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We derive from a d-dimensional lattice gauge theory at finite temperature a (d —1)-dimensional

effective action in which the dynamical variables are Wilson lines and meson and baryon fields.
Analysis of this model shows a first-order deconfinement transition for all values of the bare quark

mass, and a second-order chiral transition at a higher temperature for zero bare quark mass.
Reasonable values for the two transitions and the hadronic mass spectrum are obtained.

I. INTRODUCTION

Chiral-symmetry breaking is a necessary part of the
modern picture of strong-interaction physics. While suc-
cessful predictions based on chiral-symmetry breaking are
almost three decades old, a fundamental understanding of
this phenomenon and its derivation from QCD has been
elusive. Useful information about chiral symmetry has
been obtained, however, using the techniques of lattice
gauge theory. Finite-temperature chiral-symmetry res-
toration is of particular interest at this time, because of its
possible relevance to both the physics of heavy-ion col-
lisions and the study of the early universe. This paper
discusses the restoration of chiral symmetry at high tem-
perature using strong-coupling methods applied to
lattice-gauge-theory models. The loss of confinement at
high temperature is also considered here, as the two phe-
nomena are interrelated.

In the remainder of this Introduction, we provide a
brief summary of previous work relevant to this one, fol-
lowed by a discussion of the guiding principles which lead
to the model studied here. The second section is a de-
tailed derivation of our model, while the third analyzes
the predictions which can be derived from it. A final sec-
tion summarizes our results.

There are various arguments that suggest that confine-
ment (defined in a variety of ways) necessarily implies
chiral-symmetry breaking. This might be thought to im-
ply that chiral-symmetry restoration cannot occur before
the deconfinement transition. However, for reasons to be
explained shortly, a precise and meaningful general result
of this type is difficult to state, much less prove.
Nevertheless, it is useful to review what is known.

A simple, intuitive argument that confinement neces-
sarily implies chiral-symmetry breaking has been given by
Casher. The basic idea is that, in a semiclassical picture,
a spin-independent confining force can change the
momentum of a massless quark, but not its spin. Thus,
helicity can flip, but this implies chirality is not a good
quantum number, so chirality is spontaneously broken.

More formal arguments have been given for the large-X
limit, where % is the number of colors. In the zero-
temperature case, Coleman and Witten have shown that
confinement implies chiral-symmetry breaking; their
proof uses the triangle anomaly. For lattice gauge

theories at finite temperature, a proof that confinement in
the large- J limit implies chiral-symmetry breaking has
been given using the Schwinger-Dyson equations.

Chiral-symmetry breaking in the strong-coupling limit
of lattice gauge theories at zero temperature has been ex-
tensively studied. The earliest results were obtained for
the Hamiltonian formalism, exploiting an analogy with
quantum Heisenberg antiferromagnets. " The earliest
work in the Lagrangian formalism used graphical tech-
niques, but functional methods have proven very power-
ful and flexible. The two major approaches have been ex-
pansions in 1/N (Refs. 8—10) and 1/d (Refs. 11,12),
where N and d are the number of colors and space-time
dimensions, respectively. All of the methods have demon-
strated that PP develops a nonvanishing vacuum expecta-
tion value. When chiral symmetry is a continuous sym-
metry, pions are massless Goldstone bosons in the limit of
zero bare quark mass. When a small bare quark mass is
turned on, the usual PCAC (partial conservation of axial-
vector current) result is obtained.

In the following discussion, it will be necessary to have
a precise working definition of the chiral and deconfining
transitions. What do we mean when we speak of the
deconfining transition or the chiral transition? Let us
first consider the deconfining transition. For a pure
SU(N) gauge theory, without quarks, there is very little
doubt that a deconfining phase transition occurs. The or-
der parameter for this transition is the Wilson line, which
can be interpreted as the exponential of minus the self-
energy of an infinitely massive quark. A global Zz sym-
metry requires that the expectation value of the Wilson
line be zero, which implies confinement. ' A rigorous
proof that deconfinement occurs in lattice gauge theories
(without quarks) at sufficiently high temperature has been
constructed, ' but Monte Carlo simulation' provides the
best evidence that such a transition might occur in nature,
and at a realistic temperature.

