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Improved projector Monte Carlo study of string tension and roughening in lattice QED
in three dimensions

T. A. DeGrand and J. Potvin
Department of Physics, University of Colorado, Boulder, Colorado 80309

(Received 20 August 1984)

W'e report on a faster version of the projector Monte Carlo, a method for stochastically simulating
quantum Hamiltonian field theories. We also present a more accurate evaluation of the string ten-
sion for lattice U(1) gauge theory in 2+ 1 dimensions.

I. INTRODUCTION

This paper is the continuation of a study of string prop-
erties of Abelian lattice gauge theory in 2+1 dimensions.
In our first paper' (hereafter referred to as I), we mea-
sured the ground state, string energies, and string width of
that system in its Hamiltonian formulation using the pro-
jector Monte Carlo of Blankenbecler and Sugar. In this
report we wish to describe an improvement of the Monte
Carlo method (the ensemble projector Monte Carlo, or
EPMC) which allows the accumulation of data about an
order of magnitude faster than the method of Blanken-
becler and Sugar.

We have recalculated all the quantities of I with smaller
error bars. In particular, the coupling dependence of the
string tension is less erratic than in I, and compares well
with strong- and weak-coupling predictions. Moreover,
the computed ground-state energies follow closely Hofsass
and Horsley's upper bound, now from below and deep
into weak coupling.

About 100 CPU hours on a VAX 11/780 were needed
to evaluate, within 5% error or less, string energies and
string widths for 6 values of the coupling and 4 values of
the string length, on a 6 lattice.

In Sec. II, we describe the EPMC Inethod, and in Sec.
III we show some results for string physics. Section IV
contains our conclusions and some speculations for future
work.

II. METHODOLOGY

Hamiltonian Monte Carlo algorithms have been used
for some time now, especially in solid state and particle
physics. The Monte Carlo technique used in this work is
a variation of the projector Monte Carlo of Blankenbecler
and Sugar. It is identical to the one used by Campbell,
Deorand, and Mazumdar and by Hirsch and Schrieffer.
It is based on the observation that the operator
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is a projection operator for the ground state
I
0) (with en-

ergy Eo) of a Hamiltonian II. Indeed, for any states
I
X)

and
I P), not orthogonal to

I
0), the quantity
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has the limiting behavior
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Other Hamiltonian Monte Carlo studies use 1/H as the
projector: in particular, Heys and Stump in their study of
U(1) gauge theory in 2+1 and 3+1 dimensions, and Lee,
Motakabbir, and Schmidt in a study of two-dimensional
fermions Oth. erwise the calculations we now describe
are quite similar in spirit to theirs,

The goal of our calculation is to compute (2) and (3),
for stringless and string states in compact three-
dimensional QED, whose Hamiltonian reads'

2

H =g (E'„) +g (1—cosB, ) .
n g

(4)

Here, E„' is the electric field operator on site n=(ni, n2)
and B„is the magnetic field operator about a plaquette at
site n,
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The expectation value (Il jk)
I

u
I Ill, ] ) is difficult to

evaluate in general. This is why we break up the Hamil-
tonian in two parts, H =H&+H2, and use the approxima-
tion
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where

Observe that Eq. (2) is based on the representation of
states of the type u

I P). Let us describe how they can be
generated stochastically.

A prerequisite for such a task is the knowledge of the
matrix element of the operator u in some basis. For our
problem, a good basis is diagonal in the electric field. On
a single link, E„'

I
l„') =l„'

I
l„'), while a complete lattice

state
I I l„' j ) is the direct product of single-link vectors.

Using these electric field eigenstates, we can express the
vector u

I f) as
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has the same form as H~, except that n ~ is even (odd) and
n, z is odd (even) I.n other words, H) (Hz) contains the
black (white) squares of a checkerboard.

