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S. K. Kim
Department of Physics, E)oha Women's Uniuersity, Seoul, Korea

Choonkyu Lee and D. P. Min
Department of Physics, Seoul National Uniuersity, Seoul, Korea

(Received 31 July 1984)

In the context of the Dirac equation, we show that the Schwinger-DeWitt proper-time expansion
of the exact Green s function is useful for high-energy scattering and, in fact, provides a systematic
generalization of the eikonal approximation. Because of its simplicity and its direct appeal to the
coordinate-space scattering picture, the Schwinger-DeWitt expansion method should be valuable in

studying corrections to the lowest-order eikonal approximation. A numerical comparison is made
for an exponential potential. Within the same framework a systematic formalism is also developed
to deal with large-angle scattering, and this yields a generalization of Schiff's large-angle formula.
Applications to high-energy scattering problems in quantum field theories are indicated.

I. INTRODUCTION

s~(x,y)=(x . . y)

= —(i8(„)+m) f i die ~+(xr ~y),

where D& dz+ieA& (——the gauge-covariant derivative), r is
Schwinger's proper-time variable, ' and

—'W8+' )(8—'
)

~

(1.2)

denotes the proper-time Green's function. In this paper,
we use the y-matrix and metric conventions of Bjorken
and Drell, 6 and set c=fi=1. The function (xr ~y) will
obviously satisfy the Schrodinger-type equation

Schwinger first proposed the use of the proper-time
Greens function as a simple gauge-invariant regulariza-
tion scheme in QED. ' In Ref. 1, Schwinger considered
vacuum polarization in the presence of an external elec-
tromagnetic field. His method has since developed into a
useful field-theoretic tool, mainly through the hands of
DeVAtt. De%'itt extensively used the proper-time tech-
nique to study one-loop renormalization counterterms in
various quantum field theories with his background-field
formalism. ' Aside from finding renormalization coun-
terterms, the proper-time technique is known to be very
convenient in identifying the so-called chiral and trace
anomalies (in flat or curved space-time). Also, one of the
present authors recently initiated an attempt to systemize
the proper-time renormalization scheme, in conjunction
with the background-field formalism, beyond one-loop or-
der. '

The basic idea is simple. Consider a charged spin- —,

field in the presence of an external (or background) elec-
tromagnetic field The o.rdinary Feynman Green's func-
tion can be written as

la (xr
~ y) =(g(„)+tm)(g(„)—tm )(x~ iy )

(~) 0) . (1.3)

With proper-time representation (1.1), the short-distance
(i.e., x =y) singularities of the ordinary Feynman Green s
function transform into the small-r singularities of
(xr ~y) (at the coincidence limit x=y), while not spoil-
ing the gauge transformation character. Moreover, it is
very easy to identify those small-r singularities by using,
with the "Schrodinger" equation (1.3), the following
asymptotic series (often called the DeWitt WKB form2):

—l . (x —y) . 2r—+0+:(xr
~ y ) =

2 exp i- —l F72

(4'~)' 4z

X g a„(x,y)H
n=0

(1.4)

(For mathematical investigations on this series, see Ref.
7.) There exist simple recurrence relations for the coeffi-
cient functions a„(x,y), and for renormalization problems
it is only the coincidence limits ao(x, x), a)(x,x), and
a2(x,x) which are important. They can be easily ob-
tained, as well-defined local functions of a background
electromagnetic field, through successive differentiations
and then by taking coincidence (i.e., x=y) limits with
those recurrence relations. For other possible applica-
tions of the DeWitt WKB form (1.4), we suggest readers
read the introduction of Ref. 5.

So far, in all known applications of the small-proper-
time expansion, only the coincidence limits a„(x,x ) [or at
most the coincidence limits of the space-time derivatives
of a„(x,y)] have been considered. Hence one might think
that the DeWitt expansion is useful only for problems like
renormalization (this appears to be also a prevailing feel-
ing among experts on the subject, despite the word
"WKB" of the DeWitt WKB form). That is quite
misleading. In fact, contrary to what one may guess,
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X u (pf, sf )B„(pf,'y )g (y)u (p;,s; ) (1.5a)

or, equivalently,

CO

(const) g f d y e

X u (pf isf )A (y) A „(p;;y )u (pi, s; ) (1.5b)

where pf, sf (p;,s;) designate the final (initial) state and

B„(pf,y)

lim
X —++ oo

[with m(x /V x2)=pf)'(fixed)]

A„(p;;y)

a„(x,y)

(1.6)

lim
X ~+00

[with —m(x)'/V x 2) =p)'(fixed)]

a„(y,x )

The right-hand sides of Eqs. (1.6) and (1.7) can be shown
to be well-defined for a sufficiently localized potential
2„, and are given by a relatively simple, explicit, expres-
sion for small n.

For a moderate potential, we find that the series (1.5a)
or (1.5b) is a valid expansion if

I I I
b»1 (1.8)

where p=py or p;, q=p~ —p; is the momentum transfer
and b specifies the rough range of the external potential.
Under these restrictions, it may be used for ultrarelativis-
tic (

~ p ~

»m), relativistic (
~ p (

-m), for high-energy
nonrelativistic (

~ p ~
&&m ) scattering problems. The

range (1.8) corresponds to that for which the so-called
eikonal approximation " is useful, and in fact, keeping

finding the coefficient functions a„(x,y) for arbitrary
values of x and y is also simple. With such explicit solu-
tions for a„(x,y), we find that the small-proper-time ex-
pansion can generate a systematic approximation for
high-energy scattering problems. The scattering ampli-
tude involves the coefficient function a„(x,y) with one of
the arguments taken to be timelike infinity, i.e., x —++ ao

with x ~+ac or y —++ao with y ~—oo. In the
present work, we shall concentrate on the external-field
problem. In the near future we plan to report our general
approximation procedure for high-energy scattering am-
plitudes in quantum field theories, utilizing the DeWitt
expansion together with the (path integral) background-
field method. It goes without saying that the analysis in
the present paper will be a prerequisite for this latter in-
vestigation.

In a localized external electromagnetic potential, the ex-
pression for the scattering amplitude which we shall
derive in this paper has the series form

00

(const) g I d y e

only the lowest-order term proportional to Bo(pf',y) or
%0(p;;y) in our series (1.5a) or (1.5b) produces the well-
known eikonal formula. Higher-order terms proportional
to B„(pf,y) or A„(p;;y) (n=1,2, 3, . . .) in the series are
suppressed by powers of I/

~ p ~

b as n increases, thus giv-
ing systematic corrections to the lowest-order eikonal re-
sult. Practically, these correction terms are expected to be
particularly important when the magnitude of

~ q ~

b is
not small compared to 1. (See our numerical illustration
in Sec. VI.) With the value of

~ q ~

b significantly larger
than 1 (i.e., large-angle scattering), the series (1.5a) or
(1.5b) may not be reliable since

(i) the degree of spatial uariation of the functions
B„(pf,y ) or A„(p;;y ), besides their magnitudes, becomes
also relevant and there is no guarantee of smoothness of
these functions as n increases, and

(ii) with a relatively smooth potential the scattering am-
plitude itself will become extremely small at large angle.
But, when the external potential has a rather strong
short-range core or the Fourier transform of the given
external potential has sizable large momentum corn-
ponents, there will be a strong interest also in large-angle
scattering. To deal with such a situation we have given a
further improved, and still quite elegant, formalism in
Sec. VII, which basically incorporates the idea of the
distorted-wave Born approximation' into our framework.
This yields a systematic generalization of Schiff's large-
angle formula. '

We now summarize the contents of this paper. In Sec.
II, we solve the recurrence relations for the coefficient
functions a„(x,y) for arbitrary values of x and y. In Sec.
III, we develop a systematic approximation for S-matrix
elements on the basis of the Schwinger-DeWitt expansion.
Here we reformulate the scattering theory with the Dirac
equation such that S-matrix elements may be obtained
directly from the large-timelike-distance behavior of the
exact Feynman Green's function. This coordinate-space
description of scattering is the most natural one to use for
our investigation, and it also simplifies calculations con-
siderably.

