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A discrete approximation of the SU(2) gauge theory interacting with a matter field in the adjoint
representation is proposed. Lattice variables describing the state of the field are gauge invariants of
the underlying continuum theory. Topological degrees of freedom corresponding to the monopole
strength are discussed.

I. INTRODUCTION

In this paper we construct a lattice field theory, which
approximates the continuum theory of an SU(2) gauge
field interacting with a matter field in the adjoint repre-
sentation. This approximation is entirely different from
the standard lattice gauge theory proposed by Wilson. '

Our construction is based on the hydrodynamical descrip-
tion of gauge field models. The essential feature of our
theory is that the lattice variables we use are gauge invari-
ants of the underlying continuum theory.

There are two main advantages of this approach.
1. In Wilson's theory the gauge field A& and conse-

quently the field strength F& are replaced by group-
valued lattice variables. Thus, the information about I'&
is "truncated up to 2mn. " Here I'& remains Lie-algebra-
valued.

2. Among the lattice variables we construct, there are
certain discrete invariants, which describe topologically
nontrivial configurations, namely, 't Hooft-Polyakov
monopoles appearing in the continuum theory. In this
respect our paper is another step toward dealing with to-
pological charges in lattice gauge theories.

Due to the simple structure of the variables we use and
due to the fact that they are gauge invariant our model is
well adapted to computer analysis.

For pedagogical reasons we demonstrate our method in
Sec. II for the case of scalar electrodynamics.

II. SCALAR ELECTRODYNAMICS
ON THE LATTICE

Scalar electrodynamics is a theory describing the in-
teraction of the electromagnetic field A„with a complex
scalar field P. The Lagrangian is given by

where A„„-(r)=A&(x +rPI5), rC[0,5], is the (orient-
ed) restriction of the continuous gauge potential A„ to the
bond (x,x +P).

If we do not want to lose important information about
the topological character of (A, P) on the lattice level, we
have to assume that the value of the field P on lattice
bonds is the covariantly linear interpolation of the values
4'x~ 'e ~

(DDP)„„+„-=0

for every bond (x,x +P), where

(DDp)„„-(r)= [d ldr+igA„„-(r)]zp(r) .

(2.3a)

The easiest way to solve this equation is to pass to such a
gauge that A„„-(r)is constant along the bond. As a re-

sult we obtain the following interpolation formula:

P(r) =exp( igA -r) [—exp(igA -5)P

Z —the set of lattice points,

Z '—the set of bonds,

Z —the set of plaquettes .

Points will be denoted by x,y, . . . or x,x+P, . . . . [The
vector p has the direction of the oriented pth axis and
length 5 (lattice spacing), according to whether P is
spacelike or timelike. ] Bonds will be denoted by (x,y),
(x,z), . . . or (x,x+P), (x,x+v), . . . and plaquettes by
p = (x,y,z, t) or p = (x,x +P,x +P +v, x +v). A continu-
ous field configuration (A, P) on the whole M gives rise to
the lattice variables Z Hx ~P„CC', and
Z'B(xy)~A„„CR'=u(1), defined as P„=—P(x) and

1A„„-—:—f A„„-(r)dr= —A„-„, (2.2)

L = 2m'00*+ 2 Dt P—(D"4 )* .'P't P'~——(2.1)

where E~„=B„A,—t)+z and D„P=(B„+igA„)$. We
will formulate this model on a hypercubic lattice A in
four-dimensional space M, which can-be either the Min-
kowski or the Euclidean space-time. Let us denote by

—4.15+4 (2.3b)

The first step of our construction consists therefore in re-
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stricting the continuous configuration (A, P) to lattice
bonds and imposing the interpolation condition (2.3a).
Next we shall characterize this configuration by a full set
of invariants. At the beginning we restrict ourselves to
the set of generic lattice configurations (configurations for
which /&0 on lattice bonds). Obviously,