It is possible to gain some understanding of the decon-
finement transition using a picture developed by Svetitsky
and Yaffe, ' in which the Wilson lines are considered as
SU(N)-valued spins. Effective spin models of this type
can be derived from lattice gauge theories with some ap-
proximations. ' ' These models can be studied using
Monte Carlo simulation or mean field theory, with results
for the critical behavior in very good agreement with
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Monte Carlo results for the underlying lattice gauge
theories.

The inclusion of fermions explicitly breaks the Zz
symmetry of a pure SU(N) gauge theory, so that the Wil-
son line is generally nonzero. As pointed out by Banks
and Ukawa, the effect of fermions on the Wilson lines
regarded as spins can be viewed as that of an external
magnetic field. In the limit of large fermion mass, this ef-
fective external field is proportional to m ', where rn is
the fermion mass and n, is the timelike extent of the lat-
tice. For very large values of the mass, it is expected that
the deconfining phase transition will still occur: there will
be a line of phase transitions, perhaps of the same order as
the pure-gauge-theory transition, connecting smoothly
with it as the fermion mass goes to infinity. In the case of
SU(3), which has a first-order transition, the expectation
value of the Wilson line will jump discontinuously from
one nonzero value to another. We will refer to all phase
transitions on such lines as deconfining transitions, even
though the question of confinement is not meaningful
once dynamical quarks are included.

It appears that the deconfining transition can disappear
if sufficiently light quarks are present in a gauge-theory
model. This can be understood using the spin-model pic-
ture; for sufficiently strong external fields, thermodynam-
ic quantities are analytic in the temperature. Monte Carlo
results for n, =2 in which fermion effects were simply ap-
proximated indicated that sufficiently light quarks might
destroy the deconfining transition. However, the latest
results, ' using larger lattices (n, =4) and better approx-
imations for the fermion determinant, do show a per-
sistence of the deconfining transition, perhaps even for
zero bare quark mass.

Like the deconfining transition proper, the chiral-
symmetry-breaking transition is associated with a global
symmetry which nature does not really have: in nature,
quarks have nonzero bare mass. The order parameter for
this transition is the fermion bilinear gg, whose expecta-
tion value must be zero if chiral symmetry is unbroken.
Even though chiral symmetry is lost when fermions have
nonzero bare mass, the transition may persist. We will
refer to all phase transitions on a line of critical points
connected to the chiral-symmetry transition point as
chiral transitions.

In order to understand these phase transitions, we can
view the phase structure of a gauge theory coupled to fer-
mions at fin1te temperature in the temperature —quark-
mass plane. Something is known about the large-m and
small-m limits, but not much about the region of inter-
mediate m. It is easy to see that in nature there may be
two, one, or zero phase trans1tlons. If there is but one, it
may be a deconfining or chiral transition, or both. In ad-
dition, even if neither transition occurs in nature, their ef-
fect may show up in rapid fluctuation of thermodynamic
quantities if such transitions are nearby in the T-m plane.

Our basic tool for the exploration of the phase structure
is a (d —1)-dimensional effective action for strong-
coupling lattice gauge theories in which the dynamical
variables are meson and baryon fields and Wilson lines.
The fundamental ingredients used to arrive at this effec-
tive action are as follows:

(1) The pure gauge field piece of the action gives rise to
an effective interaction between Wilson lines. All other
effects of this part of the action are dropped, as in previ-
ous work on the zero-temperature strong-coupling limit.

(2) Composite fields are introduced with the quantum
numbers of mesons and baryons. We assume that these
fields are time-independent, in order to explicitly evaluate
certain functional determinants. This assumption has no
effect on the zero-temperature consequences of the model,
and is certainly reasonable at high temperature.

(3) Given the above, the integrals over the quark fields
can be done exactly, as a set of one-dimensional functional
determinants. These determinants couple the meson fields
to the Wilson lines.