In Sec. IV, we discuss the validity range of the expan-
sion and establish that the series (1.5a) or (1.5b) provides a
useful approximation scheme for high-energy scattering.
In Sec. V we specialize ourselves to the case of static
external potentials. Here we give the explicit formula for
high-energy differential scattering cross sections, keeping
up to the terms Bi(pf',y ) or A' i(p;;y) in the series (i.e., in-
cluding the leading-correction term to the lowest-order
eikonal result). A numerical illustration is given with a
simple exponential potential in Sec. VI. In Sec. VII, we
present our improved approximation method for S-matrix
elements which is suitable for large-angle scattering as
well. Section VIII is devoted to discussions of our work.

II. THE SCHWINGER-DeWITT EXPANSION

With the exact Feynman Green's function written in
the form (1.1), let us use the DeWitt WKB expansion (1.4)
for the proper-time Green's function (x~ ~y). If we are
allowed to perform the w integration term by term, we will
then obtain the following series expansion for SF(x,y):
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Tl

Sz(x,y)=(i@~„~+m) g a„(xy) i hp(x —y;m )
8

n=P ~m

where

(2.1)

So(x —y;m )= —x, , y)
~ 2 = 1

8 +m —iO+

1/2e(3/4)~l

0

~
~

' ' ' '[( —)']' '
denotes the free scalar Green's function. Moreover, noting that

1 1—(in(, )+ m ) (x = —x
2 y (ig~»&+m)8@+m —iO+ gg+m iO+—

with 8 ~»~= F~»—~+ieA ~»~, it is also possible to expand SF(x,y ) in the form
n

00 8
S»(x,y)= g a„(x,y) i bp(x —y;m ) (ip, , +m) .

Bm

(2.2)

(2.3)

(2.4)

Note that the series (2.1) or (2.4) for SF(x,y) with finire
values «x and y may be regarded as a systematic heavy-
mass (i.e., large-m) expansion, but the nature of the series
may be different when one of the arguments approaches
timelike infinity. (See the last paragraph of Sec. IV.)

It is the series (2.1) or (2.4) which we shall use to evalu-
ate S-matrix elements. For scattering problems, we are
interested in certain specific asymptotic regions with coef-
ficient functions a„(x,y) (see Sec. III). The functions
a„(x,y) for general values of x,y should be of course
determined by using the Schrodinger equation (1.3). Here
note that Eq. (1.3) can also be written' as

i (xr ~y) =(D + , eo" Fz,—+m )(xr ~y)

ap(x,y) =exp ie f—Az(z)dz"
3'

(2.10)

a„(x,y) =exp ie f—»A&(-z)dzI' a„(x,y) . (2.11)

Then, Eq. (2.8) may be cast into the form

ina„(x,y)+i(x —y) 8&"'a„(x,y) =q„(x,y)

with

(2.12)

q„(x,y)= exp ie f»Ag(z-)dz [D(„) + ,'eoI'"F„„(x)]—

where z represents the line integral along the straight-
line path from y to x. For a„(x,y) with n ) 1, we may
integrate the recurrence relations (2.8) successively as fol-
lows. First, we define ithe functions a„(x,y) by setting

2
(2.5)

&(exp ie f»—As(z)-dz a„,(x,y) . (2.13)

with F& ——B&A„—8+&, and (xr ~y) should obey the
boundary condition

To solve the linear partial differential equations (2.12), we
may imagine the new functions

~~0+:(xr
~ y )—+5 (x —y)I . (2.6) A„(s;x,y) =a„(s(x—y)+y,y),

(x —y )"D„'"'ap 0, ——
ina„= —i(x —y)"D„'"'a„+[D(„)+ ,

' eo""F~„(x)]a„—
(2.7)

Now, inserting the small proper-time expansion (1.4) into
Eq. (2.5) and then matching various powers of r yields the
following recurrence relations:

Q„(s;x,y) =q„(s(x —y)+y,y),
(2.14)

which are respectively obtained from a„(x,y), q„(x,y)
through the substitution

(x",y")~(s(x —y)"+y",y") .

(2 8) In terms of these new functions, Eq. (2.12) simply reads

For the boundary condition (2.6) to be fulfilled, we must
here require that

—n+1
( nA ) gn n (2.15)

ap(x, x)=I . (2.9) which is trivial to solve. Moreover, it follows from Eqs.
(2.12) and (2.14) that

We shall solve the recurrence relations (2.7) and (2.8)
below.

The regular solution to Eq. (2.7), satisfying the boun-
dary condition (2.9), is well known; it is given by

A„(s =0;x,y ) =a„(y,y ) = ——q„(y,y ) .
n

(2.16)

Now the solution to Eq. (2.15), satisfying the boundary
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condition (2.16), is given by 1

a„(x,y)= i—f dss" 'q„(s(x —y)+y, y) . (2.18)
S

A„(s;x,y ) = ds'(s')" 'Q„(s',x,y ) .
n p

(2.17)

Then, all that is needed is to set s = 1 in Eq. (2.17), to ob-
tain'

Using Eqs. (2.13) and (2.18) iteratively, one can in prin-
ciple determine all coefficient functions a„(x,y) explicit-
ly. For such calculations, we find the following identity
particularly useful:

1

D&"' exp ie —f» As(z)dz =exp ie —$» As(z)dz i}&
' ie—(x —y)" dssF& (s(x —y)+y)

0

If we make use of Eq. (2.19) twice in Eq. (2.13), we may now write
1 1

q„(x,y)= i}i„i 2i—e(x —y)" f dssF„„(s(x—y)+y} B~~ i ie(x——y) f dss (d&F„)(s(x—y)+y)
1 1e—(x —y)"(x —y) f ds sF& (s(x —y)+y} f ds's'F"A(s'(x —y)+y)

(2.19)

+ ,
' ecr""F—„(x)a„ i(x,y) . (2.20)

[Here, (r)&F&„)(s(x—y)+y) is equal to [i}"F„„(x)]
~ „, ,„„].Note that exponential phase factors no longer ap-

pear in Eq. (220). To obtain qi{xy) for instance, we may set n =1 and ao(x,y) =I in Eq. (220); this gives the expres-
s1on

1

qi(x,y)= ie(x ——y) f iss2d"F„„(s(x—y)+y}
1 1—e (x —y)"(x —y) f ds sF&„(s(x—y)+y) f ds's'F"t(s'(x —y)+y) + ,' eo&'F&, (x) .— (2.21)

From Eqs. (2.18) and (2.21), we then find

1 Q

a&(x,y)= —i f du — (x —y) f dss (o~F&„)(s(x—y)+y) + , eo""F„,—(u(x—y)+y}
0 u2 0

2 Q Q

, (x —y)"(x —y) f dssF„„(s(x—y)+y) f ds's'F"A(s'(x —y)+y)
u

1 i= —e(x —y)" f ds s(l —s)i}"F&,(s(x —y)+y) — eo"'—f ds F&,(s(x —y)+y)

1 S

+2ie (x —y)"(x —y) f ds(1 —s)F„,(s(x —y)+y) f ds's'F"A(s'(x —y)+y), (2.22)

where we have changed the order of integration to obtain
the second expression. Inserting the expression (2.22) for
a i (x,y ) into Eq. (2.20) will give the function q2 (x,y ) ex-
plicitly, and the result can be in turn used to determine
a2(x,y) via Eq. (2.18), etc.

III. APPLICATION TO SCATTERING PROBLEMS

In an electromagnetic potential A&, the Dirac equation
for a charged spin- —, particle reads

(ig —m)4'=0 (D„=d„+ieA„) . (3.1)

For an external potential 2&, we will assume the general
form

A„(x)=e "~" ~Ap(x, x ) . (3.2)

Here, e '
(rt is a very small, but finite, positive num-

ber) is the adiabatic switching factor and has been intro-
duced explicitly such that A„(x) may be always imagined

Pg(x) =

[even with a static potential A&(x,xo)=A&(x)] to be lo
calized in the finite, albeit very long along the time direc-
tion, space-time region around x"=0. Note that, in our
approach, the external potential Az is treated as being al-
ways time dependent. This will contribute significantly to
simplifying our formula for S-matrix elements, making it
possible to treat space and time coordinates on an equal
footing. ' Moreover, with a suitable reinterpretation, this
formalism with a general time-dependent potential
can be utilized in studying bremsstrahlung from a charged
particle. ' S-matrix elements in a static external potential
can be obtained as a special case by letting q~O+ in the
final stage {see Sec. V).

