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Nonperturbative many-body techniques applied to a Yang-Mills field theory
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Starting from the cutoff version of a field-theoretical Harniltonian derived from an SU(n) Yang-
Mills theory in the Coulomb gauge, we investigate the structure of the emerging many-body problem
within a Bogoliubov approximation for the ground state (= physical vacuum) and by considering
suitable quasiparticle excitations for glueball states. The idea of the formation of a bag'can be incor-
porated into this scheme. The energy expectation values are approximated by a cluster expansion.
The (formal) results, allowing the numerical computation of the glueball spectrum at a later stage,
are presented and the emerging structure is discussed. Special attention is hereby paid to the signifi-
cance of the Gribov ambiguity and to the consequences of the singularity of the Hamiltonian at the
Gribov horizon. It is suggested that the possibility of a rising potential between gluons be investigat-
ed, as such a potential could be a signal of confinement.

I. INTRODUCTION

Using a finite-lattice approximation for the Feynman
path integrals, it seems now possible to obtain a rather re-
liable prediction for the spectrum of non-Abelian gauge
theories. However, in view of the numerical complexity
of such "lattice Monte Carlo" calculations it should be
desirable to have an alternative, if simpler, insight into the
structure of the eigenfunctions of such gauge theories,
even if the method used is less rigorous. A great advan-
tage of the existence of the lattice results would be the
possibility to test other approaches. The most promising
alternative method to deal with the spectrum of a gauge
theory seems to be the treatment of the corresponding
field theoretical Ha-miltonian with nonperturbative tech
niques.

In the past, several attempts have been made in this
direction:- Pottinger and Warner and Carson tried to
gain insight into the structure of the QCD spectrum
within a "one-mode approximation" for the gluons, a
technique that has been successfully applied to a nucleon-
boson Hamiltonian by Bolsterli. Using a hyperspherical
formalism, Cutkosky investigated the spectrum of a
Yang-Mills theory including a larger number of modes.
A complementary approach is that of Liischer and
Munster. ' Within a YM theory, they treat the dynamics
of the zero-momentum modes of the gluons rigorously.
They treat the nonzero-momentum modes perturbatively,
which is justified if the system is contained in a small
volume. The extrapolation to a large volume poses the
main problem of the method and is not reliably solved.

It is the purpose of this paper to propose an alternative,
completely nonperturbative treatment of the field-
theoretical Hamiltonian of an SU(n) (n )2) YM theory
in the Coulomb gauge, regularized by a phase-space cut-
off. Our treatment is given by approximation techniques
borrowed from nonrelativistic many-body theory. The
great advantage of our method will be that all final calcu-
lations can be performed in the infinite-volume limit—

quite analogous to the case of infinite nuclear matter.
Our techniques are easily generalized for an application to
QCD which is our ultimate goal. We shall discuss here
the "pure" YM case because it seems simpler and it may
be used as a testing ground for our procedure. The pro-
posed, nonperturbative approximation method may be
summarized by two prescriptions.

(i) For the ground state (= physical vacuum) and low-
lying excited states (glueballs) use a Bogoliubov ansatz
whose parameters ought to be determined by the Ritz vari-
ational principle.

(ii) Since energy expectation values cannot be deter-
mined rigorously, because of the complexity of the YM
Hamiltonian, for the calculation of these quantities use a
cluster expansion (quite in the spirit of the hypernetted-
chain approximation in Yastrow theory ).

The general structure of the Bogoliubov theory for bo-
sons has been discussed recently by Birse et a/. ' In the
framework of the YM theory this technique was applied
by Gribov in order to construct a (possible) connection be-
tween the Coulomb-gauge horizon and confinement. "
Nojiri considered this approximation for the ground state
within the axial gauge. '

In the 1owest order of this cluster expansion, our ap-
proximation prescriptions yield well-defined expressions
for the energy expectation values in terms of the Bogo-
liubov parameters which have to be determined by mini-
mization (the Ritz variational principle). In this paper,
we shall be concerned with explaining the details of our
approximation and with a presentation of the expressions
for the energy functionals. Numerical applications will be
given in future publications. Our calculations show, how-
ever, some structural results which should make our for-
mal investigation interesting.