Our simple picture is that mesons are highly localized
in space, as a consequence of the strong-coupling limit,
but not necessarily in time. When the Wilson lines take
on a constant nonzero vacuum expectation value, quark-
antiquark pairs are no longer bound together in the time-
like direction. As will be seen later, this makes possible
chiral-symmetry restoration. Qn the other hand, timelike
quark loops explicitly break the Z& symmetry of the Wil-
son lines. Thus the mechanisms for the two transitions
are coupled.

Before ending this section, we would like to comment
on two interesting issues. The first is that confinement
persists in the (d —1)-spatial dimensions even at tempera-
tures above the deconfining transition. In the pure gauge
theory, the deconfining phase transition is associated with
the spontaneous breakdown of a global symmetry of the
timelike link variables. Similar symmetries exist if space
as well as time is made periodic. However, for large spa-
tial dimensions, these symmetries are not broken. To put
it in a slightly different language, timelike Wilson lines
having a nonzero expectation value in no way implies that
spatial Wilson loops do not have area-law behavior. It is
easy to check this in the strong-coupling region.

The other issue is whether the inclusion of timelike
quark loops is necessary at all. Because the breakdown of
chiral symmetry can be understood using an effective ac-
tion containing only meson fields, ' it might be thought
that chiral-symmetry restoration at finite temperature
could be understood in the same way. The basic idea
behind this is that one-loop finite-temperature effects
from the functional determinant of the meson propagator
can change the form of the effective action; this mecha-
nism has been much discussed for Higgs bosons. There
are two reasons why this approach is inadequate, one con-
ceptual and one technical.

As discussed previously, the introduction of fermions
explicitly breaks a global Z& symmetry of the pure gauge
theory. The strength of the symmetry breaking depends
on the mass of the quarks. However, it is not clear which
mass should be used as a parameter, the bare quark mass
or the constituent quark mass given by chiral-symmetry
breaking'. If the latter, then chiral-symmetry restoration
will affect the strength of Z~ symmetry breaking. As
will be seen later, it is the constituent mass which is
relevant. In other ~ords, the effective action for the Wil-
son line is a function of the fermion condensate (gP).
This implies that in an effective action in which both
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II. DERIVATION QF THE EFFECTIVE ACTION

In this section we derive an effective action describing
the interaction of Wilson lines and (color-singlet) meson
fields in the limit where the coupling constant g =2N/P
becomes large. Our starting point is the usual lattice form
of the @CD action

S=SG+S~,
where SG is given by

(2.1)

SG —— g Tr[U(P)+ U (P)]
2N

(2.2)

and SF 1S

SF —g ———g g„(x)[X(x)U„(x)X(x +p)
1

+X(x +p) U„(x)X(x)]

—itnX(x)X(x) (2.3)

We employ Kogut-Susskind fermions, that is, X(x) in (2.3)
is an N-component Grassm ann variable and
g&(x)=( —1) ' " ' takes the place of y& in this for-
mulation. Only one flavor is used which, however, corre-
sponds to [2 ] flavors in the continuum limit. In the ab-
sence of the mass term (m is the bare fermion mass) Eq.

I

(gg ) and the Wilson line are independent variables, their
behavior will affect one another. This gives an explicit
means for the chiral dynamics to be aware of confinement
or lack thereof.

The second reason is a technical one. Previous workers
on chiral-symmetry breaking at strong couphng have de-
rived effective potentials for (fg) which contain a term
of the form ln(gg) for zero bare mass. This term never
allows the chirally symmetric solution (gf) =0 to occur.
Our solution to this problem is simple: we include exactly
the effects of quark propagation in the timelike direction.
This at once cures the problem and couples the quarks to
the Wilson lines. The next section is a derivation of our
effective action.

(2.3) has a well-known invariance under

X'(x) =e' X{x),
X'(x)=e '~X(x),

X'(x) =e'~X(x),

X'(x)=e ' X(x) .

