave	$T_{\rm lab} = 550 \text{ MeV} (535-5)$ $V_{\rm par} = 18, \chi^2 = 568, \chi^2 (\text{EI} \text{Re} T)$	565), $N_{\text{data}} = 395$, D)=(631,715) Im T
S ₁₁	0.267±0.008	0.082±0.006	S ₁₁	0.282±0.011	0.096±0.009	S ₁₁	0.376±0.010	0.255 ± 0.013
S_{31}	-0.401 ± 0.003	0.206 ± 0.003	S_{31}	-0.409 ± 0.004	0.221 ± 0.003	S_{31}	-0.411 ± 0.005	0.236 ± 0.004
P_{11}	0.252 ± 0.008	0.525 ± 0.009	P_{11}	0.168 ± 0.009	0.568 ± 0.013	P_{11}	0.018 ± 0.020	0.629 ± 0.010
P_{13}	-0.109 ± 0.006	0.012 ± 0.003	P_{13}	-0.133 ± 0.008	0.019 ± 0.003	P_{13}	-0.111 ± 0.013	0.014 ± 0.004
P_{31}	-0.214 ± 0.003	0.061 ± 0.005	P_{31}	-0.234 ± 0.004	0.074 ± 0.006	P_{31}	-0.252 ± 0.004	0.086 ± 0.003
P_{33}	-0.406 ± 0.002	0.209 ± 0.002	P_{33}	-0.353 ± 0.003	0.150 ± 0.003	P_{33}	-0.301 ± 0.003	0.110 ± 0.003
D_{13}	0.221 ± 0.004	0.119 ± 0.005	D_{13}	0.299 ± 0.009	0.225 ± 0.008	D_{13}	0.253 ± 0.010	0.422 ± 0.006
D_{15}	0.073 ± 0.003	0.009 ± 0.003	D_{15}	0.087 ± 0.006	0.036 ± 0.007	D_{15}	0.115 ± 0.005	0.028 ± 0.006
D_{33}	0.003 ± 0.002	0.008 ± 0.003	D_{33}	0.006 ± 0.002	0.018 ± 0.003	D_{33}	0.017 ± 0.002	0.033 ± 0.003
			F_{15}	0.089 ± 0.004	0.012 ± 0.003	F_{15}	0.109 ± 0.004	0.029 ± 0.005
C6($1, T_{\rm lab} = 600 {\rm MeV} (585 -$	-615), $N_{\rm data} = 322$,	C65	5, $T_{\rm lab} = 650 {\rm MeV}$ (635–	-665), $N_{\rm data} = 285$,	C70,	$T_{\rm lab} = 700 \text{ MeV} (685-7)$	715), $N_{data} = 246$,
	$N_{\rm par} = 20, \ \chi^2 = 458, \ \chi^2({\rm I})$	3D = (517, 521)		$N_{\rm par} = 23, \ \chi^2 = 478, \ \chi^2 (E)$	(D)=(579,566)	N.	$V_{par} = 27, \chi^2 = 342, \chi^2 (EI)$	D)=(434,441)
Wave	ReT	$\operatorname{Im} T$	Wave	ReT	$\operatorname{Im} T$	Wave	ReT	$\operatorname{Im} T$
S ₁₁	0.214±0.022	0.392 ± 0.023	S ₁₁	0.096 ± 0.018	0.506 ± 0.026	S_{11}	0.202 ± 0.037	0.311 ± 0.036
S_{31}	-0.387 ± 0.006	0.250 ± 0.006	S_{31}	-0.357 ± 0.011	0.248 ± 0.010	S_{31}	-0.284 ± 0.020	0.262 ± 0.017
P_{11}	-0.046 ± 0.024	0.604 ± 0.022	P_{11}	-0.026 ± 0.024	0.623 ± 0.011	P_{11}	-0.073 ± 0.027	0.568 ± 0.027
P_{13}	-0.105 ± 0.011	0.013 ± 0.003	P_{13}	-0.160 ± 0.011	0.028 ± 0.004	P_{13}	-0.126 ± 0.015	0.018 ± 0.005
P_{31}	-0.269 ± 0.008	0.099 ± 0.006	P_{31}	-0.274 ± 0.010	0.090 ± 0.008	P_{31}	-0.344 ± 0.018	0.156 ± 0.018
P_{33}	-0.248 ± 0.004	0.087 ± 0.004	P_{33}	-0.206 ± 0.007	0.082 ± 0.006	P_{33}	-0.112 ± 0.009	0.083 ± 0.005
D_{13}	0.017 ± 0.011	0.616 ± 0.015	D_{13}	-0.186 ± 0.012	0.431 ± 0.019	D_{13}	-0.269 ± 0.026	0.374 ± 0.027
D_{15}	0.134 ± 0.009	0.032 ± 0.008	D_{15}	0.163 ± 0.007	0.056 ± 0.008	D_{15}	0.201±0.012	0.093 ± 0.019
D_{33}	0.019 ± 0.004	0.037 ± 0.004	D_{33}	0.027 ± 0.008	0.068 ± 0.007	D_{33}	0.008 ± 0.007	0.084 ± 0.006
F_{15}	0.123 ± 0.010	0.036 ± 0.011	F_{15}	0.147 ± 0.008	0.028 ± 0.006	F_{15}	0.207 ± 0.011	0.076 ± 0.011
F_{37}	0.047 ± 0.002	0.004 ± 0.003	F_{35}	0.003 ± 0.004	0.000 ± 0.003	F_{35}	0.001 ± 0.006	0.005 ± 0.005
			F_{37}	0.068 ± 0.004	0.008 ± 0.003	F_{37}	0.077 ± 0.004	0.010 ± 0.007
			G_{19}	0.015 ± 0.004	0.003 ± 0.003	G_{17}	0.028 ± 0.008	0.005 ± 0.018
						G_{19}	0.006 ± 0.005	0.000 ± 0.003

