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We present a straightforward generalization of the results of some previous treatments, in which the
Adler-Bell-Jackiw anomaly has been recovered with the help of dispersion relations. We consider the ab-

sorptive part of the VVA triangle diagram with the external momenta k,p at vector vertices such that
k2 p2~ 0 and the fermion mass m ~ 0. An integral of the imaginary part of the re1evant invariant ampli-

tude is calculated explicitly and shown to produce the desired anomalous contribution to the axial Ward
identity. This also enables one to demonstrate the 8-like behavior of such an imaginary part in the limit
k2 0 m 0.

The axial anomaly is one of the most intriguing phenome-
na in quantum field theory. Early observations' concerning
the peculiar behavior of axial-vector currents were subse-
quently clarified by Schwinger. The problem was recon-
sidered later and resolved independently by Adler and by
Bell and Jackiw. 3 4 Since then, the anomalous divergence of
the axial-vector current or the closely related anomalous
Ward identity for the VVA triangle diagram have been
rederived in many different ways; ' needless to say, our
list of relevant literature is far from being complete.

In this Brief Report we will recover the anomalous Ward
identity for the VVA triangle graph, starting from its absorp-
tive part and using dispersion relations. Some particular cal-
culations along these lines have been performed earlier.
Here we present a simple generalization of these previous
results. The main virtue of such a dispersive approach is
that everything can be straightforwardly expressed in terms
of convergent integrals. In other treatments one deals with
divergent quantities which must be given a precise meaning
by an explicit regularization. 3 4 8 'a (Of course, one may ob-
ject that evaluating the. triangle graph by means of disper-
sion relations can be vie~ed as a unique regularization pro-
cedure. )

Let us begin with some definitions and basic formulas.
The contribution of the familiar VVA triangle diagram (with
amputated external legs) is formally given by

T.„„(kp) = I.„„(k,p)+ I.„„(p,k),
r.„„(k,p)
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where k,p are the external momenta outgoing from vector
vertices and m is the fermion mass. In the sequel we shall
also deal with the second-rank pseudotensor T„„(k,p )
which is given by formulas analogous to (I) and (2) with yq
replaced by the unit matrix. Our metric and y-matrix con-
ventions follow that of Bjorken and Drell. " The famous
result34 for the amplitude (1) and (2) consists in the fol-
lowing: If one imposes the vector Ward identities

k»T.„„(k,p) = p" T.„„(k,p) =0,
then the axial Ward identity picks up an anomalous term;

i.e.,

q T „„(kp) =2mT„„(k,p)+ a„„~ kr p
1

2'' ""' (4)

+ F2(q;k, m )(a „~ p„—e „~ k„)k~p

+F3(q;k, m )a„„~ kr p q (5)

Note that the notation employed in (5) does not coincide
with that of Ref. 12. For 'Ep p we adopt the convention"
6g23= + 1. The second-rank pseudotensor T„„(kp) ap-
pearing on the RHS of Eq. (4) is described by means of a
single form factor 6, namely,

T„„(k,p) = G(q2;k2, m2)e„„p kr p

The Ward identities (3) and (4) may then be recast con-
secutively as

F1 = k2F2

F3 2F& = 2mG + 1

2%2

When the form factors FJ, j=1,2, 3, or Gare considered
as functions of a complex variable q~ (at a fixed value of
k2), these should possess a cut along the real axis, extend-
ing from q2 = 4m2 to infinity. ' The corresponding
discontinuity of a form factor Fj or 6, divided by 2i, will be
called its absorptive (imaginary) part and denoted by A& or
8, respectively. In order to avoid the cuts with respect to
the variable k, we shall consider the values k =p ~0 in
what follows. The functions A&, j=1,2, 3, and 8 can be
calculated explicitly5 6'2 [notice that the formula (11.50) in
Ref. 7 is incorrect]. It turns out that the unsubtracted

where q =k+p; the second term on the right-hand side
(RHS) of Eq. (4) is just the Adler-Bell-Jackiw anomaly.

For simplicity we shall restrict ourselves to k,p such that
k =p . The invariant amplitudes (form factors) corre-
sponding to the third-rank Lorentz pseudotensor (I) may be
defined as follows (detailed discussion of this point has
been given in a preceding paper"):

T „„(kp) = F~(q;k2, m )a „„~(k~—p~)
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dispersion integrals

y (un)(q2) AJ(r)
4yg2 t —q

and

g(un) (q2) dr
1 B(r)
~ J4m2 t —q2

(10)

(6)], since the integral obtained from (2) by the replace-
ment y5 I is perfectly convergent after performing the
'trace. It can be verified that (10) coincides with the result
of such a direct evaluation of G.