( I) The singular and, for the ground state, repulsive
behavior of the Hamiltonian at the Gribov horizon makes
it plausible that the canonical quantization of the YM
theory in the Coulomb gauge is justified —at least in a
good approximation. Thus the obstacle for defining this
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quantization given by the Gribov ambiguity seems to be
much mitigated. Here, the essential point is that the "Bo-
goliubov freedom" in the quantization procedure (see Sec.
III) has to be taken into account.

(2) The same repulsive structure is also expected to
prevent the ghost propagator and the effective Coulomb
potential (see Sec. VI) from developing any singularity
(except for the standard Coulomb pole). In this sense, our
results do not support the idea that the singularity of the
theory at the Gribov horizon yields directly a confining
potential.

(3) The contributions of the Coulomb interaction to the
glueball mass have an interesting sign structure: One has
an attractive term in the irreducible two-particle matrix
element and a repulsive term in the single-particle matrix
elements. This structure makes a rising slope for the
gluon-gluon effective potential (defined with wave packets
in an adiabatic sense) plausible and, therefore, yields a sig-

. nal for confinement.
(4) The Bogoliubov scheme allows for an extension of

the ansatz for the glueball state which incorporates the
idea of the formation of a bag. The significance of this
structure can be tested by using the variational principle.
The glueball mass displays in this case a decomposition
familiar from the bag models.

Our paper is organized as follows. In Sec. II, we
describe how to introduce the phase-space cutoff and how
to deal with renormalization. (The main point is to study
the cutoff dependence of the relation between observables
for consistency. ) In Sec. III, it is shown how the Bogo-
liubov theory is most easily incorporated by choosing a
suitable ansatz for the t =0 field operators. The well-
known ideas leading to the construction of the YM Ham-
iltonian in the Coulomb gauge are briefly presented in
Sec. IV. In order to prepare this Hamiltonian for the ap-
plication of our many-body techniques, a convenient ex-
pansion of this operator in momentum space is presented
in Sec. V. The basic ideas of the cluster expansion for en-

ergy expectation values are described in Sec. VI, more de-
tails are given in the Appendix. The vacuum problem is
then formulated. The emerging structure and its connec-
tion with the Gribov problems is elucidated in Sec. VII.
The energy functionals for the glueball masses are
presented and discussed in Sec. VIII. In Sec. IX, it is
shown how the study of the (momentum) cutoff depen-
dences of the results for the different energies is simplified
through scale invariance. Finally, the formulation of a
bag formation is introduced in Sec. X.

II. RENORMALIZATION

Haag's theorem' states that the only quantum field
theory definable in a Fock space and fulfilling the Wight-
man axioms is the free field theory. Consequently, a
rigorous definition of a relativistic field theory with in-
teraction is not possible within that space. Since the
many-body techniques we want to use are only applicable
in Fock space we propose to use the following cutoff pro-
cedure for the treatment of the field-theoretical Hamil-
tonian.

(a) Assume a phase-space cutoff (Q,M) for the defini-

—+ (2m) 'f d'k.0 k n
(2)

Relating to each function f» creation and annihilation
operators ak, ak obeying

[ak ak'] '4k' (3)

the canonically conjugate cutoff field operators (for r =0)
of a scalar theory are defined by introducing a momentum
cutoff M for the possible range of k values:

(2~k) '"[fa(~)ak+fk(~)ak),
/k/ ~M

ll(x) = g —l(cokl2)' '[fk(x)ak fk(x)ak], —(4)
Jk) &M

cok =(k +m )

We mention that the Fock-space vacuum ~0) is deter-
mined through the condition ak

~
0) =0 for all k and that

the full Fock space is generated from states of the type:

ak„ l
o&

(b) Inserting such cutoff field operators into the expres-
sion for the (classical) energy density yields, after integra-
tion, a cutoff field-theoretical Hamiltonian H(g, Q,M)
which, in the case of the YM theory, depends on the cut-
off and on the "unrenormalized" coupling constant g. We
assume that H(g, Q, M) is a well-behaved operator in the
Fock space so that we can consider its spectrum. As de-
rived most easily from the formal structure of perturba-
tion theory, this spectrum has properties quite analogous
to that of nuclear matter (or liquid He ): For large Q the
ground-state energy Eo(g, Q, M) is proportional to the
volume, i.e.,

Eo(g, Q,M)/Q=independent of Q .

For a field theory, clearly the ground state itself has to be
interpreted as the physical vacuum state.

The energy E„(g,Q,M) of a low-lying excited state
behaves even simpler, if this energy is measured relative to
that of the ground state, namely,

e„=E„—Eo ——independent of Q .