1096

TABLE IV. (Continued).

RICHARD A. ARNDT, JOHN M. FORD, AND L. DAVID ROPER

	370), $N_{\text{data}} = 439$, D)=(716,795) Im T	0.786 ± 0.017	0.552 ± 0.013	0.417 ± 0.015	0.009 ± 0.004	0.134 ± 0.012	0.177 ± 0.009	0.190 ± 0.015	0.407 ± 0.010	0.131 ± 0.006	0.007 ± 0.003	0.568 ± 0.006	0.022 ± 0.004	0.036 ± 0.005	0.003 ± 0.003	0.016 ± 0.004	$(030), N_{data} = 572,$	D) = (942, 992)	$\operatorname{Im} T$	0.659 ± 0.021	0.584 ± 0.026	0.261 ± 0.024	0.182 ± 0.011	0.143 ± 0.020	0.198 ± 0.011	0.057 ± 0.014	0.263 ± 0.014	0.130 ± 0.012	0.008±0.003	0.326 ± 0.013	0.058 ± 0.007	0.112 ± 0.009	0.022±0.009	0.018±0.005	0.001 ± 0.006	0.00/±0.00/	LUUNU LUUNU
	$\int_{tr}^{tab} = 850 \text{ MeV} (830-4)$ $ur = 28, \chi^2 = 664, \chi^2(E)$ Re T	0.231±0.017	-0.299 ± 0.017	-0.170 ± 0.016	-0.070 ± 0.012	-0.316 ± 0.012	-0.073 ± 0.007	-0.192 ± 0.012	0.061 ± 0.007	-0.026 ± 0.006	-0.082 ± 0.006	0.181 ± 0.006	0.017 ± 0.003	0.136 ± 0.003	0.040 ± 0.007	0.024 ± 0.005	$_{1ab} = 999 MeV (970-1)$	$\chi^{ar} = 35, \chi^2 = 785, \chi^2 (E)$	ReT	-0.370 ± 0.022	-0.409 ± 0.025	-0.141 ± 0.030	-0.088 ± 0.012	-0.327 ± 0.020	-0.085 ± 0.014	-0.127 ± 0.012	-0.207 ± 0.014	-0.110 ± 0.012	-0.090 ± 0.011	-0.335 ± 0.014	0.030 ± 0.006	0.197 ± 0.006	0.060±0.006	0.018 ± 0.006	-0.010 ± 0.006	0.012±0.006	1000 T / 1000
	C85, 7 N _p	S_{11}	S_{31}	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	F_{37}	G ₁₇	G_{19}	C99, 7	$\tilde{N}_{ m p}$	Wave	S ₁₁	S_{31}	P_{11}	P_{13}	P_{31} .	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	F_{37}	G_{17}	G19	3	н 111 11	118 77
Continued).	815), $N_{data} = 415$, D)=(712,704) Im T	0.536±0.017	0.517±0.011	0.475 ± 0.012	0.010 ± 0.003	0.150 ± 0.012	0.159 ± 0.008	0.219 ± 0.012	0.312 ± 0.008	0.120 ± 0.007	0.006 ± 0.003	0.344 ± 0.006	0.019 ± 0.004	0.026 ± 0.004	0,006±0.007	0.001 ± 0.004	975). $N_{4aee} = 604$.	(D) = (834,911)	ImT	0.751 ± 0.023	0.573 ± 0.018	0.331 ± 0.028	0.131 ± 0.013	0.140 ± 0.018	0.193 ± 0.012	0.082 ± 0.018	0.330 ± 0.013	0.125 ± 0.011	0.010 ± 0.003	0.479 ± 0.013	0.040 ± 0.005	0.076 ± 0.007	0.009 ± 0.007	0.018 ± 0.005	0.003 ± 0.003	0.01 ± 0.00	100.01 ± 0.004