(2.4)

where J=(P/2N ) '. The integral over spatial links in
the fermionic part of the action is +„,Z(x, i), where

Equation (2.4) generates a U, (1)XU(1) symmetry group
of the massless action. The mass term breaks this symme-
try down to the diagonal subgroup U~(1). Kluberg-Stern
et al."' in the framework of a 1/d expansion, showed
that at infinite coupling the U(1) &( U(1) symmetry is spon-
taneously broken. Since the pattern of symmetry breaking
was identical to that induced by a bare-mass term, the au-
thors interpreted this as a breakdown of chiral symmetry.
The associated Goldstone boson is the pion. In this sec-
tion we will follow their work closely. Their notation is
used as well, to facilitate comparison of formulas and re-
sults. To introduce finite temperature into our system it
is from now on understood that the summation in (2.2)
and (2.3) is restricted to points x whose "time" coordinate
lies within the finite interval [O, n, ]. The physical tem-
perature is as usual related to n, by T =(n,a) ' where a
is the lattice spacing. From now on we will associate the
dth coordinate with the "time" variable. The first step in
the derivation of the effective action is to integrate out the
spatial links in the partition function

Z = f [dU][dX][dX]es. (2.5)

This can obviously only be done approximately. The in-
tegration over the gauge field part of the action can be
performed using the methods developed in Ref. 12. At
strong coupling this amounts to simply expanding the ex-
ponential and then integrating over Haar measure the spa-
tial link variables in the timelike gauge field action. The
lowest nonvanishing term will be O(P ). Each integra-
tion produces a factor of 1/N and we obtain a nearest-
neighbor interaction between Wilson lines of the form' '

SwL=J g (TrJV;TrS'J~+H. c.), (2.6)

Z (x,i)= f d U (x)exp I
——,g;(x)[X(x)U;(x)X(x + i)+X(x +i)U; (x)X(x)]I .

Keeping only the leading term in the expansion of the exponential in (2.7) and using

(2.7)

(2.8)

we obtain the following partition function:

Z = f [dUd][dX][dX]exp SwL —g I ,' gd(x)[X(x)UdX(x —+d)+X(x+d)Ud(x)X(x)]+2mNM I

QM(x)M(x+i) (2.9)

Here we have defined



880 A. GOCKSCH AND MICHAEL OGILVIE

M(x) =i —QX, (x)X,(x), m =. d —1 1

[2(d —1)' ]
(2.10)

The reader should note that the steps leading from (2.5) to (2.9) are not rigorously part of a systematic strong-coupling
expansion. We do, however, expect that SwL in (2.9) represents the most important contribution of the gauge fields in
such an expansion. The dependence on the color-singlet meson field M can now be linearized using a functional Laplace
transform

eA(M) f [dg]eA(A)~AM

Introducing the operator Vx „defined as

1 g(&, +;+&, ;)2d —1

(2.1 1)

(2.12)

we obtain for (2.9)

Z= f [dU~][dX][dX)[dA]exp SwL —g 2 ga(XUdX+XUaX) N—g ~(x)~ ~(x )+ g(~+2m)M(x)
X X,X X

(2.13)

The crucial step in our analysis is that in the following we will take the field A,(x) to depend on the spatial coordinates
only, A, (x) =A,(x). This in effect means that we are dealing with a theory exhibiting confinement in the spacelike direc-
tion and at the same time admitting propagation of colored objects in the time direction. This approximation allows us
to treat the propagation of timelike quarks exactly. With a t-independent A, we are led to consider the following integral:

I,= f [dX(t)][dX(t)]exp —g I —,[X(t)U, (t)X(t + 1)+X(t+1)U, (t)X(t)]—i(eA, +m)X(t)X(t) I (2.14)

One of these integrals must be evaluated for each spatial
lattice site; the x coordinates have been suppressed.
Equation (2.14) is easily recognized as the partition func-
tion for a fermion in one dimension, leading to the deter-
minant of the Dirac operator in the Kogut-Susskind for-
mulation. To evaluate this determinant appropriate
boundary conditions must be specified. With the conven-
tions of Kluberg-Stern et al. ' adopted here, the variable
X(t) satisfies X(t) =X(t +n, ). Equation (2.14) is most easi-
ly calculated by fixing a gauge. We choose a gauge in
which U~ satisfies