The set of the quantities e„(g,M) has to be interpreted as
the spectrum of the observed particles. We remark that
such a volume independence is valid for the expectation
value of the excited state with respect to any reasonable
operator, if a corresponding vacuum expectation value is
subtracted.

(c) "Renormalization" should now be performed ac-

tion of the (t =0) field operators. We specify the defini-
tion of this cutoff for the spinless case, the generalization
for the YM case is obvious (see Sec. IV). Q stands for the
volume cutoff, so that a basis of single-particle states is
given by discrete plane waves

fk(x)=e' I~A, x, k ER

k=2m. Q ' (n), np, n3), nj an integer,

and we have the usual continuum limit
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cording to the following principle. For a giuen momen-
tum cutoff M, g (M) should be determined by adjusting
one physical datum [e.g. , if e&(g, M) is the smallest occur-
ring mass, fit this quantity to the experiment]. This fixes
H(g(M), A,M) (except for the II dependence which is
trivial since observables are independent of 0 for large 0)
and allows —in principle —the prediction of any physical
property.

(d) The crucial consistency check of this renormaliza-
tion procedure lies in the study of the "continuum limit. "
If one physical datum is fixed, do other observables be-
come independent of the cutoff M? When perturbation
theory is applied to the approximate determination of the
spectrum of the Hamiltonian, Dirac has shown that the
standard results are obtained, ' the consistency of this
scheme being guaranteed for a limited range of cutoffs.
[The problem is that g (M) increases with M, invalidating
perturbation theory for large M. ] When nonperturbative
techniques are applied, one may hope to increase the
range of cutoff values where the prediction for observ-
ables is independent of M, though a reliable estimate of
the structure for M —+ oo might be very difficult to obtain.
The situation here is quite analogous to that of the contin-
uum limit in lattice calculations and (as in that case) we
propose to investigate this problem numerically. Within a
scalar P theory in 1+ 1 dimensions (Haag's theorem
bans the Fock space even in this case) the existence of the
cutoff 1imit has been proven by Wiesbrock. '

y(x) =g (Xkn)'"fk(x)(bk+b k),

II(x)= —i g (2kk )
' fk(x)(bk b—k ),

which has the structure of Eq. (4) with the replacement
~k ~~k —1

The "quasiparticle" vacuum g, fixed by the condition
bk /=0 for all k, is related to the Fock space vacuum by

/=exp g aka —k
1

lkl &M k

g can be interpreted as a Bose BCS state. In the b repre-
sentation, a convenient basis for the Fock space is generat-
ed by the states

bk bk bk g, n=0, 1,2, . . . .

For the purpose of approximating the ground state of a
(cutoff) field-theoretical Hamiltonian it is convenient to
leave open the function A,k entering into the definition of
the field operators and to determine A, k by minimizing
( g ~

H
~ g ) /( g ~ P ) . (For a general discussion of the ap-

plication of the variational principle in field theory, see
also Ref. 16.)

Note that since kk is assumed to be spherically sym-
metric, the state g has the same symmetries as the Fock
space vacuum

~

0) (trivial momentum, angular momen-
tum). The generalization of the ansatz (10) for the YM
case is given in Sec. V.

III. THE BOGOLIUBOV TRANSFORMATION

The standard procedure for the "canonical quantiza-
tion" of a relativistically invariant classical field theory
fixes only the commutation relations between the canoni-
cally conjugate t =0 field operators. In fact, these com-
mutation relations are sufficient in order to prove (on a
formal basis) that when quantization is applied to all gen-
erators of the Poincare group given by Noether's theorem
(translations, rotations, boosts), one obtains a (formal) rep-
resentation of this group (the ultimate goal of relativistic
quantum field theory).

