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Improved Hamiltonian variational technique for lattice models
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In the context of the Hamiltonian variational approach we propose a systematic method for the
improvement of any given trial wave function. The approach has many similarities with the Lanc-
zos scheme and it may be used for quantum-mechanical problems as well as field-theory and
statistical-mechanics systems. We apply the method to the Mathieu equation and to the Ising one-
dimensional model in a finite lattice. The agreement between our results and the exact ones is excel-
lent in the whole range of parameters. We also briefly discuss the application of these ideas to lat-
tice gauge theories and the similarities with other recently proposed methods.

I. INTRODUCTION

Lattice techniques are the main tool for the treatment
of nonperturbative physics in gauge theories. ' By Monte
Carlo simulations many interesting physical magnitudes
have been numerically estimated. Nevertheless, it would
be very useful to develop analytical methods in order to
obtain an intuitive idea of the main features of the dif-
ferent models. Many techniques have been proposed. For
example, the mean-field approach with corrections in the
Lagrangian framework gives excellent results in the pre-
diction of lattice phase diagrams, although the continuum
limit is beyond its capability. Other analytical methods
are the variational technique, ' strong-coupling expan-
sion, mean-plaquette, renormalization-group, and
finite-lattice approximations. In this paper we study the
Harniltonian variational method. Although this tech-
nique gives acceptable results in many systems, perhaps
its main drawback is that it is rather difficult to improve
the numerical values obtained using a given ansatz. In
Ref. 4 we tried to improve the plaquette-independent trial
function in a Z(2) gauge model in 2+1 dimensions by
the Bethe-Peierls technique, but the results showed a slow
convergence to the accepted values for the model. It is
clear that different ideas should be implemented. We pro-
pose in this paper a systematic and very simple iterative
method for the improvement of any arbitrary ansatz. The
application to some well-known models gives excellent re-
sults showing a fast convergence to the exact ground-state
energy. Although our main purpose is the final im-
plementation of these ideas in lattice gauge theories, the
method is suitable for the treatment of quantum-
mechanical models as well as field-theory and statistical-
mechanics systems.

We remark that our approach is similar in spirit to a re-
cently proposed method which also improves an initial
variational ansatz. %'e have studied the differences be-
tween this technique and the approach presented in this
paper.

The organization of the paper is as follows. In Sec. II
we present the method. In Sec. III we apply it to the
Mathieu equation and to the Ising one-dimensional model
in a finite lattice. The results are extrapolated to the bulk

limit and they are compared with the exact ones. A short
discussion is given in Sec. IV.

II. DESCRIPTION OF THE METHOD

The technique that will be described in this section has
many similarities with the well-known Lanczos method'
for the tridiagonalization of matrices. In fact, our idea is
inspired by a recent paper" where the Lanczos approach
was modified in order to extend the range of the strong-
coupling expansion.

Suppose that we would like to approximate the
ground-state energy of a system described by a Hamiltoni-
an H. In the variational framework we must select a trial
wave function go which depends on some free parameters
[P] as in the usual Rayleigh-Ritz approach. If we
operate with H over gp the result can always be written as

Hfo =~o4o+ bPo

where gp is a state orthogonal to go. The constant
ep [=(Pp,Hgp)] is the variational energy of gp, i.e., if we
minimize eo with respect to (P] we get an upper bound
for the energy of the true ground state @. The other con-
stant b [=(gp, Hgp)] somehow measures the departure of
po from @. The states gp, 1tjp are normalized to 1. Equa-
tion (1) may be thought of as the definition of Po. Now
the idea is obvious. We may improve the initial trial wave
function by considering as a new ansatz the linear normal-
ized combination

&H'&o —3&H &o&H'&o+2&H &o'

2(&H'), —&H ),')'" (4a)

4o+~i0o
(1+& 2)1/2

where o;~ is a new variational parameter which may easily
be found through minimization of the energy of state Eq.
(2),

f (f2+ 1 )1/2

where
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and

where c=(PO,Hgo). In general the Hamiltonian may be
written as a kinetic energy term plus a potential one, i.e.,
H =Ho+xV, where x is a parameter. If we choose as ini-
tial $0 the ground state of Ho, we recover the strong-
coupling (x «1) method of Ref. 11. Nevertheless, if $0
is good enough in the limits x =0 and 00, we prove in
Sec. III that our approach gives good results in the whole
range of x.