To describe scattering in the presence of an external po-
tential Az, let Pt, i'; denote the final and incident plane-
wave solutions of the free Dirac equation, i.e.,

' 1/2

E V
u(pg, sy)e ~ (3.3a)
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g;(x)=
1/2

e ' u(p s). (3.3b)

Syj 5fj——ie f d x pf(x)p(x)(Ij(+)(x), (3.4)

where qj(+)(x) represents the scattering solution to Eq.
(3.1), satisfying the asymptotic condition:

(positive —frequency part) of (Ij(+)(x) — p;(x),
xo~—

Then, S-matrix elements for particle scattering can be ob-
tained from'

'(x) =— (positive —frequency, incoming
scattering waves only),

This function 4' ' is given by

—((t)f(x ) +e f d y pf (y)A (V )SF(p,x ) . (3.7)

The exact time-dependent scattering solutions qj(+-)(x) will
obey the following integral equations:

(Ij(+)=g;(x)+e f d y SF(x,y)p(y)qj(+)(y), (3.8a)

'=gy(x)+e f d y 4( )(y)A(y)SF(y, x), (3.8b)

where the SF(x,y) is the free Feynman Green's function

(x) =— (positive —frequency, outgoing,
(+)

xo + scattering waves only).
sg(x,y)=(x y) (3.9)

Sf; ——5f; ie f d—"x qj( )(x)g{x)g;(x), (3.6)

where qj( '(x) represents the scattering solution now
satisfying the asymptotic condition,

(positive —frequency part) of 'P' '(x) ~ 1i/f(x)
x —++ (x)

VA'th the help of the exact Feynman Green's function
SF(x,y ), 'Ij'+ '(x) can be expressed as

+(+'(x)=y (x)+.f d4y S,(x y)A(y)g (y) . (3.5)

Alternatively, S-matrix elements can be obtained also
from

Our approximation scheme is based on the series expan-
sion (2.1) or (2.4) for SF(x,y) which has its simplest form
naturally in the coordinate space. This is in contrast to
the usual Born series for which momentum-space calcula-
tions are simplest Henc. e there follows a significant cal-
culational advantage if the S-matrix formula (3.4) or (3.6)
is recast into the one which uses the coordinate-space
scattering description in a more direct way, i.e., asymptot-
ic behaviors of the exact scattering solutions %"—'(x). The
latter can be reIated to the appropriate asymptotic
behaviors of the exact Feynman Green's function SF(x,y)
as follows. First with (Ij( '{x) specified by the right-hand
side of Eq. (3.7), we may look at the region

~

x
~

~ ao,x —++ ao (such that 2)x &&1) withz(+'
x ~+Do (i.e. , timelike) and the ratio fixed

(3.10)

Note that the free Feynman Green's function has the asymptotic behavior
x 6 R(+) and y" finite:

1/2 (3/4)mi —im x ~

SO(F( '3 ) 5/2 3/2 2 3/42 m. (x )

Xp im(xj'/V x2)y„ 1

~x' (3.1 1)

SF(x,y) = SF(x,y)+ f ii "z SF(x,z)eg(z)SF(z, y)
1/2 (3/4)mi —im x

25/2 3/2( 2)3/4
im(x)'/ x2)y f 4 im(xi'/ x2)z

x
Now suppose we identify (note that pf =m )

In the same asymptotic limit, we may express the exact Feynman propagator in the form

(3.12)

(3.13)

in Eq. (3.12). We then

1/2
m

u(pf, sg )SF( yx) ~
find the following very useful connection:

m 3/2e(3/4)n je jm~x—
( —)

(Zm) (x )
3/2 2 3/4 (3.14)

Inserting Eq. (3.14) into Eq. (3.6), we find
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(2 )3/2e —(3/4)tti

S;=6;+ft ft 1/2y(E E )1/2
lim (x ) e™x2 f d y u(pf sf)Sp(xy)[ ie—A(y)]e ' u(p;, s;) .

x ~ (x)

x)"
(with m =pf )

x

(3.15)

Alternatively, with the scattering solution tp(+' specified by Eq. (3.5) or Eq. (3.8a), we may look at the asymptotic re-
gion

~

x
~

~0(), xo~ —oo (such that+2) ~xo
~
))1) with

R( —).

x ~+ 0() (i.e. , timelike) and the ratio fixed

In this region, identifying —m (x"/~x) with pP', we find

m 3/2 (3/4)tti —imV x2

SF(y,x)u(p;, s; )~ 3/ 4'+'(y;p;, s; )
E;V (2') / (x )

(3.16)

(3.17)

and

(2 )3/2 —(3/4)tti
S =5-+f' f + 1/2y(E E )I/2

lim (x )"/ )e™X2 f d y u(pf, sf)e f [ ieg(y—)]Sp(y,x)u(p;, s;) .
x ~+ (x)

x~
(with —m =pt')

x

(3.18)

Here we just note that, due to our identification m(x"/3/x )=pg [or —m(x"/~x) =pP], dif«rent asymp«ti«e-
g1ons of Sp(x,y) [or SF(,x) with Eq. (3.18)] correspond to different kinematical regions of given scattering ex-
periments; using m(x "/ x ) =pf",

(i)
~
vf

~

= ~1, ~0 (ultrarelativistic): 0 ~1, 0 ~0,IPf[ m
/
x

/

'I/x'

X

(ii)
~ vf ~

=O(1) & 1, =O(1) & 1 (relativistic): 0 and 0 are O(1),m
f

x
/

'I/x'
X' X

(111)
~
vf

~

&&1, Ef-m (nonrelativistic): ( —
~
vf ~

) &&1,
~x'

X' X'

(3.19)

We now consider the application of the DeWitt WKB form for evaluating S-matrix elements approximately. First we

look at the formula (3.15), for which the expansion (2.1) for SF(x,y) is especially useful. Note that the expansion (2.1)

can be rewritten in the form

with

n
OO a

Sp(x,y) =exP ie p
A—s(z)dz g a„(x,y)(i9(»+m ) i

2 bo(x —y;m )+K„(x,y)
n =0 ~m

(3.20)

1

1~„(x,y)= iB( )a„(x,y)+ ey~(x —y)" f dssF„„(s(x—y)+y) a„(x,y)
n

l
8

bo(x —y;m ),2

Bm
(3.21)

into the formula (3.15). At this stage, forwhere we have used Eqs. (2.11) and (2.19). We may then insert the series (3.20)
a localized potential, it can be shown that

x ~+ Ot u)E'th m =pf" and y" finite:
x

(1/ x )"a„(x,y) ~ (an x -independent function),

m 1/2e(3/4)tti —im x2 ~2m

t)m 2 ~ (x )
2 O y' 5/2 3/2 2 3/4 2m

(3.22)

(3.23)

a
(EQI(x)+m ) E

Bm

n
m (/2e (3/4)ttie im x2 ~2—

Ao(x —y;m ) ~
2 rr (x ) 2m

e / (pf+m) . (3.24)

Since the behavior (3.22) will be evident in Sec. IV, we shall here excuse ourselves from providing its justification [see
Eqs. (4.6) and (4.12), for instance]. On the other hand, the behaviors (3.23) and (3.24) are direct consequences of the
asymptotic behavior shown in Eq. (2.2).
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Accepting the behavior (3.22} implies that

p
x ~ + oo with =pf" and yi' finite:

x
]

( x )" i9(„)a„(x,y)+ ey"(x —y)' f ds sF& (s(x —y)+y} a„(x,y) ~O (3.25)

The situation became quite clear. According to the formula (3.15) and Eqs. (3.22)—(3.24), the K„(x,y) pieces in Eq.
(3.21) do not contribute to S-matrix elements at all. And the formulas (3.14) and (3.15) now become

'(y;pI, sf )=
1/2

u(pf, sf)exp[ipf y ieH(p—f,y)] g B„(pf,y)
n=0

(3.26)

( ie )m—
Sf' 5f — '

i 2 $ d y exp[i(pf —p; ).y ieH(p—f,y )]u (pf, sf )B„(pf,y )A (y)u (p;,s; ) (3.27)

where

B.(pf y)=— hm
X ~+OO

(with m(x&/V x~)=p&)f

a„(x,y) (3.28)

and we have also set

H(pf', y) = lim
X ~+oO2

XI'
(with m ~pfi')

x

r

pAp-(z)dz" (3.29)

The connection from Eq. (3.28) to the formula (1.5a) given in the Introduction can be made as soon as one notes that

B„(pf,y ) =e '
B„(pf,y ) (3.30)

'n

with the quantity B„(pf.,y ) defined by Eq. (1.6).
With the S-matrix formula (3.18), it is the expansion (2.4) which is more convenient to use. Interchanging x and y in