~ah '~ayah (2.15)

In this gauge, we can write

lnIO= g g —,'ln[p +cos (ko —P, )],
a ko

(2.16)

where p=ei, +m and ko takes on the values 2am/n,
with m =0, . . . , n, —1. A shift in ko of vr puts this in a
more familiar form:

lnIo ——TrIn, E+ln[1+e ' W]+ln[1+e ' W ] I .

(2.19)

Here we have introduced the quantity E given by

sinhE =m+ek .

The gauge-dependent formula

pra& t ~a gab

(2.20)

(2.21)

has been used to recover a gauge-invariant result. Putting
all this together, we finally arrive at the following effec-
tive action:

Scff—g J[TrW( x )Tr W ( y) +H. c.]

I

where w, =e ' and C is an appropriately chosen contour.
This integral can be evaluated, and Io determined. The fi-
nal result is simple, very much resembling the continuum
result:

lnIO= g g —,
' in[sin (qo —P, )+p ],

a qO

(2.17) , n, N g k(x) V„r A.(y)—
x, y

where qo
——m(2m +1)/n, . The derivative with respect to

p can be evaluated by the contour integral

+ QTrIn, E+ln[1+e ' W]

+ln[l+e ' Wt]] . (2.22)

BlnIO n~P f dz z '

P —
4 ZLOa-

ZMa

2

(2.18)

Following Kluberg-Stern et al. , it is straightforward to
evaluate the O(1/(d —1)) corrections to the effective ac-
tion. These corrections have two sources: the first is
terms in the original action proportional to (d —1)
while the second is the functional determinant from the
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integration over I,. The (d —1) ' term in the functional
determinant is just the lowest-order term in a kind of
hopping-parameter expansion. It is convenient to define

6 = (Tr in[2 c oshn, E + U + U ] )0 .1

V4
(2.23)

In the work of Kluberg-Stern et al. , 6 is equal to ink. .
The first correction is given by

2
dG d2G

8(d —1)(%—1) dA,
(2.24).

while the second is

d'6
8(d —1) dA, '

2

These effects will turn out to move the chiral transition
towards smaller temperatures.

III. ANALYSIS OF THE EFFECTIVE ACTION

In the previous section, the effective action was derived
from the strong-coupling limit of lattice QCD. In this
section, the effective action will be used to obtain various
interesting results, including the phase diagram in the T-
nz plane.

V?, = =+—A, —Tr E+ ln[l+e ' W]
1 —ntE

Vg 2 n,

A. Chiral symmetry made manifest

The vacuum expectation value of A, can be obtained
from the A,-dependent part of the effective action for con-
stant k. This is given by the potential V~ defined by

parison with previous work; it also gives a determination
of meson and baryon masses.

In the zero-temperature limit V~ is given by

Vg= ——,A, + /E
/

(3.4)

and A, is determined from

6'sign( EA, +m )= —A+ 2 1/2[1+(em+ m)']'" (3.5)

[This formula is given incorrectly in Eq. (16) of our previ-
ous work. ]

If the effect of timelike quark loops is not included, V~
becomes

Vg= ——,
'

A, +in[A, +m],
where e=V d/2. The value of A, follows from

(3.6)

(3.7)

(4e +m )' m—
2E

In the case m =0, k is given by

(1+4 4)l/2
A,2=

26'

(3.8)

(3.9)

which reduces to k =1 in the large-d limit. In this way
we see that the two approaches agree in the large-d limit,
as they should.