By straightforward algebra and using Eq. (3) the new
improved energy can be evaluated,

6) =E'p+ o.'(6 (6)

Equation (6) must be minimized (usually numerically)
with respect to the parameters IPI (which, of course, in
general, do not coincide with the set IPI which minimize
eo). The method may easily be iterated, i.e., from H act-
ing over gt we get a state Pt orthogonal to f~. The new

improved state is now

4i+aA't
(1+ 2)1/2

The values of a2 and e2 (the energy of t/i2) are given by
Eqs. (3) and (6), respectively, changing fo, go by g„gt.
Using Eq. (2), a2 and e2 can be written as a function of
(H")0. Note that in the first step of our iterative method
we need to know n = 1,2, 3, in Eq. (4b), and in the second
one, n=l, . . . , 5. In general two new powers of K must
be evaluated in each iteration.

Summarizing, in this section we have proposed a sys-
tematic and simple method for the improvement of any
trial wave function in Hamiltonian variational techniques.
Now we must test the approach in some nontrivial exam-
ples.

III. RESULTS

A. Mathieu equation

As a first example of the method described in Sec. II we
consider (as in Ref. 11) the Mathieu equation which has a

(4b)

It can readily be shown that the state Eq. (2), supple-
mented by Eq. (3), is the eigenstate of lower energy of the
2&2 matrix

lot of applications in theoretical physics,

d
d8

—x cos8 f(8)=Ep(8) . (8)

p lt(P)
e (x,P)= (10)

where I„(P) are the modified Bessel functions of order n.
In Table I we give the results for the first three iterations
of our method. The agreement with the exact values' is
excellent in the whole range of x. The convergence is
very fast as is shown in Fig. 1, where we plot the relative
error

~i = ( ~exact ~i ) ~~exact ~

where e; is the energy of the ith iteration. Note that the
error reduces in one order for the first two iterations. b, ;
has a maximum at x —1. In Fig. 2 we also compare our
results with the strong' and weak' coupling expansions
of the ground state of the Mathieu equation. For com-
pleteness we quote here the first terms of these expansions

It is the Schrodinger equation for the quantum pendu-
lum in a gravitational field, for a particle in a periodic
one-dimensional potential, and for the Stark effect of a
rigid rotator. This equation also appears in statistica1
mechanics for the one-dimensional Coulomb gas. ' In
gauge models it has been studied due to its similarities
with pure Yang-Mills theories. ' In lattice gauge theories
it also corresponds to the eigenvalue equation for the one-
plaquette model' (Hamiltonian formulation), where x is
proportional to g and g is the coupling constant. For
this reason we will refer to the region x «1 (x »1) in
Eq. (8) as the strong (weak) coupling region. The Mathieu
equation has also been analyzed by the phase-integral ap-
proximation.

We try to reproduce the known results for the ground
state of Eq. (8) using a starting trial wave function

$0(8)=exp( —,
' P cos8),

where P is a variational parameter. It can be shown that
this ansatz reproduces the first term of the perturbative
expansions in the strong and weak coupling regions [see
Eq. (12)]. Recently this type of trial functions [i.e.,
$0——exp(PV/2)] has been widely used' in lattice gauge
models with acceptable results so they are in general a
good starting point for our method. The zeroth-order free
energy is

TABLE I. The energy e; of the ith iteration compared with the exact result for the ground state of
the Mathieu equation at some representative values of x ranging from the strong-coupling region to the
weak-coupling regime (we omit the minus sign for all the energies).

0.2
0.6
1.0
2.0
5.0

10.0

0.019616
0.156 542
0.372 644
1.056 478
3.469 634
7.819052

0.019660
0.158 303
0.378 172
1.069 194
3.483 862
7.828 273

0.019661
0.158 355
0.378 456
1.069 984
3.484 201
7.828 344

0.019662
0.158 357
0.378 478
1.070 079
3.484233
7.828 347

&exact

0.019662
0.158 358
0.378 489
1.070 130
3.484 245
7.828 347
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10 TABLE II. Evolution of the variational parameter P which
minimizes the energy of each iteration. The corresponding
value f'or the third iteration is approximately equal to the second
one.