Eq. (2.4), we may rewrite it as
t'

QO

Sp(y, x ) =exp ie —P„As(z)dz g a„(y,x ) ~

' n=O

with

i bio(x —y;m ) ( —9( )+m) +K'(y, x)8 2

m
(3.31)

1
n

K„'(y,x) = ia„(y,x—+el(„)+ ey"(x —y)' f ds sF&„(s(x—y)+y) a„(y,x) i bo(x —y;m ) .n ~ x 0 p~
Oft

(3.32)

2
OO

exp[ ip; y i—eA (p;;y)] g—A„(p;;y) u(p;, s;),
n=0

0"+'(y'p s )= NZ

l P g E y
(3.33)

Then we may follow the same reasoning as above to show that the IC„'(y,x) pieces in Eq. (3.32), when inserted into Eqs.
(3.17) and (3.18), yield no contribution to S-matrix elements and the scattering solution 0"+'. We thus obtain alternative
formulas to Eqs. (3.26) and (3.27):

1/

( ie)m—
Sfi 5' —

i~z g d yexp[i(pf —p;).y ieA (p;;y—)]u(pf, sf)P(y)A'„(p;;y)u(p;, s;) (3.34)

with

A„(p;;y) =—

=pP)
x

11IIl
X ~+OO2

x~
(with —~—

2m
a„(y,x ) (3.35)

A (p;;y)—= lim
X —++ cc2

(with —m =pP)x~

x

"„A„(z)dz-" (3.36)
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Since the quantity %„(p;;y) defined by Eq. (1.7) can be
written as

%„(p;;y)=e " ~„(p;;y), (3.37)

we see that Eq. (3.34) coincides with Eq. (1.5b).
As will be shown in the next section, the expansions

(3.27) or (3.34) can be used to obtain a systematic approxi-
mation in high-energy- scattering problems. Which form
between Eqs. (3.27) and (3.34) one uses is really a matter
of convenience; they are equivalent within application
range. The full right-hand side of Eq. (3.27) is equal to
the ful/ right-hand side of Eq. (3.34), but not necessarily
in each order or when the series are truncated. Probably
the most preferable would be to take the symmetric aver-
age of the two, thus making the symmetry of the S matrix
(concerning the incoming and outgoing states) manifest in
each order. ' Note that if we neglect the distorted phase—ieH(pf, 'y ) —ieA (p;;y)factors e

' or e " and keep only the first
term in the series proportional to

IV. VALIDITY CRITERIA

B„+,(pf,y )
rn+)(pf, y ) =

B.(pf,y )
(4.1)

for y values restricted by [due to the presence of the A(y)
factor in the integrand]

I yI && Iy'1«p (4.2)

In this section, we shall investigate the validity of the
series (3.27) as a useful approximation for exact S-matrix
elements. Conclusion for the series (3.34) will then be ob-
vious, too. The potential A&(x) is assumed to be localized
both in space and in time [see Eq. (3.2)]. Let b and rp
represent the spatial and temporal (or time duration)
ranges of the external potential, respectively' and, just for
the sake of making discussions simple, we may here as-
sume that b & rp. To study convergence of the series
(3.27), we shall need a careful estimate of the ratio

Bi)(pf y ) =A p(p;;y ) =I, (3.38)
The case of a long-range potential will be treated separate-
ly.

the expansions given above reduce to the usual lowest-
order Born approximation result.

We first look at the ratio r] in some detail. Noting that
Bp(pf,'y ) =I and using Eq. (2.22), we may write

r, (Pf y) —
I )(Pf y) I

—
I i(Pf y)+ i(Pf y)+Z)(pf, y')

I
(4.3)

~x' ) 1
X)(pf,y)= lim ( —e) (x —y)' f du f dss (8"F„„)(s(x—y)+y),

x —+P 2@i u'

F, (pf,y)= lim o~' f duFp„(u(x —y)+y),( ie) „,—~x
x P 2 2m

~x'
Z, (pf,y)= lim (ie ) (x —y)'(x —y) f du f dssF„,(s(x —y)+y)x~P 2m u2 O

Qf ds' s'F"A,(s'(x —y ) +y )

(4.4a)

(4.4b)

(4.4c)

As a shorthand notation, we have here set (and assumed hereafter)

hm
x —++ oo

(with m(x&IV x2)=pj&]

=—lim,
x~P

(4.5)

for y values constrained by the condition (4.2). For a localized potential, it is easy to see that the limits specified by Eqs.
(4.4a)—(4.4c) are in fact well defined, with nonzero contributions due entirely from integration over very small
[-O(1/

I
x

I )] u, s, and s' regions. This also implies that

lim ~xa)(x,y) =(finite) . (4.6)
x~p

One may expect that relative order of magnitudes for X, (pf,y ), F, (pf,y), and Zi (pf,'y) depend strongly on the specif-
ic kinematical region in consideration [see Eq. (3.19)]. However, when we introduce the dimensionless variable

(4.7)

with E„representing the rough strength of external electromagnetic fields, we have obtained the following estimates
with the expressions (4.4a)—(4.4c)

6
X)(pf,'y)-O, for all kinematical regions

Pf b
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Yi(pf,y )-

r

0 O(1) (including the lim't
I vf I

1)

0 /Vf f, jf /vf f
((1G

pf b

(4.g)

G2
Z&(pf,y)-O, for all kinematical regions .

Note that G-eF& b for (ultra) relativistic [i.e.,
~ vf

~

=O(1)] scattering, and for nonrelativistic scattering the validity
range of the usual Born series in fact coincides with 6 =eF&,b i

~
vf ~

((1.
Having completed the estimate of r)(pf', y)=B)(pf y), 'we may now turn to the estimation of ~B„(pf,y)

~

(n &2).
Here, due to the iterative nature of the very way the functions a„(x,y) are constructed, the estimate for

~
Bz(pf',y ) ~, once

made, can be readily generalized to draw conclusions about B„(pf',y) with n &3, too. [In this regard, r)(p~, y) is a bit
special due to the fact that ao(x,y) =I for all x,y]. Using Eqs. (2.18) and (2,20), Bq(pf,'y) can be expressed in terms of
a

& (x,y ). ~e organize the result as

I Bz(pf~y) I

=
I 2(pf~y)+M2(pfey)+X2(pf&y)+Yp(pfqy)+Zp(pfpy) (4.9)

where Lz(pf, y ), Mz(pf', y), . . . , Zq(pf ',y ) are special cases (i.e., n =2) of the functions defined by

2

L„(pf,y)= lim ( i) — f du u" '[B~„)a„)(x,y)]
~ „„(„~)+~,x p 2m O

'n
2 1 Q

M„(pf',y)= lim ( —2e) (x —y) f du u (~~&)a& —)(x 3'))
i x u(x —p)+z d p~( (x y)+y)

p 2m

n

X 1 Q

Xg(pf y) = lim ( —e ) (x —y )"f du u" a„)(u(x—y) +yy ) f ds s'(a~F,.)(u (x y) +y)—x~p 2777

(4.10a)

(4.10b)

(4.10c)

r

Y„(pf,.y) = lim cr)"" du u" a„—)(u(x y)+y, y)—F„„(u(x—y)+y),)Mv x n —)—
x~p 2 2m

n

X 1

Z„(pf,y)= lim (ie ) (x —y) (x —y) f du u" a„)(u(x —y)+y, y)x —+p 2m 0

(4.10d)

& f ds sF+„(s(x—y)+y) f ds's'F"A, (s'(x —y)+y) .

In fact, B„(pf,y ) for n & 2 can also be written as

B„(Pfy ) =L„(Pf',3')+M„(pf,y )+X„(Pf,3')+ Y„(Pf,y )+Z„(Pf y ) .