The two equations for A, are very similar, but Eq. (3.5) al-
lows A, =O as a solution, and Eq. (3.7) does not. In the
large-d limit, the solutions are essentially the same. In
our case A, is given by

+ ln[1+e ' W ]
n,

(3.1)

C. Large quirk mass

It is also interesting to consider the limit of large bare
quark mass m. In this case A, becomes small and E is
given approximately by

A useful alternative form for Vq is
E=ln(2m) . (3.10)

1

For a given, fixed W, A. is determined by

av,
BA, [1+(eA, +m)']'~'

V~ = +—A, — Tr in[2 coshn, E+ ( W + W )] .
iV 2 1

2 n,
(3.2) The fermionic determinant can be expanded in powers of

m '. This results in an effective action for Wilson loops
of the form

S?? ——g J[TrW, TrWJ~+H. c.]
&~j)

n,

~Tr 1—
—ntE

P7

—nE
=0.

1+ ntER
Tr[8;+ W~], (3.11)

(3.3)

It is easy to check that when m =0, A, =O is always a
solution of Eq. (3.3) (the term in parentheses vanishes).
Thus chiral-symmetry restoration is possible.

B. The zero-temperature limit

It is of considerable importance to examine the zero-
temperature limit of the model. This allows for a com-

where i and j are spatial indices. The sum over (ij)
denotes a sum over nearest-neighbor pairs.

This effective action has been obtained before by strong
coupling' ' and Migdal-Kadanoff' methods. It is
known to reproduce rather well both the qualitative and
quantitative features of the deconfinement transition.

D. Mean field theory

One tool that has proven useful in the study of the
Wilson-line effective action S~ discussed above is mean
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field theory. This method has given quite reasonable re-
sults, consistent with Monte Carlo simulations of the ef-
fective spin model and the underlying gauge field theory.
Thus we do not hesitate to apply it to our model, in order
to carry out the integration over Wilson line variables.

Mean field theory has been studied extensively in the
last few years, and a comprehensive review has been given
recently, so we will discuss only our particular applica-
tion. The original problem is the evaluation of a function-
al integral of the form

Z = I [d i,][dB][dB][dW]e

Mean field theory replaces this by

ZMFr —Zp J [d A )[dB][dW]

)& exp I (S[A,,B,B,W] )p
—Sp [W] I

(3.12)

(3.13)

(3.15)

As a first approximation, the study of the deconfine-
ment and chiral transitions reduces to finding solutions of

BA
Bx

(3.16a)

In the above equation ( . . )p denotes the expectation
value with respect to a trial action So Zo is defined to be

Zp= f [dW]expSp[W] . (3.14)

We choose So to have the simple form

Tsr 1 2 1 3 1 5—4 X + 24 X 384 1536 (3.19)

We can now write down a useful formula for A:

= ——', n, A, + Wp —x Wp +2(d —1)J( Wp )
3

8'o
+ 3ln[2 cosh(n, E)]+

cosh n, E)

(2N —x) 8O+
cosh (n, E) 4cosh (n, E)

+ (2—x )

24 cosh (n,E)
(3.20)

Equations (3.16a) and (3.16b) can now be solved numeri-
cally.

V~ =—A, — in[2 cosh(n, E)+2v] .
2 n~

(3.21)

In order for chiral-symmetry restoration to take place
when m =0, X=O must be a minimum of V~. Expanding
Vq to 0 (A, ), we obtain

E. A qualitative analysis of chira1-symmetry restoration

It happens that for zero bare quark mass, the expecta-
tion value of the Wilson lines is approximately constant
over a wide range of temperatures. This suggests replac-
ing 8' by a real constant U, and it is instructive to do so.
The potential V~ is given by

aw
ax()

=

where 3 is given by

(3.16b) Nn, (d —1)
V ——k X+.

2 4(1+v)
The coefficient of A, is zero when

(3.22)

A = lnZp —,' n, g —A(i)V '(i,j),A, (j)
n, a

(d —1)
2(1+v)a

(3.23)

+(J g [TrW(i)TrW (j)+H.c.]
(~j)

+ g TrI n, E+ln[1 —e ' W(i)]

+in[1 —e ' Wt(i)] I )p . (3.17)

Restriction of A, (i) to constant values gives two nonlinear
equations in A, and x which must be solved simultaneous-
ly.

