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Higher-dimensional extensions of Bianchi type-I cosmologies
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%e present some new solutions of the Bianchi type-I space-time in N =1+d+D dimensions. Exact
solutions are given both in the vacuum as well in the perfect-fluid case, including a nonvanishing cosmo-
logical constant.

I. INTRODUCTION

Higher-dimensional cosmologies are of some interest in
view of the modern Kaluza-Klein theories. ' Such cosmolo-
gies have been first investigated by Forgacs and Horvath
and Chodos and Detweiler. With these models, many in-
teresting results were obtained using the idea that the size
of the extra dimensions is small, as required by the physics
in the real universe (for further reference, see, e.g. , Refs. 4
and 5). However, most of these models are free of matter
and therefore cannot describe the behavior under the influ-
ence of matter. A first step in the direction of constructing
some more realistic models has been recently obtained by
Bergamini and Orzalesi. The resulting model is a Bianchi
type-I dust solution in N = 4+d dimensions. Another solu-
tion was given by Sahdev for the radiation-filled
Kantowski-Sachs model, which is closely related to the Bian-
chi type-III model.

In general, in cosmology we are interested in perfect-fluid
solutions with equations of state p =0 (dust), p = e (stiff
matter), and p = e/(N —1) (radiation), where p and e are,
respectively, the pressure and energy density of matter. In
what follows we construct higher-dimensional cosmological
Bianchi type-I solutions both in the vacuum case (e =0) as
well as in the perfect-fluid case. In addition we consider
also models with a nonvanishing cosmological constant A.

II. FIELD EQUATIONS AND SOLUTIONS

In choosing a local orthonormal basis o-", we can put the
metric of space-time in the form

ds = 'g~„(x' 0

where q„„=( —1, 1, . . . , 1) is the Minkowski-metric tensor
and p, , v=0, 1, . . . , N. We assume N =1+d+D. For
spatially homogeneous models of Bianchi type-I we have

on M, A the N-dimensional cosmological constant, u„ the
velocity N-vector, and e and p are, respectively, the energy
density and pressure of the perfect-fluid matter. The N-
dimensional gravitational constant G~ = G00 d +a 3 has
been absorbed in the definition of e. We consider only
nontilted models, i.e., u„= 5„.

In the following we are interested in perfect-fluid solu-
tions with equations of state

a=0, e=p, p =0, p =e/(N —1) (4)

(vacuum, stiff matter, dust, radiation). The perfect-fluid
matter obeys the conservation law

e+ (a+p) (dh +DH) =0, (5)

where h = (Inr)', H= (lnR)' are the Hubble parameters,
r =rq, R =RD, and ( )' =d/dt.

Using our new method of reduction of the field equations
(3) (see Ref. 8 for details) we obtain the decoupled equa-
tions

h+h(lng)' = (2A+e —p)/(N —2) (6a)

H +H (lng)
' = (2A + e —p )/(N —2)

g =g (2A+ e —p)(N —1)/(N —2)

(Ing )'—(dh'+DH') = 2(A+ e)

(6b)

(6c)

(6d)

(i) A=o:

rd = rdt, RD =Rot~D

where g =rdR . After specifying the equation of state (4)
we obtain from (5) and (6c) a second-order equation for
g =g(t), which may be easily solved. The solutions are
then completed by solving (6a) and (6b) for r =rd and
R =RD. The constraints on the integration constants are
given by Eq. (6d).

In particular, we obtain the following explicit solutions:

Vacuum:

o.o=dt, a'=r;cv', cr"=R„co" (no sum) (2) dpd+Dpa=1, dpd +Dpa =1, g =at
where r; = r; (t), R„=R„(t) are the cosmic scale functions
on M,M, respectively, i =1, . . . , d; n =d+1, . . . , d
+D, and ~' = dx' are the time-independent differential
forms.

The field equations to be solved are

R„,= [2/(N —2) ]Ag„, + [1/(N —2)](~ p)gp

+ (E+p)u~u„

where R ~„denotes the Ricci tensor, g„„ the metric tensor

(ii) Aw0:

(a) g = a sinh(ut), A ) 0:

rd = rd [sinh(ut) ]'tt~ '~ [tanh(ut/2) ] d

RD = RD [sinh(ut) ]'t'" "[tanh(ut/2) ]

dpd +DpD = 0, dpd + DpD2 = 2A/u 2

u'= 2A(N —1)/(N —2); (7b)
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(b) g = a sin(ut), A & 0:

rq=rq[sin(ut)]' ~ '~[tan(ut/2)]"