(4.10e)

(4.1 1)

Using the behavior (4.6), it should not be very difficult to see that the functions defined by Eqs. (4.10a)—(4.10e) for
n =2 are well defined, i.e.,

lim (~x) aq(x, y) =(finite) .x~p

Moreover, Eqs. (4.10a)—(4.10e) also imply that any nonvanishing contributions to Lz(pf ',y ), Mz(pf, y), . . . , Zz(pf, y) are
obtained entirely from the very small [-O(1/

i
I

~
)] u, s, and s regions; viz. , to calculate Bq(pf,'y ) by our iteration pro-

cedure, it is a&(x,y) for finite values of x (more specifically
~
x

~
&b) which becomes necessary. This may be compared

to the calculation of B,(pf,y ) for which only the x~P limit of a)(x,y) is necessary. According to Eq. (2.22), we may
here set

8F~~(y )
aq(x, y)-O " [1+O(G)], for

i xi &b and (x (4.13)

Based on these observations, we have estimated the magnitudes of Lz(pf,'y), Mq(pf, y), . . . , Zq(pf, 'y), obtaining the re-
sults
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T

6
L2(pf', y)-0 2 2 [1+0(G)]

M~(pf V» »(pf W) -0 G2
2 2 [1+0(G)] - for all kinematical regions

G3
Z, (pf,y)-0, [1+0(G)]

I I I

'b'

(4.14)

I'2(pj V»-

G20 z, [1+«G)]
I vf I

=0(l) (including the limit
I vf I

~1)
I I I

'b'

G2
I vf I

[1+0«)] if
I vf

I I I'b'

The analysis may be extended for n =3 and larger in an obvious fashion. For instance, the behavior (4.12) together
with the formulas (4.10a)—(4.10e) for n =3 in turn leads to the conclusion that L3(pf,'y ), M3(pf,'y), . . . , Z3(pf', y), and
accordingly S3(pf,y) are well defined. In the formulas (4.10a)—(4.10e) for n =3, it is now a2(x,y) for

I
x

I
&b which is

responsible for. nonvanishing results for those quantities. Here, using Eqs. (2.18) and (2.20) for n =2, one may find
r

~z(xa)-0, [1+«G)+«G )+«G )], for Ixl &b and lx
eF„„(y) 2 3 0 (4.15)

where the 0(eI"„„(y)/b
I vf I

)1 contribution is due to the piece proportional to B„a&(x,y) from the right-hand side of
Eq. (2.20). Then, estimates for the magnitudes of L3(pf,'y), M3(pf', y), . . . , Z3(pf,'y) can be made using Eq. (4.15) in the
formulas (4.10a)—(4.10e). For general n, repeating this procedure yields the following estimates:

L„(pf,.y )-0 [1+0(G)+ 0(G'" ')],
(

I pf lb)"
2

M„(pf,'y ),X„(pf,'y ) —0 [1+0(G) 0(G " )], . for all kinematical regions
(

I pf I
b)"

Z, (pf,'y)-0 [1+0(G)+ . . +0(G'" ')],

Y„(pf,y)- '

0 „[1+0(G)+.. . +0(G'" ')] if lvf I
=«1) (or lvf I

G

(
I pf I

b)"

G
lvf I

[1+0(G)+ 0(G'" ')],

(4.16)

We are now ready to discuss the physical. domain for
which the series (3.27) may be useful. First, look at the
series (3.26) for the scattering solution. According to the
estimate shown in Eq. (4.16), it is clear that the series
(3.26) will be useful for

(I) Ipf I»»
(4.17)

G2 eI'p b
(ii) «1 with G =—

I pf I
b

I vf I

Namely, the series (3.26) provides a systematic high-
energy approximation for the scattering solution

'(y;pf, sf) (for finite values of y) when the external

r„(y)= '

0 „,fo 1&G«( lpf lb)'
pf b

(4.18)

The criteria (4.17) and (4.18) for the expansion (3.26) are
valid for a11 kinematical regions, covering from the ul-
trarelativistic [i.e., lv/I 1 or (m/Ipf

I
) 0) case to

potential is slowly varying in the distance scale defined by
the particle three-momentum, 1/

I pf I
. The ratio

r„(pf,y ), defined in Eq. (4.1), measures the degree of con-
vergence for the series (3.26), and we find here

T0, for G&11

pf b
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the nonrelativistic (i.e., l v/ l
«1) case. Also note that,

unlike the Born series which is known to be useful for
G « 1, one may use the series (3.26) at sufficiently high
energy even with G=O(1) or larger. [See (ii) in Eq.
(4.17).]

When the expansion (3.26) is used to evaluate S-matrix
elements via Eq. (3.27), we actually have another scale to
worry about. It is due to the factor

—
~ [m '+ (p/ —q)']'"y' —iq.y I

(4.19)

with q=p~ —p; denoting the three-momentum transfer,
which introduces the additional distance scale, 1/l q l

.
Of course, for

l q l
b & 1, it should be possible to take the

criteria (4.18) for the series (3.26) also as the measure for
the convergence of the expansion (3.27) for S-matrix ele-
ments. On the other hand, the situation is quite different
for

l q l
b ))1: the presence of the rapidly oscillating fac-

tor (4.19) then results in vanishingly small S-matrix ele-
ments if the remaining term in the integrand,

e
' g B„(p/,y) g(y), (4.20)

n=0

is slowly varying in the distance scale 1/
l q l'. According

to our recurrence formula for a„(x,y), it is quite conceiv-
able that B„(p/,'y ) may involve more variations within the
given y range (4.2) as n increases, simply because of the
appearance of more F„,'s with different arguments.
Thus, although suppressed by the ratio given in Eq. (4.18),
B„(p~,y ) term's combined with the oscillating factor
(4.19), for relatively large

l q l
b, may yield larger contri-

butions to the scattering amplitude when n is larger. This
observation leads us to the conclusion that, as

l q l

b in-
creases beyond 0(1) (i.e., for not-so-small-angle scatter-
ings), we must taken into account more B„(py,y) terms
(than necessary for small-angle scatterings) to obtain an
equally good approximation to corresponding S-matrix
elements. When

l q l
b is much larger than 1, we do not

expect the expansion (3.27) to be very useful.
The validity range of our expansion (3.27) clearly over-

laps with that of the so-called eikonal approximation. In
fact, keeping only zeroth-order term BQ(pI', y) =I in Eq.
(3.27) yields the well-known eikonal formula, " and
thus terms coming from B„(p/,y) with n ) 1 may be then
regarded as giving systematic corrections to it (see Sec. V
for a more explicit exposition on this with a general static
potential). The series (3.26) for the scattering solution de-
scribes our systematically improued eikonal toaue function

t

V. STATIC EXTERNAL POTENTIAL

Since most applications in the external-field problems
involve static potentials, i.e.,

2"(x)=e ""~A "(x)=e "~" ~(A (x), A(x)), (5.1)

we here consider our expansion for S-matrix elements in
more explicit forms for this case. First let us look at the
function H(p/, y ) defined in Eq. (3.29). For a sufficiently
localized function A "(x), it now reduces to

Here, simplicity of the functions B„(p/,'y) at least for
small n should be a big asset of our series (3.27). An
analogous conclusion may be reached also with the expan-
sion (3.34).

For a long-range potential with the behavior
(x)-K/l x

l
(K a constant) at large distance, some

modifications are necessary with the above discussion.
Following the same line of arguments as given above, it is
easy to show that the quantities B„(pI,y) defined by Eq.
(3.28) [or A„(p;;y) defined by Eq. (3.35)] are still well de-
fined. But the function H(p/, y) or A (p;;y), defined by
Eq. (3.29) or Eq. (3.36), diverges logarithmically. This
divergence arising from H(p/, y) or Pt'(p;;y) only results
in an overall (divergent) phase to S matrix and the scatter-
ing cross section is still well defined (in this regard, see
also the end of Sec. V). In practice, to use our formalism,
it is thus sufficient to regulate such long-range potential
at large distance (e.g., Coulomb by a screened Coulomb)
and remove the regularization at the 1evel of scattering
cross section. With this understanding, the condition
(4.17) and the convergence ratio (4.18) are valid for the S-
matrix formula (3.27) in such Coulomb type potential if
one here identifies b with 1/

I q I
and G w'th e+/

I v/ I

.
Before closing this section, there is a remarkable fact

worth mentioning with our series (3.27) or (3.34). It is
that Eq. (3.27) continues to be useful for studying high-
energy scattering [under the condition (4.17) and for

l q l
b not too large compared to 1] even with a massless

particle, i.e., m~0+. [Note that, in the limit inside Eq.
(3.28) for B„(p/,y ), we may replace ~x /2m by
l xl/2 lp~ l. Also, the factor m at front in t e right-

hand side of Eq. (3.27) is just due to the specific normali-
zation assumed for Dirac spinors u(p, s).] This is in a
marked contrast to the expansion (2,4) for SF(x,y ) which
becomes ill defined for m~0+, but consistent with the
simple physical picture that the mass term may be ignored
in ultrarelativistic scattering. Stated differently, our ex-
pansion (3.27) or (3.34) for S-matrix elements really corre-
sponds to the high-energy (and not heavy-mass) expan-
sion.