Z'»~Rx =(4—x0x)'"&R+ (2.4)

is a gauge-invariant quantity. The second invariant is
given by

Z' B(x,x +p)~v„„

where

x,x+p+ x+p„x+p+v+ x+p+v, x+v+ x+v, x

(2.10b)

is a gauge-invariant quantity, which describes the total
phase increase along the boundary of p (the strength of
the vortices running through the plaquette) and

1F =——A -+A - - -+A - - -+AP 5 x,x+p x+p, x+p+v x+p+v, x+v x+v, x

(2.10c)

is another invariant, equal to the mean value of the (p, v)
component of the field strength F&, on p. Due to (2.10b)
we have the identity

where again D=d/d~+igA.
%'e observe that

1
u -=A -+ baX,X+@ X,X+p 5 X,X++

(2.S)

(2.6)

(divn ), = g nz
——0 .

p GBc
(2.11)

[The total number of vortices through the boundary Bc of
every cube (three-dimensional lattice element) c vanishes. ]
Thus, we have characterized the configuration (A, P) by
the following set of invariants:

where (b.a)„-is the phase increase of P along the bond
(x,x+p). We can always choose a gauge for which
A„„-(r)=0. Then g5u„„-=(ba) „- and P is a
linear function on (x,x +p), according to (2.3b). We con-
clude that

(a) Z &x~Rx HR+,

(b) Z'H(x, x+p) —+gu„-C]——,—[, (2.12)

g X,X+JM (2.7)

Decomposing

P„=R e ", a„e] m, vr], —. (2.8)

we can write down

(&~) „+„-=a„+„-—a +2nn,x,x+p (2.9)

where n „-are integers. Taking the lattice curl of U on

p =(x,x +p, x +p+ v, x +v) we get

(c) Z &p —+nz&Z,

which satisfy (2.11).
It is easy to prove that starting from (2.12), one can

reconstruct Px and Ax& up to gauge transformations.
Now we allow gu„„- to reach the boundary values
—m/5 and m/5. These situations correspond to the case
when a vortex is running through (x,x+p). In this case
the value (b,a)„-in (2.9) can be either +m or vr and-
correspondingly n - may change its value by +1. Thisx,x+p
changes the vortex strength nz on every plaquette p for
which (x,x+p) belongs to its boundary Bp. Hence, we
identify the following configurations:

g xx+p

&u - - -+ux+p+v, x+v x+v, x

2m.—Fp + np,
g$2

(2.10a)

where n~=nz+1 if (x,x+p)HBp, nz nz —1 if-—
(x+p, x) &Bp, and n& n& if (x——,x+p) and Bp are dis-
joint.

The lattice dynamics of this theory is given by the fol-
lowing action which is the lattice version of (2.1):

g4 4 pp R -—Rx 2+ 2 R„R„„-(1—cosg5u„-)X+@, x,x+p

g4 2&gg (p) (curlu ) — n
P g

(2.13)
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where for the plaquette p=(x,x+P,x +P+v, x+v) we
put g(p)=g»g /5 =+1. The second term in (2.13) is a
consequence of the interpolation formula (2.3) and the
third term follows from (2.10a).

other hand the integrand in (3.4) is equal to (d/dr)13(r).
Thus g5u „-=13(6). If we allow the field P to vanish on
bonds, we have to allow the value ~ for g6v

Now we denote

III. GAUGE INVARIANTS FOR THE
SU(2) GAUGE FIELD

IN THE AD JOINT REPRESENTATION

Now we consider the theory of an SU(2) gauge field A

interacting with a three-component matter field P, defined
by the Lagrangian

(3.1a)

and observe that the quantities

r=o

(3.6)

(3.7)

where
~ ~

is calculated with the help of the scalar prod-
uct h (, ) = ——,

' E (, ) (K is the Cartan-Killing form) on

su(2) and with the space-time metric g&, . We shall use
the orthonormal basis for h: e, = (i/—2)o„where (o, )
are the Pauli matrices. Therefore