From the definitions (9) through (lib) one gets easily for
the LHS of the axial Ward identity (8) (taking into account
that the absorptive parts obviously satisfy "normal" %'ard
identities)

are convergent. This is apparently related to the fact that
despite the superficial linear divergence of the integral (2)
this is finite when defined with the help of symmetric in-
tegration. One may therefore try to define the form factors
appearing in (5) and (6) by means of the dispersion rela-
tions (9) and (10). The only constraint is the vector Ward
identity (7). From (7) and (9) it is easy to see that if we
set

p (q2. k2m2) p (un)(q2. k2 m2) ~
—1 2 3

g (q2. k2 m2) g(un) (q2. k2 m2)

(I ia)

(1 lb)

then (7) is satisfied automatically. Let us stress that this is
due to our convenient choice of invariant amplitudes ac-
cording to (5); there are other options3 6'2 frequently en-
countered in current literature, which would necessitate a
modification of the definition (1 la) through subtractions in
the dispersion relations (9) in order to satisfy the require-
ment (7). Of course, such subtractions have nothing to do
with the convergence properties of the integrals (9). Let us
also remark that the form factor G may be uniquely calcu-
lated directly from the Feynman graph for T„„(k,p) [cf. Eq.

q2F (q2. k2 m2) 2P (q2. k2 m2)

p oo

A3(r;k', m') dr+ 2mg (q', k', m')
m J 4N2

(12)

n oo
1

A ( r km ') dr =—
J 4]g2 277

(13)

The "sum rule" (13) has been verified explicitly by Dolgov
and Zakharov for k =0, ma0. and by Frishman et a/. for
k2& 0, m=0. In both cases it is obvious a priori (for
dimensional reasons) that the integral in (13) is a constant.
However, it is not clear how such a statement could be
proved on general grounds (using, e.g. , some analyticity ar-
guments) in the case when both k2 and m are nonzero.

Below we shall verify by means of an explicit calculation
that Eq. (13) is valid in the case k2~0, m «0; our result
will thus encompass those of the previous treatments.

The function A3(q2;k2, m2) has been calculated in an ear-
lier paper

We shall see below that the integral on the RHS of Eq. (12)
is convergent. If we want to recover (8), we have to show
that

2 2 2
r/2

A (q2;k2 m2) 1 2k q +2k I 4m
(q2 4k2)2 ~ q2

~here

2k'(q' —,2k ) q2 —k2 2 q2 —4k2
(q2)1/2(q2 4k2)5/2 q2 2k2

™
2(k2)2

we obtain from (14), (15), and (16)

(14)

q' —2k' —[(q' —4m') (q' —4k') ]'/'

q —2k2+ [(q —4m') (q' 4k') ]'/—
Introducing the dimensionless variables

(15)
J' 2A3(q;k, m )dq = — [I)(p) + I2(p) + I3(p) ]

4m 2m

—k 2

p
—k q
m2

' 4m2 where
l

(17)

1 ( ' 1/2
x —I)(P) 2P J ( )2

(

x+ 4 p x+ 2p —[(x—1)(x+p)]'/2
I2(p) = —&p' x' (x+P)"' + —'P+ [(x—1)(x+P)]' '

(18)

x+ 2 p x+ —,'p —[(x—1)(x+p)]'/'
I3(P) = —T ~

3 2 3 2
ln(x+» ' x+ —,'p+ [(x—1)(x+p)]'/'

Evaluation of the integrals (18) is elementary and the result is

I (p) 5 2p+5 p
4 4P P+1

' 1/2

ln[P' + (P+ I)' ']

I (p) I + 2p2 —3p —8 p
4p2 p+ 1

i/2

»[P' '+ (P + 1)' '1 ——(P+ 1)' 'I()(P) (19)

I (p) 2P+2
p2

1/2

P+1 ln[p' + (p+ 1)'/']+ —(p+ I)'/2IO(p)



32 BRIEF REPORTS

Io(P) = r 1 dt
- -i (1+Pt2)'i2(Pt P—2)—

easily follows that

lim A3(q', k2 m2) = — &(q2) .1

pg 0 2&
k2~0

(21)

Il(P) + I2(P) + I3(P) (20)

Equations (20) and (17) then immediately imply (13) and
this is the desired result. Further, from (13) and (14) it

The integral Io(P) can be also easily expressed in terms of
elementary functions, but this is not necessary for our pur-
poses. From (19) it is readily seen that

Equation (21) also represents a generalization of the earlier
results, ' ' which in fact established (21) only for particular
limiting procedures, namely, k 0 followed by m 0 and
vice versa.

To summarize, Eqs. (13) and (21) [supplemented with
the intermediate formula (19)] constitute the main results
of the present paper, demonstrating that the earlier calcula-
tions ~ may be extended in an elementary way.

I am indebted to P. Exner for an enlightening discussion.
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