1
(

0 0)+ 0
H(p/, y)= lim (x —y)~ f ds A„(s(x—y)+y)e " '" ~ '+~

~ = D (P/.,y) p/. D(pI,y)—x~P o
I p/ I

with

(5.2)

D (p/, y)—= lim
(x

~
~oo

Dt (p&,y)—: lim
~xl ~a)

].

lxl f ~»'(sl xlpI+y) = f ~»'(sP/+y»

lxl f "s «s lxlP/+y) = f "s «sj/+y»

(5.3a)

(5.3b)
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where we have set pf /
~ pf ~

—=pf. Thanks to Eq. (5.2), the zeroth-order approximation with Eq. (3.27) reads

( i—e)m 3 f 0~.(Sf;—5f;)„0—— (2m. )5(Ef—E;) d yexp —i(pf —p;) y ie— D (pf', y)+iepf D(pf, y)
f Pf

Xu(pf s&f )Q(y)u(pt s&& ) ~ (5.4)

Using Eqs. (5.3a) and (5.3b) for the functions D (pf, y) and D(pf, y), the distorted phase factor present in the right-hand
side of Eq. (5.4) may be expressed explicitly as (vf =pf /Ef )

exp ie —D (pf, y)+iepf D(pf, y) =exp ie—f dt A (y+vft)+ie f dtvf A(y+vft)
0

(5.5)

The next order (i.e, n = 1) term with the series (3.27) will be given by

( SfI 5' )&& [—,f d y exp i (pf p; )—y ie — D (pf, y) +iepf D(pf, y)
I& (E~g )

I/2

Xu(pf, sf)8~(pf, y)p(y)u(p;, s;) . (5.6)

The quantity 8&(pf,y ) may be calculated using Eqs. (2.22) and (3.28). For an external potential (5.1), we immediately ob-
tain

8~(pf,y)= lim a &(x,y)
x p 2ipfi

z pf f ds sB'F;„(spf+y) — 6""f dsF„„(spf+y)4 Pf

OO S

+ 3 pfpf f dsF„„(spf+y) ds's'F "A,(s'pf +y)
IPf I' (5.7)

where we have denoted F ~=8 A„—8+&. INote that the limit x~P here [see Eq. (4.5)] may be represented by

/
x

)

—+ oo with m(x "/ x ) =pf (: fixed) and y~ finiteI. Inserting Eq. (5.7) into Eq. (5.6) and then integrating over the
variable y yields

( te )m—(2')5(Ef E;) f d ye—xp i(pf p;)—y ie— D—(pf', y)+«pf D(pf&y)3 f 0 ~
VEf

Xu(pf, sf)
ie

pf f ds sB'F;,(spf+y) — o""f dsF&„(spf+y)

~ 2

+ 3 pfpf f dsF&&&(spf +y) f ds' s'F "A(s 'pf + y) Q ( y)u (p;,s; )

(5.8)

Explicit consideration beyond the n = 1 term with the expansion (3.27), which is straightforward but undoubtedly more
complicated, will not be given here.

The information given above on S-matrix elements can be readily transcribed into that for the differential scattering
cross section, der/dQ. In the approximation keeping up to the term proportional to 8~(pf', y) in the series (3.27), we
have (before considering the spin sum)

d 0 pled
2

3
OO OO

d Q 4~2 f d yexp i(pf p;—) y i—e f dt 3—(y+vft)+ie f dtvf A(y+vft)
0 0

2

X u(pf, sf) Q'(pf, y)+a""Q„"(pf, y) eQ(y)u(p;, s;)

where we have used the notation (5.5) and the functions Q'(pf, y), Q"(pf, y) are given by

(5.9)
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~ 2

Q (pf, y)=1 — (1—vf )pf" f dt tB'F;„(y+vft)+ (1 v—f) pfpf f dtF„„(y+vft) f dt't'F"A(y+vft'),

(5.10)

Q&„(pf',y)= — (1—vf )' dtF& (y+vft) .
4m 0

(S.l 1)

Setting Q'(pf', y)=1 and Q&' (pf,'y) =0 in Eq. (5.9) produces the result which would be obtained if only the 80(pf', y)
were kept with the series (3.27); this gives (one version of) the usual eikonal formula. " Our expression for der/dQ
specified by Eqs. (5.9)—(5.11) also includes the leading corrections to it, with the quantity Q (pf,y) —1 giving the correc-
tion to charge scattering and the term proportional to Q& (pf,y) generating important spin-dependent effects. Also, ac-
cording to Eqs. (5.10) and (5.11), it may well be that those correction terms could be given some simple physical interpre-
tations along the classical coordinate-space scattering picture.

Alternative expressions for the differential cross section may be obtained by using the series (3.34) instead of Eq.
(3.27). We shall here only state the result when the series (3.34) is used with a static potential. With Az(x) given by the
form (5.1), the function A (p;;y) defined in Eq. (3.36) reduces to (p;—=p;/ I p; I, v; =p;/F;—)

A (p;;y)= f ds A (sp;+y) —P; f ds A(sp;+y)
Ip I

0 0= f dt A (y+v;t) —f dtv; A(y+.v;t), (5.12)

and from Eqs. (2.22) and (3.35) the quantity A &(p;;y) acquires the form

0
p;" d sos'F; (sp;+y) — o" f dsF „(sP;+y)

0 0
3p;"p; f dsF& (sp;+y) f ds's'FI'A(s'pt+y) . (5.13)

We thus find the following alternative expression for der/d0:

d 0' tll

d Q 4~2

,
'2

X u(p/, sf )eg(y) T'(p;;y)+o" T„"„(p;;y) u(p;, s;) '

with the functions T'(p;;y), T&'„(p;;y) given by

T (p;;y)= I+ (1—v; )p;" dt tB'F;„(y+v;t)2'
~ 2

3
(1—v; )

~ p;"p; f dtF„(y+v;t) f dt't'Fi'A, (y+v;t),

3
0 0

d yexp i(pf —p;) y—ie —dt 2 (y+v;t)+ie dtv; A(y+v;t)
I

(5.14)

(5.15)

T„"„(p;;y)=— (1—v; )'~ dt F„(y+v;t) .
4m

(5.16)

Again, setting T'(p;;y)=1 and Tz'„(p;;y)=0 in (5.14)
gives another version of the usual eikonal formula.

For a given external potential, numerical analysis will
usually be required to perform the integrals appearing in
(S.9) and (5.14). In the next section, we will present nu-
merical calculations of the high-energy scattering cross
section for a simple exponential potential.

We make a brief comment on the case of a long-range
potential. If A (x) -Z/

I xd for large
I
x

I
(i.e.,

Coulomb-type), the quantity D (pf, y) defined by (5.3a) is
ill defined since the integral

f ds 2 '(spf+y) —Z f ds
Ispf+y I

(5.17)

is logarithmically divergent. Here, suppose we regularize

the potential by a Yukawa-type, i.e., A (x) -(Z/
I
x

I
)e ~" ~ with a very small positive number A, . Then,

for this regularized potential,
—~ I u~+~ i

f ds A (spf+y)= Z f ds
I spf+y I

—Z ink, +(finite terms) .
A,~O+

(5.18)

But, this logarithmic divergence in Do(pf, y) only intro-—iez(Efl
~ pf I )1nA,

duces a phase e into S-matrix elements
Isee Eq. (5.8)], and thus it will completely disappear in the
scattering cross section formula (5.9). In this manner (due
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to Dalitz ' originally), unambiguous results for the high-
energy scattering cross section may be secured by our
method even for a Coulomb-type potential at large dis-
tance.

VI. NUMERICAL ILLUSTRATION
5-

%'e now want to see, through numerical calculations,
the degree of improvements, over the standard eikonal for-
mula when we keep the first-order correction terms with
our formula (3.27). This will be done by comparing our
results and standard eikonal results on the scattering arn-
plitude with those from the partial-wave analysis.