Iterations
I

-3
10

0.6
1.0
2.0
5.0

1.05
1.52
2.29
3.53

1.08
1.59
2.36
3.51

1.09
1.61
2.40
3.54

10

between both expansions. In Table II we complete the
analysis showing the variation of the P parameter which
minimizes the energy for some representative points.

From these results it is clear thai our method works
properly at least in this quantum-mechanical problem.

1O I I

0 1 2 ' x 3

FIG. 1. The relative error 5;=(e,»« —e; ) /e, »« for the
Mathieu model. x is in the range of maximum error.

+O.232 907x ',
1/2

x
&wc= —x+

2

1/2
1 1 2

24 2' x

(12a)

3/2
6 53 2

212 218

5/2
7922 2

228
594

221 2 (12b)

Note that our variational energy in Fig. 2 (which is indis-
tinguishable from the exact result) interpolates smoothly

-01
Energy

(for the weak-coupling series more terms are given in Ref.
18),

~sc= —0.5x +0.218 7SOx4 —0.201 389x

B. One-dimensional Ising model

As a second example, we perform some exploratory cal-
culations in lattice models. We consider the Ising model
in one dimension defined by

H = —Q 0'; xg cr; rr ( +—&,
1 3 3

where o', o. are Pauli matrices and the sum is over the
sites i of a finite chain of X sites (periodic boundary con-
ditions are assumed). The exact ground-state energy of
Eq. (13) is well known,

2X —1
1/2

e,„„,= —g (1—x) +4x sin . (14)
k=0 2%

(k odd)

It is important to remark that for an 'infinite-volume
system our method presents a problem. In the limit
X= ae it can be proved that a in Eq. (3) is zero.
Nevertheless, this fact does not invalidate the approach
because we will prove that we can obtain very accurate re-
sults by the following trick: apply the method to finite
chains and then extrapolate the numbers to the bulk limit
using some well-known extrapolating' procedures.

As an initial trial function we choose the analog of Eq.
(9), i.e.,

-0.2 Tjko=exp T~P+0';0';+(
~
0)

-0.3

-0.5
0.5 0.7 0.9 1.3

FIG. 2. Plot of the energy e3 of the third iteration for the
Mathieu equation (continuous line) in comparison with the
strong coupling (SC) expansion given in Eq. (12a) (dashed line)
and the weak coupling (WC) one of Eq. (12b) (dashed-dotted
line). The exact result of the model is indistinguishable from e3.

where
~

0) & represents an eigenvector of o' with eigen-

value (+1) in all the sites of the lattice. This kind of trial
state has recently been carefully analyzed. The zeroth-
order energy per unit site is

cosh P+x(tanhP+cothPtanh P)
1+tanh~P

In Table III(a) we can see the results for the ground-
state energy as a function of the number of iterations for
chains of different lengths at x = 1, where a phase transi-
tion is present for the infinite system (since the method is
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TABLE III. (a) The energy per unit site obtained by our iterative method for the ground state of the Ising chain with X sites at
x =1, compared with the exact value [Eq. (14)] (the common minus sign for all the energies is omitted). The predictions for X= ao

have been obtained by a VBS approximant using the variational results for N =2, 3, . . . , 10 (for N =2, the variational energy of the
zeroth iteration is just virtually identical to the exact one, so we do not show it in the table). The exact result of the Ising infinite
chain in x =1 is —1.2734 for the ground and first excited state energies. (b) Same as (a), but for the first excited state. The exact
column has been evaluated from Eq. (18).