DqP'= dpi''+ ge'b, A „P',

Fp ——BpA —8 A„+go'b, A„"A' .
Moreover, under the identification

su(2) =R

(3.1b)

(3.1c)

(3.2)

the adjoint representation Ad of SU(2) is isomorphic to
the fundamental representation of SO(3) on R . Thus,
treating P as an R -valued field, we may write down
gauge transformations in the following way:

P'=0

A'= U-'A U+ —U-'d U,1

(3.3a}

(3.3b)

Z Hx —+R„=
~
P(x)

~

5
Z'H(x, x+P)~u -=— J Dxx+gl g$ 0

x,x+p

(3.4a)

(r) d7 .

(3.4b)

It follows from linear covariance and nonvanishing of P
on bonds that

0(g6U (3.5)

where M&x~U(x)&SU(2) describes the gauge and
0 (x) is the orthogonal rotation of R defined by
Ad U(x).

Now we want to define the lattice approximation of a
continuous configuration (A, P). As in the previous sec-
tion we will take the restriction of (A, P) to lattice bonds.
However, here we will need additional topological infor-
mation about the behavior of (A, P) on plaquettes. Simi-
larly as in the U(l) case we assume the field P to be co-
variantly linear and nonvanishing on bonds. This enables
us to define the following invariants:

are unit vectors lying in the plane orthogonal to P(x).
This plane can be identified with the complex plane C',
but there is no canonical identification. Each two such
identifications differ by a multiplicative factor
gH C',

~ g ~

= 1. Therefore, at each x CZ we have a col-
lection of unit complex numbers w„.„-ES'CC', corre-

X,P
sponding to the collection of bonds starting at x. This
collection can be simultaneously rotated, but the numbers

S .- -=w .- w .-HS—I 1

X;JM, V X;P X;V

are gauge invariant. They satisfy the identity

x;p, x;v, p x;p,p

(3.8)

(3.9)

for any triplet [(x,x+P), (x,x +v), (x,x+p)] of bonds.
At the end we notice that if u„„-=0then, of course,

X,X +P
formula (3.7) is meaningless. In this case we choose
w .-ES' and w -. -ES' arbitrarily. We will showX;P X+@;—P
later that this arbitrariness does not change the Lagrang-
ian.

The invariants constructed in this section are not suffi-
cient to reconstruct the field configuration (A, P) modulo
gauge. We will need additional information of topological
character.

IV. TOPOLOGICAL INVARIANTS

(4.2b)

We still have a freedom of H=U(1) gauge transforma-
tions on bonds [preserving condition (4.1)]:

The easiest way to construct topological invariants is to
use a gauge in which

(4.1}

for g lying on lattice bonds.
We decompose the restriction of A to lattice bonds into

a part belonging to the Lie algebra of the stabilizer
H=U(1) of e3&su(2) and its orthogonal complement.
Due to (3.2) the first part is (O, O, A ) and the second part
is (A', A, O). We denote

(4.2a)

The easiest way to see this is to pass to a gauge in which
A vanishes along the bond (x,x +p). Then P is linear on
(x,x +P). Denoting by P(w) the angle between P(x) and
P(x+&PIS) we have 13(0)=0 and 0&f3(6) &vr. On the

(4.3a)

(4.3b)
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In terms of differential geometry the field 8 is a U(1)-
connection form on a bundle, which is in general nontrivi-
al. This nontriviality (due to the existence of monopoles)
is manifested by the fact that, unlike in electrodynamics,
the quantity

fz = (curlB)z + mz
4~

P gp P (4.11)

tion (4.7) the degree of 4z takes the new value
m~ =m~ —n .Therefore,

(curlB)z ———(8 „+„-+ „+„-„+„-+-„
=1

~8 - - -~8+ x+p+v, x+v+ x+v, x

where

18 -=—f 8 „-(r)dr,
is not invariant. To see this we take a homotopy

[0,5) X [0,5] ~(~,q) U(r, q) e SU(2),

such that

U(0, 7J)= U(5, 7J) = U(r, o) =idsU(2),

(4.4a)