The advantage of doing so is tha«[ } I
e

can be evaluated in a local way, i.e.,
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I

IE~"q}&

with n=—(n&, nz), n& and nz being both even or odd. Hz
In the right-hand side, each product depends only on one
plaquette. The matrix elements of u are then expressed as

(g)
Let us now describe the stochastic evaluation of u

I
P). The checkerboard breakup described earlier converts &u ) into

a product of single-plaquette matrix elements

We rewrite these matrix elements in terms of probabilities and scores, i.e.,

plaq ~~ ~ ~i plaq (E) (E')
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e
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where 0&P"&1 and g(,.)P(,") ( )
=1.

The P's and 5's are otherwise arbitrary (we assume here that u is positive definite). For our simulation of QED, we
have used the same probabilities and scores as in Ref. 1 [see Eq. (11) there] and imposed periodic boundary conditions
In terms of these quantities, the vector u

I P) reads [Eqs. (8) and (9) in (5)]:
r
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or, in a more compact notation u
I p) =Pea;~&;JA;,

I j)
u
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E,J

In the original method of Ref. (1) the state u
I P) would

consist of N states, each selected with probability I' and
weighted by a factor S. We modify that procedure by
performing a further sampling which allows the number
of states in the ensemble to fluctuate.

We take
I g) to be some collection of K (electric field)

states which diagonalize H in strong coupling (and do not
exclude the possibility that some of the states are identi-
cal). We apply u to

I P) as follows. From each state
IEk}) of this ensemble, first generate one new state
{Ek})with ~robabihty H (i.e., a successive application

of P~P-'-~P~' ). Then, retain a number of copies of the
new state, the number of which being determined as fol-
lows.

Let us rewrite (10) as

with

A';, =W;, /P .

So far W is chosen arbitrarily. If 0&%'& 1, we generate
a random number r with a uniform distribution between 0
and 1. If W&r keep

I Il jk} ). If A=J+5, 7~ 1 (J is an
integer), keep J copies, plus one more with probabihty 5.
The collection of all these copies is called

I
P"').

This is how we generate the vector u
I g) stochastical-

ly. If interested in uu
I P), repeat the above procedure

with the states of
I
P"'&, in order to get
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Taking ~X) to be a broad state ((X
~ g) =N' ') and
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For our problem, we have worked with 6~=0. 1 and
0.05, N"'=500—3000 (see below); about 10 steps were re-
quired to equilibrate P', and data were taken every 4 steps
thereafter, to a maximum of 50 to |00 steps. Moreover,
expressions (14) and (15) have been evaluated many times
(run with different random number generator seed and
Wo); the results reported in the next section are averages
over these runs.

The ensemble projector Monte Carlo gives much more
accurate energies for an equivalent amount of computer
time than the projector Monte Carlo of Blankenbecler and
Sugar where one measures W)v directly as a ratio of prod-
uct of scores:
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The difficulty with this method is that fluctuations in
u grow with M. If the average score is S and its typical
fluctuation M, then

The strength of this method is as follows. u is a projec-
tion operator, so repeated application of u to

~
g), gen-

erating
~

()'j"'),
~

g' '), . . . , etc. , builds states which are
better and better approximations to the ground state. So,

(y
~

y(n) )
If at the same time one adjusts W so that on the aver-

age, N'"+"—N'"' (which can be done by setting
W„+)——W„N'"+" ~N'"'), W will also converge to an
equilibrium value. After that point, the ground-state en-
ergy can be read off from W [see (12)J:

e '=(P„), (14)

where the average is over some values of n (as the wave
functions

~

g'")) are correlated from step to step, it is,
necessary to average P'„on only every few steps).

Similarly, for operators diagonal in the electric field
basis, we have

& u & —((s+bs) & —(s) 1+M (17)

One needs large M to project onto the ground state; how-
ever, large M leads to large fluctuations in the average
score and in the energy measurements. The method
described here "effectively" takes M=1 since at each
time step, we begin with a new state (i.e., the

~

P' ')'s). It
can show systematic effects with the number of states in
the ensemble since only a finite number of states are re-
tained simultaneously; in the projector Monte Carlo, the
"ensemble" is built one state at each time and can be arbi-
trarily large. For the lattice gauge model we discuss here,
energies do not appear to be sensitive to "number of
states" systematics if we keep more than about 2000
states, on a 6 lattice, in a strong or intermediate coupling.