Inspection into the definition (4) for the field operators
P and II clearly shows that the commutation relations are
not changed when the replacement ~k.~A, k

' is made,
when A,k is an arbitrary, positive, nonzero function of k.
In fact, such a replacement can be achieved within the
same Fock space by a Bogoliubov transformation:

bk ~kak +vka —k (ak ) (vk ) (7)

IV. THE YM HAMILTONIAN
IN THE COULOMB GAUGE

fabcf dbc gad (12)

Here, and throughout the paper we use the Einstein con-
vention for abbreviating sums. The YM fields F~,(x) are
then given by

F„',=a„~'. a.~„'+gf'"'~„'~:, a, =—ajax„ (13)

We first specify our notations for the YM theory which
we assume to be SU(n) (n )2) gauge invariant. We
denote the YM (vector) potentials by

a =1, . . . , (n 1), x=—(xo=t, x)

p=O, . . . , 3.
As usual, we use indices i,j,i (= 1,2,3) for denoting spatial
parts of four-vectors. The SU(n) structure constants f'"'
we assume to be antisymmetric and normalized to (a,b, c
are color indices)

by setting (we assume that the real functions uk, vk, Akde-,
pend only on the modulus

~

k
~

of the three-vector k)

~k ( ttk Vk ) ~'teak

and the YM Lagrangian density has the form

4 F/lg CT1g g
(14)

The "quasiparticle operators" bk, bk obey the same com-
mutation relations [bk, bk ]=5kk. Eliminating the opera-
tors ak, ak in Eq. (4) by inverting Eq. (7),

ak =Qk&k —UkE k

we arrive at the b representation of the field operators:

1 0 0 0
0 —1 0 0g"=0 0 —1 0
0 0 0 —1

Due to the local SU(n) gauge invariance' of the YM
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B&AJ
——0, a =1, . . . , (n —1) . (15)

We neglect in the following the possible constraints be-
tween the Coulomb-gauge potentials which are due to the
Gribov ambiguity. " A justification for this procedure
will be discussed in Sec. VII. %'e first then have to elim-
inate (on the classical level) the dependent degrees of free-
dom from the Lagrangian, namely, Ao and the longitudi-
nal part of the "electric" field Foj. (The transverse fields

Foj =HJ, obeying BjII~ =0, are canonically conjugate to
the transverse potentials AJ'. ) This elimination is
achieved (for details see Ref. 18) by taking into account
those Euler Lagrange equations which represent con-
straints (i.e., contain no time derivatives). The constraint
allowing the elimination of Foj can be written in the
form

theory, two YM potentials have to be considered as
equivalent if they may be transformed into each other by
a gauge transformation. In order to deal with such
"equivalence classes" of YM potentials it is convenient to
work with sets of "representatives" which may be defined
by a suitable gauge-fixing condition. The problem then is
to define the quantization of the YM theory within a
given gauge in such a way that the spectrum of the Ham-
iltonian is independent from the choice of the gauge (con-
dition of gauge invariance of physical predictions). This
problem has been solved for a large class of gauge-fixing
conditions by Christ and Lee. ' The most convenient
gauge (because the gauge-fixing condition is rotational in-
variant) is the Coulomb gauge given by the transversality
condition

(b, )' =65' —gf' 'A'8 (18)

As derived, e.g., by Abers and Lee, ' the (still classical)
YM energy density in the Coulomb gauge is then given by

IIQgQ+BQBQ g g g

0= l d 3x F 'H~F2H'F '+B'B'
~=0 j j j j

F—l~aF Q F~aF —]

=H +Hg+H, ,

a & aBj p ~jil+il ~

where the last term corresponds to the Coulomb interac-
tion of QED.

Before quantizing this Hamiltonian density one has to
worry about gauge invariance. As shown by Christ and
Lee, ' standard canonical quantization in the temporal
gauge leads, within perturbation theory, to the correct,
gauge and Lorentz-invariant Feynman rules. Consequent-
ly, the quantized Hamiltonian in any other gauge has to
be constructed from the temporal-gauge Hamiltonian ac-
cording to the rules connecting different (Cartesian and
curvilinear) coordinate systems. The result for the
Coulomb-gauge Hamiltonian (now to be quantized in the
standard way) is (we use the form of Luscherb)

b,P'=p', FOJ ———Big', (16) F= [det( —b, )]'
where p' is the "color-charge density" defined by

a gf abc' bIIc

(recall that IIJ' is canonically conjugate to AJ ). Equation
(16) is very similar to the Poisson equation known from
QED when quantized in the Coulomb gauge' (Dirac
Schwinger quantization) which relates the electric poten-
tial P to the charge density p and which yields the fa-
miliar (nonretarded) Coulomb interaction p(1/b, )p be-
tween electrons in the QED Hamiltonian.