(4.4b)

(4.6)

Q, =5(divm), = g mz,
p EBc

(4.12)

which is usually not the case. The number Q, assigned to
each lattice cube c is the topological degree of the map-
ping

is gauge invariant under (4.7). This result obviously ex-
tends to any gauge transformation preserving (4.1) on
bonds. The quantity f~ can be interpreted as (curlB)~ in
the topologically trivial gauge, where the condition (4.1) is
satisfied not only on bonds, but on the whole plaquette
(and consequently mz ——0). The topologically trivial
gauge can be simultaneously performed on all plaquettes
belonging to the boundary Bc of a lattice cube c if and
only if the following number vanishes:

rU(7.,5) =exp 4n.n e3— Bc Bg—+%(g) = HSrh(c )

I 0'(k)
I

(4.13)

We perform a gauge transformation on the whole pla-
quette putting

and does not depend on any gauge condition we used ear-
lier. The invariant quantity

(4.7)
Q, =5 (divf), = g m~ (4.14)

4m
X+@+V,X+V X+@+&,X+& g$

(4.8)

whereas the B's on the other bonds remain unchanged.
Therefore,

and observe that the gauge condition (4.1) is preserved on
bonds belonging to this plaquette. However,

is interpreted as the total monopole charge contained in c.
Now we will show that exp(ig5 f~) can be calculated

from invariants (3.8). For this purpose we write down the
condition of covariant linearity of P in the gauge (4.1).
We use the following notations [for simplicity we drop the
index (x,x+P)j:

(curlB )z
——(curlB )z + — 2n . -4m

g2
(4.9)

R (r) =P'(r) =
l
P(r) l,

DV(7 ) = V(~)+igB(r) V(~),

(4.15a)

(4.15b)

This could suggest that the information about the integer
part of (g5 /4m)(cur18)~ is completely lost. But this is
not the case, because we are able to recover this informa-
tion from the topological behavior of the matter field P on
the plaquette p. Again we restrict ourselves to the generic
case when $(g)&0 on plaquettes. (Nongeneric configura-
tions can be discussed in a similar way as it was shown in
Sec. II.) The mapping

p Bg~%q(g) = eS2d(c)
l4(4)l

(4.10)

takes, because of (4.1), the value e3 on the boundary Bp of
p. We denote by mz the topological degree of +z. [ l mz l

tells us, how many times S is covered by %'z and
sign(mz) depends on whether %'z preserves the orientation
or not. ]

One can easily check that after the gauge transforma-

(DDP) =R —g l
V l2R=0,

(DDP)'+i (DDQ) = ig(2V.R +R.DV—) =0 .

(4.16a)

(4.16b)

Decomposing V=u co, where u=
l

V l, l

co
l
=1, (4.16b)

gives

[ln(R u)] =0,
DQ) =co+EgBco=0 .

(4.17a)

(4.17b)

Therefore, denoting by ~ .- the value of ~ correspondingX;P
to the bond (x,x+p) and calculated at the point x we
have

—co -. -=co .-exp( tg58 -—) .X+P; —P X;P X,X+P (4.18)

Thus, for a plaquette p = (x,x +p, x +p+ v, x +v) we
have

where the overdot denotes differentiation along the bond.
The DDT=0 reads
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exp ig5 f =exp[ig5 B„„-+B +B +B )]
—1 —1 —1 —1—W AW A A W A AW A A A W A A AW A A W A AWx~p x+p~ p x+p~v x+p+v~ —» +p+v; —p x+v p x+v; —v x v

=S .A-S A A A ASX ~V~P X +P~ P~V X +P+Vp V~ P X +V~P) V (4.19)