TABLE IV. (, $T_{\text{lab}} = 800 \text{ MeV} (785-$ $N_{\text{par}} = 28, \chi^2 = 607, \chi^2(\text{E})$	0.372±0.015	-0.247 ± 0.017	-0.165 ± 0.013	-0.096 ± 0.010	-0.327 ± 0.012	-0.081 ± 0.007	-0.200 ± 0.011	0.198 ± 0.008	-0.008 ± 0.006	-0.077 ± 0.007	0.311 ± 0.007	0.009 ± 0.003	0.116 ± 0.003	0.024 ± 0.007	0.015 ± 0.003	$5.T_{\rm tot} = 950 \text{ MeV} (925-)$	$N_{\rm nar} = 34, \chi^2 = 722, \chi^2 (E)$	ReT	-0.249 ± 0.023	-0.364 ± 0.024	-0.148 ± 0.030	-0.043 ± 0.017	-0.316 ± 0.018	-0.079 ± 0.013	-0.176 ± 0.015	-0.188 ± 0.013	-0.085 ± 0.010	-0.097 ± 0.011	-0.292 ± 0.016	0.032 ± 0.006	0.176 ± 0.007	0.058 ± 0.007	0.014 ± 0.006	-0.008 ± 0.006	0.023 ± 0.006	10.01 / IU.004
	C80 Wave	S ₁₁	S ₃₁	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	F_{37}	G ₁₇	G_{19}	C3;		Wave	S ₁₁	S_{31}	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	$m{F}_{15}$	F_{35}	F_{37}	G_{17}	G_{19}	G ³⁹	H ₁₁₁	11 311
	-770), $N_{data} = 448$, (ED) = (670,664) Im T	0.365 ± 0.022	0.393 ± 0.008	0.530 ± 0.018	0.013 ± 0.003	0.129 ± 0.010	0.138 ± 0.006	0.290 ± 0.016	0.165 ± 0.012	0.086 ± 0.005	0.006 ± 0.003	0.170 ± 0.006	0.010 ± 0.004	0.014 ± 0.004	0.006 ± 0.010	0.002 ± 0.004	(-920) . $N_{4} = 484$.	(ED) = (755, 849)	$\operatorname{Im} T$	0.867 ± 0.016	0.547 ± 0.017	0.302 ± 0.015	0.045 ± 0.009	0.125 ± 0.013	0.147 ± 0.009	0.143 ± 0.016	0.429 ± 0.006	0.157 ± 0.007	0.002 ± 0.003	0.604 ± 0.008	0.040 ± 0.004	0.061 ± 0.006	0.011 ± 0.007	0.023 ± 0.003			
	5, $T_{\rm lab} = 750$ MeV (730 $N_{\rm par} = 28$, $\chi^2 = 584$, χ^{2} , Re T	0.343 ± 0.018	-0.214 ± 0.014	-0.150 ± 0.013	-0.110 ± 0.007	-0.289 ± 0.010	-0.105 ± 0.005	-0.216 ± 0.016	0.224 ± 0.009	0.018 ± 0.004	-0.076 ± 0.005	0.283 ± 0.006	0.001 ± 0.003	0.091 ± 0.003	0.015 ± 0.008	0.005 ± 0.003	$0 T_{11} = 900 MeV (880)$	$N_{\text{m}} = 29, \ \chi^2 = 612, \ \chi^2$	ReT	-0.059 ± 0.014	-0.421 ± 0.017	-0.191 ± 0.015	-0.091 ± 0.018	-0.330 ± 0.013	-0.073 ± 0.010	-0.204 ± 0.012	-0.112 ± 0.008	-0.101 ± 0.009	-0.046 ± 0.007	-0.095 ± 0.008	0.006 ± 0.005	0.131 ± 0.005	0.031 ± 0.008	0.018 ± 0.007			
	C7: Wave	SI	S	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	F_{37}	G17	G_{19}	ۍ د)	Wave	S ₁₁	S_{31}	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	F_{37}	G_{17}	G_{19}			