The important, and for the whole structure of the YM
theory crucial, new ingredient, however, is that the opera-
tor 5 is a "covariant" Laplacian containing an additional
term involving the (transverse) potential AJ' (note that b,
is also a matrix in color space):

The "Faddeev-Popov determinant" F is a functional
Jacobi determinant originating from the mentioned coor-
dinate transformation. The explicit construction of the
theory from the temporal gauge also leaves a remnant of
Gauss's law eliminating unphysical states from the Fock
space, namely', the (weak) condition of global SU(n) in-
variance of the states. Therefore, only states with total
SU(n) color zero belong to the physical Hilbert space.
Note that this does not yet guarantee confinement (see
Sec. VIII). The t =0 quantized field operators IIJ and
Ai, entering into the definition of the quantities p, b„
F, and Bz', are now constructed as in Dirac-Schwinger
QED. ' The expansion in terms of the plane waves fk,
with cutoff (Q,M) and including the Bogoliubov freedom
(7) reads

A'(x) = g (kk/2)' e (k, r)[fk(x)bk«+H. c.],
Ik~ &I

IIJ(x)= i g (2A )—k' ej(k r)[fk(x)bk„, —H. c.],
/k/ ~M

[bkra ~bk'r'a' ] ~kk'~aa'~rr'

(21)

Here, the polarization vectors eJ(k, r) (r =1,2 for k&0,
r =1,2, 3 for k =0) make the operators A~' and II~ trans-
verse. This is guaranteed, if these vectors fulfill the rela-
tion

&;, —k;k, //k /', k~0,
hj(k):—ge;(k, r)ej(k, r)= '~

EJ

k =(k),k2, k3) .
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We recall that the function A,I, has to be determined by
minimizing the expectation value (P I

H
I P)/(g I g),

where bk„,g=O for all (kra). In the case of the YM
theory, the BSC state P is related to the "bare" Fock-
space vacuum (in the sense of Sec. III) through

~=
Z g Srakraa k—ra

~k l

where the phase factor s„ is defined by'

ej(k, r)=s, ej( —k, r) .

(23)

(24)

The operator S conserves momentum, angular momen-
tum, parity, color, and transversality, so that the state P
has the same trivial quantum numbers as the vacuum

We mention that, in principle, one could simplify the
expression for the YM Hamiltonian by working in the
temporal gauge. ' However, in this case, canonical quan-
tization yields a Hilbert space with spurious degrees of
freedom which have to be projected out by an auxiliary
condition (Gauss's law). We have found that the fulfill-
ment of this condition leads to at least the same complica-
tions as those connected with the Coulomb gauge (see also

I

Ref. 20).
Another alternative would be the use of the axial

gauge. ' Though the Hamiltonian is formally much
simpler in this case, the correct treatment of the Coulomb
singularity is problematic. ' Also the construction of
glueball states with definite quantum numbers is more in-
volved since the gauge-fixing condition is not rotation in-
variant. [The construction of "rotated states" in this
gauge is analogous to that of boosted states in the
Coulomb gauge, (see Ref. 19), for the QED case.] In or-
der to check the independence of the results from the
choice of the gauge-fixing condition, we think, however,
that one should investigate more details of the structure of
the YM theory in the axial gauge in the future.

V. MOMENTUM-SPACE EXPANSION
OF THE HAMILTONIAN

In order to deal with the complicated structure of the
Coulomb term and the Faddeev-Popov determinant it is
convenient to write the YM Hamiltonian in (our discrete)
momentum space. Therefore, we first introduce Fourier
expansions for the field operators:

AJ'(x)=/AD'"e', Aj' y(Ak/2——n)' QJ(k, r)(bk„, +s,b i,„,),
k

IIJ(x)=QIIJ"e', IIJ"=g —i(2Mk) ' QJ(k, r)(bk„, s, b k„,—) .
k

The quantized covariant Laplacian 6 then becomes an
operator-valued color-momentum matrix 6", where the in-
dex p=(a, k) stands as an abbreviation for the color-
momentum quantum numbers. The matrix 6" is fixed by
the condition

Here, the operator d is given by

,' tr in(i R) =-,' R~R—„"+,
' R-~R.R„+- (29)

gya( ) gakybqe ikx

if P =P "e'"" and has the form (recall the Einstein con-
vention for doubly appearing indices)

and expands the Faddeev-Popov determinant (we have
used [det(1 —R)]' =exp[ —,trin(1 —R)] and the fact that
the c-number terms m&m in front of 6" can be disregard-
ed). The operator matrix D", is the inverse of co&ai„b ", —
in terms of a geometrical series

(30)
COpCOvkv +v R v ~p=~ak =~k =

I
k

I

Ri', "=igf"~AJ ' q'kJ/(cokcoq) (k,q~O) .