We introduce the following notation: y =x +p,
z =x +p+ v, and t =x +v. Moreover, we denote
SX=S .--, S„=S -. --, S,=S - -. - -, andx;v,p' 3' x+p; —p, v~ ~ x+p+v; —v —p
Sg —S A A A. ThusX+V;P, —V

exp(ig5 f») =S„S»S,S, . (4.20)

I .- -=exp(i8, - -) .
X;P~V X;P,v

Then (4.20) reads

g52f» ——2(8„+8»+ 8, +8, ) +4~(n»+ , e» ), —

(4.21)

(4.22)

where n» is an integer and e» E Z& (i.e., e» ——0 or e» ——1).
To any "three-dimensional oriented corner" q, i.e., any
triplet [(x,x+P), (x,x+v), (x,x+P)] of non-co-linear
bonds starting at x, we assign the following complex
number:

Now we choose at each x EZ a square root g .- - of
X;P,V

S --: J --=S '--, and denote by 8 --E]—m, ~] its
X;P)V X;P,v X;P)v X;P,V

phase:

p &Bc
(4.26)

corresponds to the Z2 monopole considered by Mack,
Pietarinen, and Petkova. As it was noticed by these au-
thors, such monopoles do not survive in the continuum
limit. In our model they can be simply removed, because
of the theorem proved in the Appendix.

V. RECONSTRUCTION THEOREM

In this chapter we show that for a given set of invari-
ants (4.25) fulfilling (4.24b) we are able to reconstruct (up
to gauge transformations) the configuration (A, P) on
bonds together with the topologically essential behavior of
P on plaquettes. This means that the set (4.25) is a com-
plete set of invariants. As a first step we calculate for
every p the value f», using (4.24a). Next we find for each
cube c the monopole number Q, as the divergence off ac-
cording to the formula (4.14). As a consequence we have
for each hypercube h

x;p, 9 x;v,Px;p, P ' (4.23a)
c GBh

(5.1)

y»=—( —1) ' . (4.23b)

One can show that there is such a choice of square roots X
of S that all y» and y& are equal +1. (The proof of this
theorem is given in the Appendix. ) From now on we al-

ways use "good" 7's and 0's. Then

and

g5'f =2(8„+8»+8,+8, )+4~n» (4.24a)

exp[i (8„.„- -„+8„.-„-+8„.- „-)]

which is either +1 or —1 because of (3.9). Moreover, we
define

Using the Poincare lemma for integer-valued co-chains on
A we conclude that we can find a 2-co-chain
Z2 Bp ~m~ E Z, such that

m» ——Q, .
p EBc

(5.2)

Next we take f» =f» 4am» lg 5—,
.which satisfies

(divf), =0. Using again the Poincare lemma (for real-
valued 2-co-chains) we find a 1-co-chain Z ' ~ (x,x
+P)—+8„„-ER', such that (curlB)» f». We can now-—
reconstruct (A, P) in the gauge (4.1) on bonds. We choose
a point xoEZ and a collection Ice .-I-, such that forXO'P P'
each bond (xo,xo+P) starting from xo

A A A A A A ~X;P,V X;V,P X;PpP
(4.24b) 2g A —Q Ag AA ~

Xp,' V Xp,P Xp,'P, V
(5.3)

Now we have a complete list of invariants of our theory:

(a) Z Bx—&R„ER+,
(b) Z Hx~(X„.„--„)(„--,)CS',

(4.25)

To find co„.- at any x EZ, we choose an arbitrary path
connecting xo and x. On'each bond of this path we use
(4.18). One can easily check that the result does not de-
pend on the choice of the path. Inside bonds we put

(c) Z'~(x, x+P)~U -E 0,x,x+p
J

—Lg7Bx+r~ =~ ep x;p (5.4)

(d) Z ep~n»EZ .