We shall consider the exponential potential, which has
often been used to test various approximation methods of
analyzing the scattering amplitude with the Schrodinger
equation. %'e thus take

V(y) [—:ego(y)] = — exp
2m b

(6.1)

with suitable values for Uo( )0) and b. With this choice,
the function eH(pf, y) becomes

AUD
eH(pf, y) =- f exp( —

I y+spf I
/b )ds, (6.2)

2
I I f I

where y =Ef /m.
Specific values taken for numerical calculation are
(i) m=1 GeV,

I p; I

=1 GeV,

Uo/2m =0.24 GeV, b =1/1.45 fm,

(ii) m =1 GeV,
I p; I

=3 GeV,

Uo/2m =0.24 GeV, b= 1/1.45 fm .

The magntiudes of 1/
I p; I

b and 6 /
I p; I

b, which play
an important role for the convergence of our series, are
respectively,

Case (i): 1/I p; I
b=1/3. 5,

6'/Ip; Ib= —,
' (6=1.2),

Case (ii): 1/
I p; I

b = 1/10. 5,

6 /I p; I
b= —„(6=0.9) .

For these two cases, we plot the ratios

(do /d Q)„h
R) ——

+)phase shift

(6.3)
(do /d 0),„„

Rp ——
(du/d Q)phas, shift

in Figs. 1 and 2. Here note that (do/dQ), „„is specified
by our formula (5.9) while (do/dA)„k, the usual eikonal
cross section, corresponds to the result obtained by setting
Q (pf,'y) =Q& (pf,'y) =0 in the same formula. The
scattering cross section by the phase shift analysis,
(do/dQ)ph h fs is calc'ulated following the standard
procedure (see Ref. 23, for instance). All cross sections
are spin-averaged ones. For the sake of more detailed
comparison, we plot, in Fig. 3, the spin-nonflip part of the
scattering amplitude for the case (i). The spin-nonflip

part, f(8), and the spin-flip part, g(8), of the scattering
amplitude are related to the spin-averaged cross section,
(do/dQ), p;„,„,by

= If(8)
I

'+
I
g(8)

I

'.
spin-ave

(6.4)

Note that the spin-nonflip part comes not only from
Q'(pf, y ) but also from Q "(pf,y ).

As is shown in Figs. I and 2, the improvement is sig-
nificant when the scattering angle is not too large com-
pared to the angular range fixed by the condition

I q I
b & 0( 1), i.e.,

Case (i): sin(8/2) & —,',
Case (ii): sin(8/2) & —,', .

The fact that, at large angle, the spin-averaged cross sec-
tion obtained from the usual eikonal formula approaches
that of the phase-shift analysis should be considered for-
tuitous. This can be immediately seen by looking at Fig. 3
where we compare the spin-nonflip parts f(8) due to our
method, eikonal and phase-shift analysis.

If we set @=1 in Eq. (6.2), it reduces to the phase fac-
tor of the usual eikonal formula for the Schrodinger equa-
tion. With the Schrodinger equation, Berriman and Cas-
tillejo used the exponential potential to compare various
methods of improving the usual eikonal formula. In fact,
one of their choices for parameters coincides with our
case (i). Given their plots, it may be also interesting to see

Q & Q 2Q 30 e(deg)
FICx. 2. The ratios R I,R2 defined in Eq. (6.3) for the case (ii).

The result of the phase shift is based on the partial-wave sum up
to 1=169.

60 e(deg. )

FIG. 1. The ratios R &, R2 defined sn Eq. (6.3) for the case (s).
The result of the phase shift is based on the partial-wave sum up
to i=69.
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)03 the result obtained via our Eq. (5.9) but with y set to 1.
For the case (i), we have thus plotted

~ y=1 - Schrodinger
do
dA

phase shift

)0

]0—

03

&0'

I
I
I
I

I:~I
I:,I:
I

'

I
II
II
II
I(
II
I
~I

II

I
II
Il
II
II
II

I

fl
II
tI
II
II

I
I

tI
I

I,
II
II
I
II

I

I)
II I

30

I Ref(e) [

60

v
\

l
~ ~

\
\
\
'I

1

8(deg. }

Phase Shift

----- Ours

~---.""- F.ikon' I

(6.5)- Schrodinger

g Sch dIT
2

phase shiftdQ

in Fig. 4. Of course, (dcridO)~f, ",;', ,'I",g' here refers to the
cross section obtained by partial wave analysis with the
Schrodinger equation. The improvement, shown in Fig. 4,
is again quite good. Comparing the results with those
from Ref. 22, we see that our formula in this case yields
the result which is better than that of Sugar and Blanken-
becler" and comparable to that of Saxon and Schiff. "

VII. EXTENSION TO LARGE-ANGLE SCATTERING

We have shown that the scattering formula (3.27) or
(3.34) generalizes the eikonal formula for small-angle
scattering. However, according to our discussions in Sec.
IV, this scattering formula may not be applicable for a
strong potential or for sufficiently large-angle scattering.
On the other hand, many potentials of physical interest
possess a rather strong short-range core region which may
give significant large-angle scattering. We now extend
our work also to deal with such a case in a systematic
way. The resulting formula will correspond to a generali-
zation of Schiff's large-angle formula. 'o'~

For our present purpose, we find it convenient to as-
sume that the external potential has the following general
forID:

]0

Ap(x) =Ay(1)(x;A)+Ay(2)(x;A)

with

~ ("(x ~)=e-~ ~"'~ ~ "'(x x'~)

(7.1)

(7.2)

10

Here, A is an adjustable parameter to be explained shortly.
In Eq. (7.2), the adiabatic switching factor e "~" ~ has
been introduced by the same reasoning as in Eq. (3.2). In
separating a given external potential Az into two pieces as
in Eq. (7.1), it will be assumed here that the usual Born
series is applicable with A&" set. to zero while the eikonal

10

Ours

K ikona I

60

5-

20 e{deg.)
FIG. 3. Real and imaginary parts of the spin-nonAip part of

the scattering amplitude f(8) (given in the units of fermi) for
the case (i).

FIG. 4. The ratios A I'",R2'" defined in Eq. (6.5) for the case
(i) with y= 1.
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approximation is valid with 2& ' set to zero. In practice,
depending on the shape of the given external potential 3&
and/or on the interested momentum-transfer range, such
separation may be affected, smoothly, by adjusting a cer-
tain free parameter A. Our strategy is that, by combining
the eikonal approximation with the (distorted-wave) Born
series, we can deal with a quite broad class of external po-
tentials and/or study high-energy scattering amplitudes
over broad momentum-transfer range. Note that the
underlying physics of the separation (7.1) is quite similar
to the distorted-wave Born approximation' (when the po-
tential is divided, in configuration space, into the short-
and long-range components) or to the standard treatment
of hard versus soft photons in QED (when the Fourier
transform of any given potential A~ is divided into two
parts in comparison to the magnitude of the observed
momentum transfer q=pi —p;). We shall return to the
question of suitably choosing A at the end, and until then
the parameter A will be suppressed in the discussion.

In this section, we find it convenient to use the more
symmetrically written form for the S-matrix elements:

Sp —5' —l f d x d y g~(x)(iQ„—m)

XSF(x,y )( i —9» —m )g;(y) . (7.3)

(7.4)

with

(7.5)

Then, the formula (7.3) may be cast into the form

+g(eik) + ~ ~(dist Born)
fi fi fi ~ fi, n

n=1

where

(7.6)

Of course, this formula is equivalent to Eq. (3.4) or Eq.
(3.6). We may now expand the exact Feynman propagator
SF(x,y ) as

S/,""'= i f d x d y —p~(x)(i9„—m)SF"(x,y)( i ei» ——m)g;(y), (7.7)

n

S~;" ""l=—
& fd"xd4y + d~z;gI(x)(&'e)„—m)SF '(x,z&)eA' '(z, )SF"(z„z2) eg' '(z„)S "(z„,y)( —i 9»™1;(y).