No significant improvements in terms of CPU time
have been reached regarding the evaluation of matrix ele-
ments. In the projector Monte Carlo, this expectation
value is given by the (X

~

u 0
~

t() computed by applying
U to one state in ~)I(&) at a time. [See Eq. (5) in I.J On
the other hand, this quantity is obtained in the EPMC by
summing the & I lb I ~

0
~ I lb I ), weighted by the square of

the number of copies of
~ Iibl) in the ensemble

~

tP")
under consideration. This number cannot be obtained
from a straight energy calculation: extra time is needed as
one has to scan through the ensemble [this process in-
volves the comparison of N"(N" 1)I2 latti—ce configu-
rations J.

In order to keep our total CPU time within reasonable
limits, while striving for accurate energies, we have made
two different sets of runs. The first set involved
X"=3000and was dedicated to energy and string-tension
calculations. In the second set, the vacuum expectation
values of string-width operators were computed, with
N"=500—1500.

uI. ON-AXIS STRING CALCULATIONS

A. String energy

The string tension in computational three-dimensional
QED has been studied by several authors, with varying
degrees of success. " Here, we are interested not as
much in comparing our results with theirs as in the im-
provements brought by the EPMC over the projector
Monte Carlo.

We have recalculated the string energies studied in I.
The EPMC needs one tenth the CPU time and one half
the number of field configurations to achieve twice the ac-
curacy of the method in Ref. l.

The ground state and the string state differ in their ini-
tial configuration

~
g). The initial lattice configuration

for the ground state has zero electric flux on all links, or
in the case of a string, a lattice which is fluxless except on
the links supporting the string, which carry one unit of
flux. I.et us mention that static sources can be also han-
dled explicitly in the Euclidean formulation of lattice
three-dimensional QED, by including them in the action.

Figure 1 shows the ground-state energy for 0.57
&g &2.0. The smooth curve represents the upper bound
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FIG. 1. Ground-state energy (per plaquette) versus the cou-
pling constant. The smooth curve is the upper bound found by
Hofsass and Horsley (Ref. 3).

computed by Hofsass and Horsley. Not shown is the
comparison of the data with strong-coupling prediction in
the range 2.0&g & 10.0: our calculation agrees well with
Eo 1/g within ——1%, as expected.

Contrary to the data in I (Ref. 1, Fig. 2), all of the
numbers obtained here are below, and follow quite closely
Hofsass and Horsley's curve. Both data are within one
standard deviation of each other. This makes us confi-
dent about the validity of the computations.

As mentioned earlier, it appears that Eo (and EL) is not
very sensitive to number of states systematics as we used
about 3000 states.

The string state energies have been computed in the
same coupling range. As in I, because EI was roughly
linear with respect to the length (L) (it is in fact even

more linear here), the string tension T was deduced by fit-
ting the straight line

El =E(~)'+ T "L/area .

As in I again, the value for Eo" gives a consistency check
on the values displayed in Fig. 1 (it is indeed consistent).

The coupling dependence of the tension T is shown in
Fig. 2. The continuous curve represents the first-order
strong-coupling prediction (g /2); the dashed line corre-
sponds to Suranyi's variational estimate in Hamiltonian
formulation '

4vg
exp( —4.4/g ) .

This expression is consistent, up to a factor in g, with oth-
er Hamiltonian variational studies; ' it is also similar to
the weak-coupling lower bound of the string tension in
Euclidean Villain theory. '

The data leaves the strong-coupling curve in the range
g =1.5, to follow the weak-coupling prediction from
above. It is impossible to evaluate T at g ~0.5, because
of its smallness, T & 10 ' at g &0.3.