The quantities X may be viewed as assigned to bonds of a
certain lattice A", which we define in the Appendix (see
Fig. 2). It is also worthwhile to notice that for each cube
c the number =g2C 2R 3

X)7 (5.5)

To reconstruct R (g) =p (g) and v (g) =
~

V(g)
~

on bonds
we use Eqs. (4.16a) and (4.17a). The latter gives us for
each bond the constant c„»=R2(&)U (r). Now (4.16a)
reads
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There is a unique solution to this equation fulfilling the
boundary conditions R (x)=R„and R (y) =R~:

R2(r) —R» (1 r!5) +2[R» Ry (g5cxy) ]

X (1 rl—5)rl5+Ry ('FI5) . (5.6)

In our gauge we have
~
D&(PI

~ P ~

)
~

=g
j V& ~.

(3.4b) gives

1
uxor

——— u (r)dr

=—f c R (r)dr
5

xy

g5CXyRX Ry
—1 —1

( 5c )2R —2R —2] I /2

Hence c~~ =(g5) 'R„Raisin(g5uxz). Finally

(5.7)

R (1)=R 1 ——
X

2

+2Rx R„cos(g5ux~ )—1 —— (5.8)

stn(g5uxy )1u(r) =
2g5

RxRy '
1 —— +2 cos(g5u„y )—1 ——+R„'R

'2

Thus, we have reconstructed the field (A, P) on bonds. We
have also reconstructed the topological degree mz of the
mapping (4.10)

VI. FIELD DYNAMICS

The dynamics of our model will be governed by the
difference equations obtained from the lattice approxima-
tion of the action defined by the Lagrangian (3.la). For
the scalar term we put

U „-. At each corner x of p we take the value

X2~;p,
"— g"x,x+pu, x+" ~x;",I")

u s111 28~ x,x+p x,x+v x;p, v

and average over four corners:

(F ) =F:f + —'(a —--+a3
X,P, V X+@,V, —P

x+p+v; —p, —v x+v; —v,P

(6.3)

WI ———5 g P(R„).
xezo

(6.1a}

+ E. R„
2

The vector term is calculated using the fact that
~
DP

~

is
constant on bonds. The result is

To calculate the lattice version of F'„+iF& we introduce
the notation as in Fig. 1: aI = 4a .-- and similarly

X)P) V

a2, a3, and a4, B12—=B -, and similarly B23, B34, and

B41. The field V will be represented at centers of bonds
using the actual phase co and the mean value u of

~

V ~:

V12 =U 1267 + /2. (6.5)

X [1—cos(g5u„„„-)] (6.1b) and similarly V23, V34, and V41. Using (4.18) and (5.3)
we have

To calculate the tensorial part we pass (on each plaquette
separately, because simultaneously it is impossible) to the
topologically trivial gauge P =

~ P ~,P'=P =0. (Of
course, the final result will be expressed in terms of in-
variants and, therefore, not depending on the gauge
chosen inside the plaquette. ) Denoting A „=B& and
A„'+ IA &

——V& (3.1c) takes in the above gauge the form

Fq r)pB» r)Q~ —g Im——( Vp V*„—), (6.2a)

(6.2b)

D&V =B'AV +igB&V . As a lattice version of
r)&B„—r)+& on the plaquette p we take its mean value on
p, equal to fz, which we calculate from (4.24a). [We
remember that in the topologically trivial gauge mz ——0,
see (4.11).]

To calculate the lattice version of Im(V„V*„), we re-
place

~ V„~ on each bond (x,x+P) by its mean value

—1
—ig5b&—V12U12 = V41U41 e S1 (6.6)

a4

I

B V41' 4)

t

1

aj

a3

FICx. 1. The fields P interpolate the fields B on the internal
bonds of the plaquette.
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where

5/2 1 5/2
b}———f B„„„-(r)dr ——J B„„;(r)dr (6.7)

therefore calculated up to one arbitrary constant. This ar-
bitrariness reflects the freedom of choosing the U(1) gauge
at the center of ]u. As this constant we take
4P=P}2+P23+P34+P4] Then we obtain

—ig5(b& +b2+b3)
+34 —U34~S (S2S3e

(6.8)