<u>32</u>

PION-NUCLEON PARTIAL-WAVE ANALYSIS TO 1100 MeV

1097

-1120), $N_{data} = 420$, D) = (945,945)	$\operatorname{Im} T$	0.526 ± 0.037	0.619 ± 0.048	0.224 ± 0.030	0.159 ± 0.025	0.122 ± 0.038	0.193 ± 0.023	0.038 ± 0.022	0.118 ± 0.024	0.102 ± 0.026	0.008 ± 0.005	0.199 ± 0.022	0.098 ± 0.011	0.219 ± 0.020	0.042 ± 0.010	0.020 ± 0.009	0.017 ± 0.012	0.002 ± 0.007	0.013±0.008
$T_{\text{lab}} = 1100 \text{ MeV} (1080-$ $V_{\text{par}} = 35, \ \chi^2 = 730, \ \chi^2(\text{E})$	ReT	-0.406 ± 0.044	-0.403 ± 0.045	-0.089 ± 0.033	-0.138 ± 0.019	-0.309 ± 0.037	-0.075 ± 0.032	-0.155 ± 0.019	-0.240 ± 0.019	-0.114 ± 0.017	-0.088 ± 0.025	-0.261 ± 0.020	0.006 ± 0.011	0.233 ± 0.017	0.078 ± 0.007	0.063 ± 0.007	-0.013 ± 0.011	0.020 ± 0.006	0.023 ± 0.007
C110,	Wave	S ₁₁	S_{31}	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	$m{F}_{37}$	G ₁₇	G_{19}	G_{39}	H_{111}	H_{311}
-1080) $N_{data} = 680$, D)=(1072,1068)	$\operatorname{Im} T$	0.622 ± 0.040	0.585 ± 0.032	0.329 ± 0.029	0.142 ± 0.018	0.140 ± 0.031	0.184 ± 0.012	0.035 ± 0.025	0.214 ± 0.024	0.103 ± 0.014	0.009 ± 0.004	0.230 ± 0.022	0.083 ± 0.007	0.168 ± 0.014	0.055 ± 0.013	0.018 ± 0.009	0.004 ± 0.006	0.002 ± 0.006	0.015±0.005
$T_{\text{lab}} = 1050 \text{ MeV} (1020)$ $\text{bar} = 35, \chi^2 = 943, \chi^2 (\text{EI})$	ReT	-0.272 ± 0.041	-0.391 ± 0.042	-0.116 ± 0.029	-0.115 ± 0.026	-0.330 ± 0.030	-0.090 ± 0.020	-0.124 ± 0.014	-0.237 ± 0.023	-0.129 ± 0.013	-0.095 ± 0.016	-0.257 ± 0.022	0.025 ± 0.006	0.216 ± 0.010	0.074 ± 0.006	0.041 ± 0.007	-0.012 ± 0.006	0.019 ± 0.006	0.019 ± 0.003
C105, N	Wave	S ₁₁	S_{31}	P_{11}	P_{13}	P_{31}	P_{33}	D_{13}	D_{15}	D_{33}	D_{35}	F_{15}	F_{35}	F_{37}	G_{17}	G_{19}	G ₃₉	H_{111}	H_{311}

TABLE IV. (Continued).

dependent fit. Characterized by charge channel, FP84 resulted in the following χ^2 /data: $\pi^+p=5708/3709$, $\pi^-p=8267/4860$, and CXS=1528/700.

In Fig. 6 we plot the partial waves of solution FP84 for 0-1200 MeV (our FP84 analysis end point is 1100 MeV), along with the results of our single-energy analyses. In Table III the partial-wave amplitudes of solution FP84 are tabulated at those energies where single-energy fits were obtained. As we have indicated throughout this report, agreement between FP84 and the single-energy fits is convincing of a consistent picture (Figs. 6 and 7).