RD=RD[sin(ut)]' ' [tan(ut/2)]

dpi' + DpD = 0, dpi' + DpD = 2 A/u

u = —2A(N —1)/(N —2)

(c) g = a exp(ut):

rq = RD = rq exp(vt )

u2=2A(N —1)/(N —2), U =2A/(N —1)(N —2)

(7c)

(7d)

Radiation:

A=O

(N —2)/(N —1) g 2 sinh2 (2 )

dt/dr/=41- / '[(N —1)/C(N —2)]
& [sinh(2q) ]~ ~

C = 2M (N —1)/(N —2), I- = const

rq = rq [sinh(2q) ] /t~ 2~ [tanh(7l/2) ] ~

RD = RD [sinh(2q) ]~ t+ 2~[tanh(q/2) ] D

dpu+DpD =0, dpi''+DpD =4(N —1)/(N —2)

Dust:

(i) A=O:

g = at (t + tp)

Stiff matter:

(i) A=O:

N/(iV —1)

pg 2/(N —1)—
p~

rg = rgt (t + tp)

pD 2/(w —i) —pa
RD ——Rpt (t + tp)

dpg+DpD = 1, dpi' +DpD = 1, e =M/g

(ii) AwO:

(a) g = a sinh(ut) + b [cosh(ut) —1], A & 0:
i/(w- i)-p~

rq = rq {a sinh(ut) + b [cosh(ut) —1]]

x [cosh(ut) —1]

RD = RD [a sinh(ut) + b [cosh(ut) —1]]

x [cosh(BE) —1]

(Sa)

rg = rgt, RD = RDtpD

dpg+Dpp= 1, dpi' +DpD =1—2M/u

g =ut& e=M/g

(ii) AwO:

(a) g = a sinh(ut), A & 0:

rq = rq [sinh(ut) ]' t '~ [tanh(ut/2) ] ~

R =RD[sinh(ut)]' ' [tanh(ut/2)]

dpg+DpD ——0, dpi' +DpD =2A/u —2M/(au)

u =2A(N —1)/(N —2), e=M/g2

(b) g = a sin(ut), A & 0:

(10a)

(lob)

dpg+DpD=0, dpi' +DpD =2A/u

u~ = 2A(N —1)/(N —2), b = M/2A, e = M/g; (8b)

(b) g = a sin(ut) + t/[cos(ut) —1], A & 0:

rq = rq [a sin(ut ) + b [cos(ut) —1]]

x [cos(ut) —1]
]/(N —1)—

pD
RD = RD (a stn(ut) + b [cos(ut) —1]]

& [cos(ut) —1]

rq=rq[sin(ut)]' t ' [tan(ut/2)]

RD = Fg [sin(ut) ]' '~ "[tan(ut/2) ]

dpi' +DpD = 0, dpi' + DpD = 2A/u —2M/(au)

u2= —2A(N —1)/(N —2), e = M/g2

where r~, RD, pq, pD, a, b, to, M are constants.

III. CONCLUSION

(10c)

dpi' +DpD = 0, dpi' + DpD = 2A/u

u = —2A(N —1)/(N —2), b =M/2A, e=M/g

(c) g =a exp(ut)+c,
1/(N —1)—

p~
rq ——rq exp(upset) [a exp(ut) + c ]

~/(w —»-pD
RD ——RD exp(upDt ) [a exp(ut) + c ]

dpi' +DpD = 1, dpa'+ DpD'= 1+2A/u

u = 2A(N —1)/(N —2), c = —M/2A, e =M/g

(Sc)

(Sd)

We have given a complete discussion of the X = 1
+d+D-dimensional Bianchi type-I field equations in the
vacuum case as well as for various perfect-fluid matter in-
cluding a nonvanishing cosmological constant. However, it
seems to be impossible to integrate the field equations in
the radiation case with A~O. In addition, we have to intro-
duce. the new time parameter q in the radiation case in or-
der to decouple the corresponding field equations. By set-
ting D = 0 we obtain from (7a) the Chodos-Detweiler-
Kasner solution. The special case d =3, D =1 has also
been discussed by Alvarez and Gavela. The dust solution
(Sa) in N = 4+d dimensions has been recently obtained by
Bergamini and Orzalesi in a somewhat different form. The
method of solving the dust field equations used by these au-
thors is based on the generalization of the four-dimensional
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approach due to Raychaudhuri. '0 Our higher-dimensional dust solution (8a) is a direct generalization of the solution first
given by Schucking and Heckmann. "'2 (See also Ref. 13.)

We finally remark that the boundary conditions of our solutions (7b), (7c), (8a), (8b), (10a), (10b), and (10c) are
rq= Ra=0 at the initial singularity t=O.
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