The color charge density is expanded analogously,

a(x ~ ak ikx ak rabcg bqIIc(k —q)

(26)

(27)

As pointed out by Christ and Lee, ' the effects of the
determinant F can be accounted for by additional
Faddeev-Popov potentials depending only upon the opera-
tor A~' [denoted by V& (A) and V2(A) in Ref. 17].
Within our momentum-space expansion, these potentials
are obtained by observing that the commutator expansion
of e H"-e has only two terms,

The operators in Eq. (20) involving the Faddeev-Popov
determinant obtain then the form IIi.'Q = lie~ [11&,ci] (31)

(
—dliak 2dlIa —k —d)

7T 2 J

P V+
e

—dP edDPD d P e
—d

C O' V2 co@ CO~

—iu=(a, —k) .

and that [Ii~~,d] may be expressed in terms of D",

[li~,a]= [II~,R.]D. .

Inserting this result into Eq. (28) yields

(32)
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H.=—rr, ~rr~+V, , V, =V, +V, ,
Q

1T 2 J

V,' = [—IIJ ~,R'][D„,IIJ"],2

(33), which also contains an alternative form of the
Coulomb interaction V, . We did not specify the three-
point interaction V3 emerging from the expansion of the
"magnetic energy" Hz [Eq. (20)], since it will never con-
tribute to the matrix elements we want to consider.

V', = "[I—I;~,R."]D.,DqR,.II~),1 2 J ~ o.

a, =v, +V, , V, =rr, ~a~ rr, ,

0~ak, a'k' g + pabcga'b'c'g b(k —q)acqadp ~ b'(q' —k')
ji I J ~ j dp c q' i

2qq

(33)
VI. THE GROUND-STATE PROBLEM

AND THE CLUSTER EXPANSION

Let us consider the vacuum expectation value

(37)

V =[II ",R ]([D B~,II;]+D D'[Rr, II,']By') .

The potentials VI and Vz depend only on AJ" since the
commutator of IIJ with AJ" or R~ is a c number,

[IIJ' "»b',
q
]=f"',hj «)q@,q q-Qqq'

With the help of the relation

[Dp, II)"]=D,[R„H~)]Dp,

(34)

(35)

~Dbq( )Db'(k —p) (33a)

The complete YM Hamiltonian in the Coulomb gauge is
then given by

H =HP + V) + V2+ V3+ V4+ V, ,

H =—(k'A'-"A" 11'-kll'k)
J J ' J J2

all terms of the Faddeev-Popov potentials can be ex-
pressed as functions of the operators AJ" and D". We
quote the result only for the potential V&, since the other
terms can be shown not to contribute to the considered en-
ergy expectation values within our cluster approximation,

2fabcf a'b'c

1 k
~

k
~ ~ ~

II IJ q ~l 'qj Pj

The crucial observation for approximating Eo(kk) is that
the operator R"„ is a linear expression in terms of the bo-
son operators bk„, and bk„, (or the operators AJ' ) so thatak

for every term in the expansion of the Hamiltonian (36)
[using Eq. (30)], the Wick rule is applicable. Hence the
expectation value (37) is a functional of the elementary
contractions, a convenient basis of which is obviously
given by

A('A,—=(y
~

AI'A,
~
q)/(y

~
y)

=8' hz(k)Ak/2Q, P=(a, k),

11;"IIJ '= 8'"hij ( k)/2Qkk, (38)

IIJ"A; "=—A IIJ "=—iP' h,j(k)/20 .

To sum up all terms occurring due to the Wick rule is, of
course, impossible. We propose a cluster expansion in
dealing with an arbitrary term of the expansion of (b, )

which is constructed as follows.
We first define for any given function gk the "diago-

nal" contraction

Rbq"R, k =Qk(3)5;"k . (39)

As easily derived from Eqs. (25) and (26), the function
Qk(g) is related to g by a three-dimensional convolution
integral (written still in our discrete version)

2 r abcf ab'c'A b(k —q)4=4gJ

+~ cq~ b'(p —k)g c'( —p)
J I J

V, = gp "D",D"p—/(coque ) .C

(36)
g

2

Qk(q)=, g ~,h(q k)q, k/ I q —k
l

'
q

h (q, k) =h,q(q)k;kj /
~

k
~

=1—(qk) /(/q/ ik[ ).