In Table IV we present partial waves, with errors, for the single-energy analyses. Only those partial waves with searched parameters are given; other waves taken from FP84 are given in Table III.

Figure 8 is a brief summary of how well the FP84 solution fits the angular data. Figures 2 and 3 show the fits for energy data.

Our method of parametrizing FP84 allows us to analytically continue the partial-wave amplitudes into the complex total-energy (W) plane and to locate the structures, poles and zeros, which give the on-shell features shown in Fig. 6. In Table V we enumerate the complex-plane positions (ReW, ImW) for poles and zeros of all partial waves through l=3 and for $1300 \le \text{Re}W \le 1900$ MeV and $-200 \le \text{Im}W \le 0$ MeV. In addition to the poles and zeros of Table V, on-shell structure is strongly influenced by the $\pi\Delta$ branch cut which starts at W=(1360,-51) MeV, and by the η production threshold at 1489 MeV (for the S_{11} state only). Some of the poles and zeros may be intimately connected with these thresholds.

In Fig. 9 we map $\ln(T^2)$ extended into the complex energy plane to illustrate how prominent features of the onshell partial waves are influenced by nearby poles and zeros of the T matrix.

Generally there is a close association between the poles of Table V and πN resonances given in the baryon table of the Particle Data Group.² Some of the structures, however, are too complicated to be described by simple resonance forms; therefore, we are presently engaged in a more extensive study of the complex-plane topology for solution FP84.

VIII. COMPARISON WITH KARLSRUHE-HELSINKI SOLUTIONS

In Fig. 7 partial waves through l=3 from solution FP84 are plotted with values obtained by the Karlsruhe-Helsinki (KH) group.¹ Comparison reveals good agreement below 600 MeV, and fair agreement above 600 MeV. In particular, FP84 does not contain some of the smaller structures of the KH solution. Some of this can be attributed to the higher degree of smoothing which is intrinsic to our method; comparison with our single-energy analyses, however, suggests that these structures are not being demanded by the data. Some of the structures are possibly noise in the KH solutions.

The principal difference between our method and that of the KH group is in the larger amount of dispersiontheoretic data used by the KH group to constrain their solutions. We use only the real part of the forward ampli-

TABLE V. Complex-plane positions for prominent partial-
wave poles (P) and zeros (Z) . Positions are in c.m. energy
$(\operatorname{Re} W, \operatorname{Im} W)$ MeV. Resonances are from the baryon table (Ref.
2) and indicate their (one-four)-star rating.
-

State	Resonances	Pole (P) , or Zero (Z)
<i>S</i> ₁₁	1535****	P_1 (1461, -70)
	1650****	Z_1 (1580, -69)
		P_2 (1660, -61)
P ₁₁	1440****	Z_1 (1200,0)
	1710***	P_1 (1359, -100)
		P_2 (1410, -80)
		Z_2 (1880, -70)
P ₁₃	1540*	Z_1 (1691, -15)
	1720****	P_1 (1705, -40)
D ₁₃	1520****	P_1 (1510, -61)
	1700***	Z_1 (1651, -46)
		P_2 (1670, -40)
•		Z_2 (1890, -141)
D ₁₅	1675****	P_1 (1661, -71)
<i>F</i> ₁₅	1680****	P_1 (1680, -60)
S_{31}	1620****	Z_1 (1585, -34)
		P_1 (1599, -60)
P ₃₃	1232****	P_1 (1210, -50)
	1600**	Z_1 (1590, -60)
	1920***	P_2 (1581, -150)
D ₃₃	1700****	Z_1 (1360, -21)
		P_1 (1668, -160)
F_{35}	1905****	Z_1 (1557, -52)
		P_1 (1830, -90)
F ₃₇	1950****	P_1 (1858, -119)

tude³ to complement real scattering data. The KH analyses are also much more ambitious, covering an energy range nearly three times that which we cover. Our primary emphasis is the precise encoding of scattering data in our more limited energy range through solutions which have proper direct-channel analytic properties, and which can be analytically extended into the complex energy plane to reveal dominant dynamical features such as poles and zeros of the resultant partial waves. It is encouraging that these two quite different approaches produce such similar results.