4
6

10

1.295 74
1.262 97
1.253 18
1.250 76
1.25021

1.306 56
1.286 63
1.276 67
1.270 85
1.262 74

1.306 56
1.287 75
1.28027
1.275 60
1.261 10

(a)
Iterations

3

1.306 56
1.287 77
1.281 07
1.277 21
1.279 29

1.306 56
1.287 90
1.281 37
1.277 99
1.275 26

10

1.306 56
1.287 90
1.281 45
1.278 37
1.273 53

20

1.306 56
1.287 90
1.281 46
1.278 49
1:27324

Exact

1.306 56
1.287 90
1.281 46
1.278 49
1.273 24

4
6
8
10

1.19449
1.232 34
1.240 81
1.245 22
1.254 61

1.207 11
1.243 27
1.254 71
1.260 93
1.260 51

1.207 11
1.24401
1.256 20
1.261 84
1.260 57

(b)
Iterations

3

1.207 11
1.24401
1.256 58
1.262 23
1.253 18

1.207 11
1.24402
1.256 76
1.262 60
1.273 76

10

1.207 11
1.24402
1.256 83
1.262 72
1.273 22

20

1.207 11
1.24402
1.256 83
1.262 75
1.273 24

Exact

1.207 11
1.24402
1.256 83
1.262 75
1.273 24

easily programmable all iterations have been obtained
through a computer program and the 0th iteration
represents the prediction for the initial trial wave func-
tion). When x achieves values around x =1 the differ-
ence between variational and exact energies has a max-
imum. Nevertheless, note that the results are excellent
even in a few iterations (this detail is important for future
applications of the technique to more realistic models).
When % increases the accuracy decreases as expected
from the fact that a =0 in the limit X= ac. However, the
results show that the influence of this effect is very small
for short chains and we can go on with our idea of consid-
ering the exact solution of finite chains and then extrapo-
late them to.the bulk limit. The X= &x) values are ob-
tained using the Vanden Broeck-Schwartz approximant
with aL ———[1—( —1) ]/2 (see Ref. 19 for the definition
of al ). We use this approximant because the eigenvalues
of the Ising model converge logarithmically to the
infinite-chain result in the vicinity of the critical point.
This method has been used with success in the Z (X) spin
model. Even more the sequence of the column labeled
"exact" in Table III(a) converges to the exact bulk result
with more than five significant figures indicating that we
can use the method with confidence. The extrapolated
values for different numbers of iterations are also given in
Table III(a). Note the convergence to the exact value
—1.273 24 (for x&1 this convergence is faster). An un-
satisfactory detail is that the exact result is approached .
from below showing that the extrapolation method does
not strictly respect the fact that the variational energy
must be an upper bound for the exact energy. Perhaps
bigger chains or other extrapolating techniques are need-
ed. Nevertheless the results are highly encouraging.

Using our method the first excited state can also be
analyzed.

As an initial trial wave function we chose

1 N
3 (17)

1/22X —1

e,'„„,=2(1—x)—
k=0

(k even) (18)
For x ) 1 the first term on the right-hand side of Eq.

(18) must be eliminated. In Table III(b) we give the re-
sults using Eq. (17) as an initial trial function for different
numbers of sites and iterations. In this case the jth itera-
tion also means that the n of Eq. (17) is equal to j. As in
the ground-state energy the values are very accurate show-
ing that our technique can also deal with excited levels.

In Table IV we show the relative errors of the variation-

(1—x) +4x sin
2X

TABLE IV. The relative error defined in Eq. (11)of the ener-

gy per unit site for the ground (Aug) and first excited (he, )
states of the Ising chain at x =0.5 and 2.0. The number of sites
is 8.

Iterations
x =0.5 x =2.0

0
1

2
5
10

1.07 & 10
1.26)&10 4

1.86~ 10
5.29 X 10-'
1.11& 10

7.56 ~ 10-'
1.85 && 10
7.90X 10
2.61)& 10
1.09~ 10—4

3.09 ~ 10
1.02 ~ 10-'
1.07~ 10—'
7.67 ~ 10-'
3.94 X 10

2.53 && 10—'
4.49 ~ 10-4
4.16X 10
2.36 &( 10
8.82)& 10

where P represents the improved variational ground state
obtained using our technique after n iterations. gc is an
exact eigenvector of H when x =0 and for the Ising
model in a finite chain using the initial trial state Eq. (15)
it is always orthogonal to P. If we consider any trial
state or another H, in general we must subtract the projec-
tion of the first excited state over the ground state.

The exact energy is
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~( t) =(Q„Hitch, ) (20)
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link-independent one, which is a generalization to an O(3)
theory of our state equation (15).

Perhaps the main difference between the approach of
Ref. 22 and the iterative method presented in this paper is
that we need to diagonalize a 2&2 matrix in each step
while in the approach of Ref. 22 it is necessary to find the
eigenvalues of a bigger one but only once. As was recent-
ly remarked in the context of the strong-coupling expan-
sion, the first alternative converges faster than the usual
Lanczos technique and it demands less numerical effort.

Apart from these minor details and the presentation of
the methods both alternatives seem to be very similar.
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