Unfortunately, there is no simple form for the expecta-
tion value of the logarithm of the fermion determinant.
However, this quantity has a simple expansion in inverse
powers of 2coshn, E. From this expansion, it is easy to
determine the expectation value for small x. Because x
does turn out to be small, and [2coshn, E] '

& —,', this is
an adequate representation of the expectation value of the
determinant. Details are given in the Appendix.

We define the connected generating functional associat-
ed with Zo by

If the transition is second order, then T is the transition
temperature of this simplified model. On the other hand,
if the transition is first order, T is a bound on the transi-
tion temperature: T, )T. Distinguishing between a first-
and second-order transition requires knowledge of the glo-
bal behavior of V~.

The interpretation we give Eq. (3.23) is that the larger
the expectation value of the Wilson line, the lower the
temperature at which chiral symmetry can be restored. It
turns out that this procedure will give an accurate evalua-
tion of the chiral-transition temperature.

F. Hadron masses

The masses of hadrons can be evaluated using a variant
of the procedure of Kluberg-Stern et al. To lowest order
in ( d —1), the inverse meson propagator is

d —1 g2~6 '(k) = g cosk;+ (3.24)

18'0 —— lnZp .
V3

It has an expansion for small x given by

(3.18) Because we haVe assumed A, is time-independent we can-
not take kd Euclidean: it is fixed at 0. We can take any
of the other momenta Euclidean, however. There are
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TABLE I. Comparison of various physical quantities as ob-

tained from the model with either experimental or Monte Carlo
results. All quantities are in MeV.

Effective model

m„= 140 (input)

rnid
——780 (input)

my
——1008

yn~ ——1157
1

0-' =400 (input)
TD ——184
T,],——386

Physical value/Monte Carlo

140
780
980

1100

=400
=200
=200

d —1 solutions of 6 (k)=0 which correspond to dif-
ferent masses. They are given by

$2E
coshM =(d —1) - —1 +2@+1,ak'

(3.25)

where p runs from 0 to d —2. In the small-m limit, the
m& are determined by

(aMO) =2[2(d —1)'~ ]ma,

aM~ =21n[Mp+Vp+1]+ma d —1

[2S V +1)'"]
p=l, . . . , d —2.

(3.26)

Following Ref. 12, we use the mass of the m and the p
as input. This fixes the bare quark mass m and the lattice
spacing a, as well as the mass of other meson states. The
mass of the baryon is given by

aM& ———In[2(d —1)]+ %ma

[2(d —1)'"] (3.27)

The result of this procedure is shown in Table I, where
they are compared with the true masses. As can be seen,
the results are surprisingly good. The actual values are
very close to the results of Ref. 12. It might seem incon-
sistent to give a value for A&, which is associated with

p =3, but this should be acceptable in the large-d limit.

G. The deconfinement transition

J=exp( —n, oa ) . (3.28)

Our model has three free parameters: the lattice spac-
ing a, the bare quark mass, and the Wilson line coupling
J. This last parameter can easily be related to P in the
strong-coupling limit. QCD in the real world has only
two free parameters: the bare quark mass (which may be
a matrix) and A. For a lattice gauge theory and m near
the continuum limit, physical observables depend on P
and a only through a scale-setting parameter A, in a way
given by the renormalization group. In the case con-
sidered here, we are very far from the continuum limit, so
Jmust be set independently of a.

In order to obtain a value for J, we use the fact that
Wilson line correlation functions fall off with spatial dis-
tance with a mass given by n, o.. In the strong-coupling
limit, this implies

Thus our model uses three physical quantities as input:
m~, rn&, and o.

Once J is known, the deconfinement temperature of the
pure gauge theory can be determined in physical units,
and compared with the results of Monte Carlo simula-
tions. Taking o =(400 MeV), we find Tz ——175 MeV for
the p~e gauge theory. This result is in quite reasonable
agreement with Monte Carlo results.