(7.8)

Of course, all the formulas derived in Sec. III may be directly used for all quantities which involve the eikonal Part A
&

only The piece Sf("k) can be immediately obtained from the formula (3.27) or (3.34) if we replace 3p by A p" there.
Using Eqs. (3.5) and (3.7), the piece Si „" ' ' can be rewritten as

n

S „" ""=—f +d q' (
' )A ( )S ( ) ~ ( )+ ("'p~'')' (7.9)

Where lIl~+l here denote the exact scattering solutions in the presence of the potential A„only. The expansion (7 9)»s
the form of distorted-wave Born series and thus its validity range may well be taken just as that for the usual Born series,
1.e.)

eF„"„'[b,]'
IvI = or I P I

Pf Pi
(7.10)

where F„'2„' represents the average value of F„'„'(x)=B&A, '(x) —B„A &
'(x) and b2 is the range [actually the smaller be-

tween the temporal and spatial ranges of the.potential A& (x)].
For the right-hand side of Eq. (7.9), we may use our improved eikonal series (3.26) or (3.33) (with 2p replaced by A p")

for the scattering solution +'+—' and the expansion (2.1) for SF". Explicitly, for n = 1, this gives the result

( —ie)m f d y exp[i(pi —p;)y ieH(p~, y) ie~(p;;y)—]—
I (FIE~ )', =o l =o

X ET(Pf Sf )&„(P&,y )8"'(y) A l (P;;y )ll (P;,~; ) (7.11)

Owing to the presence of g'2'(y) inside the integrand, this piece can, especially, provide information on high-energy
scattering at large-momentum transfer. In fact, keeping only the (n=0, 1=0) term in this series yields the so-called
Scluff's large-angle scattering formula;lo viz. , our series (7.11) for S/ „" l' corresponds to a systematic generalization of
Schiff's result. It is straightforward to express Si „" ' ' with n )2 [see Eq. (7.8)] in an analogous manner. But, one
must also use here Eq. (3.2()) or (3.31) for SF (x,y) and not just the series (3.26) or (3.33), and accordingly the expressions
will be more involved. For practical purposes one may limit oneself to the consideration of Si;" and Si;,„—l

' first »d
after that think about the gf( „" 2' ' term, etc. For practical calculations, we give here the explicit expression for
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St „" &' ', assuming static potentials and keeping only the n, l =0, 1 terms in Eq. (7.11). This leads to
r

S&,.. '„"BP '= (2m)5(E& E—, )f. d'y u(pt. ,s&) Q'(pj, y)+T'(p;, y) 1—3 "'(y)+o~"Q"„(p&,y)g "'(y)
VEg

+ A '"(y)o"'7„",(p;;y) tt(p;, s;)

Xexp —i(pt. —p;) y .ie—f dt[A "' (y+v~t) vt. A—"'(y+vft)]

—ie f dt[A '+(y+v;t) v; A"—'(y+v;t)]
J

(7.12)

where the quantities Q, Q, T, and T are given by
Eqs. (5.10), (5.11), (5.15), and (5.16) with A„set to A &".

We finally return to the question of how one may
divide a given potential A&(x) into two pieces as assumed
in Eq. (7.1). The free parameter A may be naturally iden-
tified with b2 [i.e., the range of the potential Az'(x)],
while b& represents the range of the given potential A&(x)
from the long-range side. By high-energy scattering we
mean the region

~ p; ~
b~ &&1,

~ p~ ~

b»&1. To include
short-range (possibly singular) or large-momentum com-
ponents of a given potential 3& in the part Az

' while
reserving its long-range or relatively small-momentum
components for A„"', A may be naturally chosen to fulfill
the following conditions:

(i) A&(b),
eF 'A « 1 [see Eq. (7. 10)]v

(ii) the Fourier transform of 3&"(x), say, 3 &"(k,k),
should be strongly suppressed outside the momentum
range k A & O(1),

~

k
~

A & O(1). Note that, in view of
the condition (i), the magnitude of Fz

' might be signifi-
cantly larger than the average value of F&". For high-
energy scattering at relatively small-momentum transfer
[i.e.,

~ q ~
b~ & O(1)], the dominant role will be played by

the eikonal part St;""' while S~ „" ~""' can be useful to
study contributions, say, due to a strong short-range term
in the potential. On the other hand, for the case of large-
momentum transfer (i.e.,

~ q ~
b»&1), A may be chosen

such that

1 (««b) (7.13)
q

and this will make the part Sy,"'„" ~' ' dominant over the
eikonal part. It is the case of intermediate momentum
transfer where contributions due to both parts (and possi-
bly the pieces Sy „" ' ' with n &2) should be carefully
assessed. In this last case, considerable arbitrariness may
show up in the results (with a truncated series) depending
on. the choice of A and for the best result one may adopt a
suitable optimization scheme. To examine such features
further, we feel that numerical analysis of high-energy
scattering (with some typical potentials), on the basis of
our general scheme, will be extremely valuable. This is
under consideration.

VIII. DISCUSSIONS

The Schwinger-DeWitt proper-time expansion, proved
to be powerful in dealing with renormalization problems,
is marked by its simplicity and elegance. In this work, we
have found another important aspect of the same expan-
sion in that it can be used to generate a systematic high-
energy approximation to the scattering amplitude —it gen-
eralizes the eikonal formula. The lowest-order coefficient
function ao(x,y) in the Schwinger-DeWitt expansion,
which plays the role of a covariantizing phase factor in re-
normalization problems, is also responsible for the usual
eikonal formula. Correction terms to the usual eikonal re-
sult can then be related to the suitable asymptotic limit of
the coefficient functions a„(x,y) (n & 1). All quantities
are calculated in the coordinate space directly. The lead-
ing correction terms are given by especially simple expres-
sions, and we have seen that numerical calculations in-
cluding those terms yield quite encouraging results.

We believe that our correction terms share the same
physical origin as the Saxon-Schiff (or Sugar-
Blankenbecler) correction terms, " but ours appear
simpler. Also, it may be possible to reproduce our
method (which is based on the DeWitt WKB expansion)
by making a systematic approximation with the standard
WKB approach. The precise connection, which we do not
have at this moment, is desirable since it will further il-
luminate the physical source of our various correction
terms to the leading eikonal formula. [In this regard, see
expecially Yennie, Boos, and Ravenhall. " These authors
obtain a systematic (eikonal-type) high-energy approxi-
mation starting from the standard WKB method. ]

Even though our formula for the not-so-small-angle
scattering developed in Sec. VII is a bit involved, it is
straightforward and can be systematically improved
within the validity range of DWBA. For the subject of
the fixed-angle high-energy scattering, it seems worth
mentioning an interesting recent paper by Cheng, Coon,
and Zhu. With a Yukawa-type potential as an example,
these authors obtained the fixed-angle scattering ampli-
tude by using the WKB method together with a rather
elaborate analysis near the origin. Within the validity
range of DWBA, our formula should also give results
consistent with theirs. But, we believe that the detailed
comparison should be made with the help of extensive nu-
merical calculations —this is being pursued by Park.

Although we have concentrated on the Dirac equation
in this paper, our method can be used, with certain
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straightforward changes, to study high-energy scattering
of particles with different spins, too. It is not necessary to
restrict the external potential to an Abelian background-
gauge field, either; high-energy particle scattering in a
non-Abelian background-gauge field and/or I.orentz-
scalar potential may also be considered. (A physical ex-
ample is the 't Hooft-Polyakov monopole solution as the
background potential. ) When a non-Abelian gauge field
matrix A =A' T'(T'. generator matrices in the given fer-
mion representation) is used with the Dirac equation (3.1),
the function ao(x,y) in the proper-time expansion is given
by the path-ordered phase factor

r

ao(x,y)=P exp[ ie j—» A„'(z)T'dz"]

and correspondingly a„(x,y) for n ) 1 become also more
involved. But, recurrence relations are still solved by a
straightforward generalization of the method described in
Sec. II. Our analysis may also be carried over to the case
with a background-gravitational field (e.g., in the
Schwarzschild inetric).

As mentioned in the Introduction, we believe that the
present investigation on the external-field problem can be
really turned into a part of a useful quantum-field-
theoretic tool. Just like the Born series in the ordinary
quantum mechanics, the usual perturbation series in quan-
tum field theories have a rather limited range of applica-

tions. In certain cases (e.g., bremsstrahlung of soft parti-
cles, Sudakov form factor, and various high-energy ex-
clusive or inclusive scattering processes), this has been cir-
cumvented by summing an infinite number of Feynman
diagrams of certain particular types together with a
specific approximation made for each chosen Feynman
diagram. But it will be nice to have a systematic
machinery which may provide us with correct physical
amplitudes more directly. One possible approach may be
obtained by a judicious combination of

(i) the Feynman path-integral formulation of quantum
field theories,

(ii) the background-field method, and
(iii) the Schwinger-DeWitt proper-time expansion for

the Green's functions in the presence of background
fields. (See Ref. 30 for a related attempt. ) Note that
background fields in this approach will be dynamically
generated ones. But, much further work will be required
to effect this idea in a concrete way (and also to see its
limitation).
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