—ig5(b, +b2+b3+b4)—V4) ——U4) AS )S2S3S4e =U4)CO,

because of (4.19) and (4.20). To calculate (6.2b) we will
covariantly differentiate V on "internal bonds" connecting
centers of bonds (dashed lines in Fig. 1). For this purpose
we need the interpolation P of the field B to these four
internal bonds, see Fig. 1. We define this interpolation
demanding the curvature F to be equal on four internal
plaquettes. (The physical meaning of this demand be-
comes clear, if we analyze the canonical structure of lat-
tice gauge theories. ) More precisely, we demand
F& ——I 2

——I'3 ——I"4, where

1
(2b] P]2+P4])—+4a]

5/2

and S~ ——S --. In the simplest gauge when 8 is constantX;V,P
on bonds we have b] ——(B4]+B]2)/2. Similarly we define
b2 b3 b4 and S2, S3, and S4, fulfilling formulas analo-
gous to (6.6). If a] stands for co„-„/2 -,, then

—ig5b (
V)2 ——U )2coSI e

—ig5(b& +b2)—V23 =v23~S, S2e

P}2 P+ 4 (bl b2+5(al a2))

+ „' (b4——b3+5(a4 —a3)),

P23 13+ (b2 b3+5( 2 3))

+ —,
' (b] —b4+ 5(a] —

a 4)),

P34 —p+ , (b3 —b4+5(a3 —a4 ) )

+ , (b, —b,+—5(a, —a, )),
P4}= 13+ —,

'
(bg —b]+5(ag —a] ))

+ —,
'

(b3 b2+—5(a3 —az)) .

As a lattice approximation of D& V we take

igsp~3/2 igsp4}/2

and consequently

(Fq +i', )p ———( V]2e + V23e
ig 513/2/2 ig5p23/2

(6.10)

(6.11)

=4(b, 5 '~a} ) —25 '(p}2—p4]),

F2 4(b25 +a2) 25 (P23 P}2)

F3 4(b35 '+——a 3 ) —25 '(p3g —p23),

F4=4(b45 '+a4) 25 '(A] P—3~)—
(6.9)

ig 51334/2 ig 5p4) /2,+ V34e + ~4ie

(6.12)

Using (6.10), (6.8), and (6.4) we obtain after some lengthy
calculation

(6.13)
Equations (6.9) are linearly dependent, namely,
( F]+F2 +F3 +F4 )/4 =F~. The four quantities f3 can be

. I

where

1 . 3 $2 $2
G =— u]zexp —i —

O2 —O]+g (a2 —a] ) +—
O3 —Oq+g (a3 a4)

2 4 2

n . 3 5 5'
( 1) u23exp i —

O3 O2+g (a—3 a2) + O4 O}+g (a4 a})
4 2 4 2

P

3 $2 1 $2
+u34exp . i —

O4 —O3+g (a4——a3) +—O] —O2+g (a] —a2)
4 2 4 2

lf . 3 Q2 $2—( —1) u4, ]exp . i —O] —O4+g (a ] —a—4) +—
O2 O3+g (a2 a 3 )

2 4 2
(6.14)

and gz ES' is a phase factor,

g~ =(—1) ~cue g' 'pexp . ig ,' (b} b4—)+ —,' (b2—b3) e——xpI —i [—,
'

(Oq —O])+ —,
'—(O3 O2)] J .4

(6.15)
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This factor corresponds to the arbitrariness in choosing
the gauge. We remember that if one of the numbers
u - vanishes, the corresponding phases m .- andx,x +p X'p
w -. - can be chosen arbitrarily. If, e.g., 012 ——0 wex +p; —p
have the arbitrariness 01——81+a; and 82 ——02 —a. It is
easy to check that

~ G~ ~

does not depend on the choice of
a, which proves the consistency of our approach.