As mentioned previously, there is good reason to expect
that the deconfining transition persists for large, but finite
bare quark mass. We have checked this, and find that a
deconfining transition occurs for all quark masses greater
than 0.6a '=264 MeV. This result was obtained for
various values of the bare quark mass by explicitly finding
two locally stable solutions for a certain range of tempera-
ture. The solution with higher action is stable, and the
other metastable; the actions are equal at the transition
point.

The order parameter for these transitions is the Wilson
line: it jumps discontinuously at a transition. As the bare
quark mass is decreased, the size of the jump in the expec-
tation value of the Wilson line decreases, until the jump
and the transition disappear at the critical value of the
bare mass. The chiral order parameter A. , on the other
hand, changes very little as the transition is crossed. The
transition temperature is also insensitive to the value of
the bare mass. As m is decreased from infinity to the
critical value, the critical temperature decreases from 175
to 173 MeV.

H. The chiral transition

For a bare quark mass of zero, A, =O is always a solu-
tion of Eq. (3.16). This solution can be compared with
other solutions, in particular the solution that smoothly
connects to the stable, zero-temperature chiral-symmetry-
breaking solution. As it happens, this latter solution is al-
ways globally stable. As the temperature is increased A,

decreases smoothly until it reaches zero at a temperature
of 487 MeV. The transition is thus second order, and
occurs only for zero bare quark mass.

The value of U = (Tr W) /X is very stable at these high
temperatures with a value of about 0.4. Applying Eq.
(3.23) leads to a transition temperature of 471 MeV, in
quite reasonable agreement with the more accurate nu-
merical result.

The inclusion of higher-order terms in the action, as de-
rived in II does not change the order of the transition, but
does lower the transition temperature significantly, to 386
MeV. However, it is very interesting to note that the
difference in action between the A,&0 and A, =O solutions
is in fact very small. This suggests that higher-order
corrections might easily change the order of the transi-
tion; it also explains why we originally thought the transi-
tion to be first order.

IV. CQNCLUSIGNS

Our conclusions are fairly simple. We have seen that a
strong-coupling model can reproduce both deconfinement
and chir al-symmetry restoration, including reasonable
physical values for the critical parameters. Unfortunate-
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ly, the results are not in qualitative or quantitative agree-
ment with the most recent Monte Carlo results. We have
found the following:

(1) The deconfinement transition occurs for a bare
quark mass greater than 264 MeV (four flavors), at an al-
most constant temperature of about 174 MeV. This is not
in complete agreement with the latest Monte Carlo re-
sults, ' which may indicate that the deconfinement
transition occurs for very small values of the quark mass.
On the other hand, our results do provide an explanation
of this phenomenon: it is the constituent quark mass
which determines the strength of Z& symmetry breaking.

(2) Chiral symmetry is restored via a second-order tran-
sition at a higher temperature than the deconfining transi-
tions. This is again at variance with the latest Monte Car-
lo results, which indicate that the chiral transition is first
order and very close to the deconfinement transition. The
two transitions may in fact occur together. This
discrepancy probably reflects a need to couple the dynam-
ics of the two transitions even more closely in our model.

In summary, we have displayed a relatively simple
model which gives reasonable results for the hadron mass
spectrum and the deconfinement and chiral-symmetry-
restoration transitions.

APPENDIX

In this appendix we derive an approximate formula for
the expectation value of the fermion determinant in the
case X =3. The object to be evaluated can be put in the
form

D =N in[2 coshn, E]

The logarithm can be expanded, and the following useful
identities applied:

TrU =+6—g3,
TrU =y» —F8+1

when the Xa are SU(3) characters. This combines with the
expansion

exp —(X3+X3)

X X=1+—(X3+X3)+ (2X)++3+X3+X6+X6+2Xs)

+O(x )

to give a formula for D:

D =N in[2 cosh(n, E)]+ ~o (6—x)
8cosh n,E

~o (2—x')+ 3 +
cosh n, E 24cosh n, E

where we have used the more accurate formula

( —,Tr( 8'+ 8' ) ) = 8'o (x )

when applicable.
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