IX. THE SAID FACILITY: EXPLORING THE SOLUTIONS

A package of programs and data files known as SAID (scattering analyses interactive dial-in) is used to encode these π -nucleon analyses, including pion-production analyses,⁴ as well as recent analyses of nucleon-nucleon and

FIG. 8. Our FP84 solution versus some of the angular data. P=polarization, CXS=charge-exchange reaction. The data shown are within ±1° of the selected angle. (a) Differential cross sections for π^+p . (b) Polarizations for π^+p . (c) Differential cross sections for π^-p elastic. (d) Polarizations for π^-p elastic. (e) Differential cross sections for π^-p charge exchange. (f) Polarizations for π^-p charge exchange.

 K^+ -nucleon data below a few GeV. The programs run interactively on computers at VPI&SU and on many VAX11-780/VMS systems throughout the world. The programs allow use of any of many solutions, including ones which may be entered by the user, to calculate any of the multitude of quantities which are predicted by the solution (observables or partial-wave amplitudes). These, in turn, can be used to plan experiments, examine the data base, and ascertain disparities and uncertainties in the solutions. The system can be used with any computer terminal and a number of terminal types are supported for graphics output (including color graphics on the NEC APC). Most of the plots presented in this report were generated through SAID. Copies of SAID are available upon request on small VAX backup tapes.

The SAID package also contains a set of FORTRAN subroutines which use an interpolating array written for SAID to provide a very accurate reconstruction of onshell amplitudes in calculations. Users who need on-shell πN amplitudes at a number of kinematic points can simply call these subroutines when necessary from their programs. This package (subroutines and interpolating array) can be obtained on computer tape from the authors.

FIG. 9. Complex-plane mapping for selected partial waves. Re W goes from 1300 to 1900 MeV except for P_{33} where it goes from 1100 to 1700 MeV. Im W goes from -200 to 0 MeV (the physical axis). The quantity being mapped is $\ln(T^2)$; prominent poles (P), and zeros (Z) are indicated as described in Sec. VII. The $\pi\Delta$ cut is extended to the left, except for the second view of P_{11} which shows it extending to the right. The partial-wave amplitudes are plotted above the contour plots.

FIG. 9. (Continued).

ACKNOWLEDGMENTS

This work was sponsored by the United State Department of Energy under Contract No. DE-AS05-76-ER04928. The authors wish to express their gratitude to Professor B. M. K. Nefkens at UCLA for useful discussions about the data base, and, especially, to Professor G. Höhler at Institüt für Kernphysik (Karlsruhe) for many useful discussions of the data base and several other general aspects of the πN scattering problem. One author (R.A.A.) would like to thank Professor G. Chew at University of California, Berkeley, for the inspiration to present our results in the form of the complex-plane mappings shown in Fig. 9. Another author (J.M.F.) wishes to thank Teledyne Brown Engineering of Huntsville, Alabama, for allowing him leaves of absence to pursue this work.

- *Permanent address: Brown-Teledyne Engineering, Cummings Research Park, Huntsville, AL 35807.
- ¹Karlsruhe-Helsinki (KH) solution: G. Höhler, F. Kaiser, R. Koch, and E. Pietarinen, *Handbook of Pion-Nucleon Scattering* (Fachsinformationszentrum, Karlesruhe, Germany, 1979), Physics Data 12-1; R. Koch, in *Baryon 1980*, proceedings of the 4th International Conference on Baryon Resonances, Toronto, edited by N. Isgur (University of Toronto, Toronto, 1981); R. Koch and E. Pietarinen, Nucl. Phys. A336, 331 (1980). The KH solution mentioned in this paper is the high-

energy one; the low-energy solution is also available in the SAID facility. Carnegie-Mellon-Berkeley (CMB) solution: R. L. Kelly and R. E. Cutkosky, Phys. Rev. D 20, 2782 (1979); R. E. Cutkosky *et al.*, *ibid.* 20, 2804 (1979); 20, 2839 (1979); R. E. Cutkosky, in *Baryon 1980* (Ref. 1), p. 19.

²Particle Data Group, Rev. Mod. Phys. 56, S1 (1984).

- ³A. A. Carter and J. R. Carter, Rutherford Laboratory Report No. RL-73-024, 1973 (unpublished).
- ⁴D. Mark Manley, Richard A. Arndt, Yogesh Goradia, and Vigdor Teplitz, Phys. Rev. D 30, 904 (1984).