8. String width

The expectation values (QE~i ) and (gXq E~~ ) were
calculated using Eq. (15). For reasons explained in Sec.
II, the collections

~

p' ') contained only 500 to 1500
states, and it was used for both operators; the strings had
length I.=0,3,4, 5, and the coupling set to g=2.00, 1.50,
1.16, and 0.75.
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FIG. 2. The string tension versus the coupling constant. The
solid and dashed curves correspond to strong and weak cou-
pling, respectively.
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FIG. 3. The string width O'L, (g) versus the string length I..
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By comparing with the W4's in Fig. 4 for different N",
one sees (at least for g & 1.50) that the N" systematics
have been brought pretty much under control.

It is unfortunately impossible to determine accurately
the exact location of gz. Our lattice was rather small (6 )

and finite-size effects impose a cutoff on the magnitude of
(gxz E~~ ).' Moreover, the transition is much smoother
than in the case of an infinite lattice.

IV. SPECULATIONS FOR FUTURE WORK
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FIG. 4. The string width at length I. =4, versus the inverse
of the number of states X"' (averaged over number of time
steps).

We have computed the ratio

(gx, 'E, '), ,
8'L =

2
&X&ii &~.g

which serves as a good signal for roughening. As shown
in Ref. 1, although its magnitude is volume dependent, it
appears that its I. dependence is not: in the two lattices in-
vestigated (6 and 8 ), the length dependence changes
abruptly at the roughening point (see Figs. 5—8 there).

The data is displayed in Fig. 3 and confirms the general
picture presented in I, namely, the existence of the
roughening transition at g+-1.16. The g=1.50, 1.16,
and 0.75 data is consistent with I. For g=2.00 the
EPMC gives results two standard deviations lower than in
I; however, in either case, WL(g=2. 00) is very small,
around 0.04 to 0.05.

Because of the small ensembles involved here, the num-
ber of states systematics can be substantial for less than
500 states in the ensemble (see Fig. 4). As a general rule,
for fixed g and L, WL, and the difference
b(g, L,N)= WL, (g, N) —W (g1,N') de—crease with increasing
N, while b,(g,L,N) decreases with decreasing g.

The data reported in Fig. 3 involves the following num-
ber of states (for all L):

2

HSU{2)
2

links

2
QTruuuu +H. c.

g p]aq

E is the Casimir operator for SU(2), and
u„„=exp[igaT A„] Unfortunate. ly, satisfying the re-
quirements of gauge invariance is much more difficult for
SU(2) than for U(1). The eigenstates of the electric field
operator are rotation matrices, and satisfying Gauss's law
at a site for a d-dimensional theory involves coupling up
to 2d angular momenta together, a forbidding prospect, to
say the least.

%'e have been able to study the roughening transition in
three-dimensional U(1) gauge theory; of immediate in-
terest is the investigation of this phenomenon in non-
Abelian gauge theories, where it has also been shown to
exist (see Refs. in I). Recently, Fukugita and Niuya'

The EPMC is a faster version of the projector Monte
Carlo. The only drawback is the obligation to store all of
the states of the collections

~

P' ') and
~

g' ") at the
same time, which is hard on memory: consideration of
larger lattices meant for us smaller X' ', and thus bad
statistics. This, however, should not deter any potential
users with access to larger machines.

Another aspect of lattice three-dimensional QED that
could be studied with EPMC is off-axis string behavior.
This calculation is more involved because of the high de-
generacy related to off-axis string configurations. " The
determination of the zeroth-order state (which is to be the
starting collection

~ f) ) is a formidable problem in itself.
We have investigated short off-axis strings in strong cou-
pling, and found WL (g) to be of the order of 1, as expect-
ed [in contradistinction with the on-axis case where
WL (g)=0].

Finally, it should be interesting to apply the EPMC to
SU(2) lattice thereby. Formally, one could still checker-
board the Hamiltonian, which has the same structure as
Eq. (7)
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have numerically investigated the coupling behavior of the
string width in Euclidean SU(2) theory. Although they
have been able to study the width below the roughening
point, the small size of their Wilson loops have prevented
them from seeing the transition itself. More work-needs
to be done on this subject.
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