Finally we put

and

Wm= —
4 5 g(F& +

~
6&

~

)
p

(6.16)

+ ~rr+ ~nr. (6.17)

The above formula for the action W is a good lattice ap-
proximation of the action (3.la). In the case of the classi-
cal theory we will derive the difference equations of our
theory by varying W with respect to variables (4.25). The
equations are elliptic or hyperbolic according to whether
we take Euclidean or Minkowski space-time M. [It can
be proved, e.g., that in the latter case the Cauchy problem
on the lattice is well posed and is causal, i.e., the values of
variables (4.25) in a certain region 5 of the lattice depend
only on that part of Cauchy data which lies in the past
"light cone" of 5. These results will be published else-
where. ] In the quantum case W can be defined for Feyn-
man path integrals. There wi11 be no "ghosts" in such a
theory since all the constraints have been removed and the
whole theory is formulated in terms of gauge invariants.
The integration over the set (4.25a)—(4.25c) of continuous
variables will be performed with respect to the measure
which we inherit from the continuous theory. We thus
have to integrate from 0 to oo over R„dR„and from 0 to
m/g5 over du„+p. The integration over g's is more
complicated due to the constraint (4.24b). The constraint
defines a plane in the space of variables 0 and Dirac 5 on
this plane has to be used. The choice of independent
parametrization of the plane is not straightforward. A
possible way to overcome this difficulty is to integrate
over unconstrained variables (3.7). Here, all physically
meaningful functions have to be invariant with respect to
the simultaneous rotation of all m's at each point x EZ
independently [it is the case of the Lagrangian (6.17)].

A

FIG. 3. Typical three-dimensional element of A with tri-
angular faces.

The integration with respect to the discrete degrees of
freedom (4.25d) is simply the summation.

APPENDIX

Theorem. There exists a choice of square roots P, such
that all yz and y» defined by (4.23) are equal to + 1.

Proof. Consider a new lattice A' composed of centers
of bonds of A. Bonds of A' are defined as lines connect-
ing centers of bonds of A, which are nearest neighbors (see
Fig. 2).

Then we have two types of plaquettes of A*: rectangu-
lar ones, corresponding to plaquettes of A, and triangular
ones, corresponding to "three dimensional oriented
corners" of A. Define a Z z-valued 2-eo-chain
y—:ty», y~ I»~ on A* by putting yz [defined by (4.23b)]
on rectangular plaquettes and y» [defined by (4.23a)] on
triangular plaquettes. We prove that the coboundary of y
vanishes, i.e.,

for each three-dimensional element V of A*. There are
two types of such elements: (a) "cubes with cut corners"
(see Fig. 2) and (b) elements, which have only triangular
faces (Fig. 3). Let V be a "cut cube" corresponding to a
cube c of A. For any rectangular plaquette of BV corre-
sponding to a plaquette p EBc we have

2 go fp —(8)+82+83+8') 2mn~ =vre~, —

inc ig52f /2 —1
y~ =e '=e ' (X)X2X3X4.)

Therefore

i =1, . . . , 24 i =1, . . . , 24

FIG. 2. The lattice A* is constructed by joining the centers of
bonds of the primary lattice A.

where the index i numbers all the 24 corners belonging to
the 6 faces of e. The third factor in (By)~ comes from
triangular plaquettes. Thus,
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(t)y) z —exp —g53(divf), =exp(2nig, ) = 1 .
2

Now, let V be an element which has only triangular faces:
But for triangular faces y» was already defined by the t)

operator [formula (4.23a) means that y» =(BX)»]. There-
fore, (t)y)v ——1 is a trivial consequence of 8~=0. This
proves that y is closed. Now we have from Poincare lem-

ma that there exists a Zz-valued 1-co-chain IA,;j, such
that y=t)A, (i corresponds to bonds of A', i.e., to corners
of A and A,; =+1). We use A,; to "improve" the choice of
square roots X;:

Xg —Xjj

Now it is obvious that the co-chain y for X vanishes.
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