(40)

The Faddeev-Popov terms V& and V2 are given in Eq.
Considering now fourth-order terms in the operator R",
we have three contractions,

Rq R",RaRa k =5'a"k [Qk(1)]
noncrossing contraction, (41)

R R R R =new irreducible six-dimensional integral crossing contraction .

The point is that noncrossing contractions can be comput-
ed solely with the help of the integral kernel Q reducing
the determination of these terms to three-dimensional in-
tegrals and iterations of three-dimensional integrals,
whereas the crossing contraction involves an irreducible
six-dimensional integral.

Our cluster expansion is now defined by the prescrip-
tion to sum up all noncrossing contractions. This approx-
imation is analogous to the lowest-order hypernetted
chain approximated in Yastrow theory, where it is. known
to be rather successful. Since the inclusion of contrac-
tions with the color charge density p' yields additional in-
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tegrations, the terms left out in the final results are at
least nine-dimensional, irreducible integrals. Of course,
the importance of the neglected contributions has to be
checked at a later stage.

Details of the derivation of the expression for E0(A, )
within this cluster expansion are given in the Appendix.
We quote here the result which states that the energy
functional ED(A, ) can be constructed by the following
steps.

(i) Construct first the "ghost propagator, " defined by

(ii) In a second step, compute the "effective Coulomb
potential" o.k /k defined by

aa/k'= „,&0 I D7,"D.'a
I 0&/&0 I 0&

= &@ I
[(1/~)~(1/~)]:a

I 0& &0 I @& (44)

Within the cluster expansion the function o ~ is found by
solving the integral equation

sa/k'=, &0 ID:a I 4&/&414&
aa =so'[1+Qf«a)] . (45)

(42)

sz[1 —Qq(s)] =1 . (43)

within our cluster approximation. This yields for the
function s~ the (nonlinear) integral equation

(iii) Applying the cluster approximation to the expecta-
tion value (37), one then shows that E0(A, ) is formally
simply given by evaluating expectation values of two- and
four-point interactions obtained from the Hamiltonian
(36) by replacing Df q ~6&6qsq in V', [Eq. (33a)],
D„'Dfq +og5g—5q in V„and leaving out Vf, V2, and V3.
This yields

ED(X)=(n —1)A(e0+e&+eq+e, ),
e0 ——[I/(2II)] Q (k &g+ I/&g), e) ——[g /(2II )]g h (k —q, k)sgsq/q',

k kq

e4 ——[g /(60 )] gAq, e, =[g /(80 )]g(Xq —Aq) h(k, q)o~ /q(A~A Iqk
—q I

),
k kq

h(k q)=1+(k q) /(k q )

(46)

For the explicit evaluation of the sums over the momenta
in Eqs. (40) and (46), it is always understood that the large
volume limit is taken yielding the replacement

1 1 d k3

~k~ &m

In this limit, the zero-momentum modes represent only- a
set of measure zero (corresponding amplitudes go like
Q '~, see Ref. 6) so that the special structure of the pro-
jector h;~(k) [Eq. (22)] for k =0 can be disregarded. (Our
approach is different from Refs. 6 and 7 in this respect
where a finite, small volume is considered. )

We remark that the energy density of the vacuum
ED/Q behaves smoothly in the limit Q~ oo and becomes
independent of 0, quite analogous to the corresponding
structure of the nuclear matter.

VII. THE GRIBOV AMBIGUITY
AND THE STRUCTURE

OF THE GROUND-STATE FUNCTIONAL Ep(A, )

In this section we want to discuss the implications of
the special structure of the Coulomb gauge which has
been revealed by Ciribov. " He was the first to point out
that the set of YM potentials fixed by the transversality
condition (15) are not independent (in the sense of the
equivalence defined by gauge transformations). Hence al-
ready a subset of Coulomb-gauge YM potentials, which
can be characterized as being bounded by a weIl-defined

horizon (the set of smallest YM potentials yielding zero
for the determinant E), can be shown to generate all possi-
ble YM potentials by gauge transformations. Expanding
the (classical) YM potential AJ'(x) in momentum space
[including the phase-space cutoff (Q,M)],

AJ'(x) =g ag,„ej(k,r)e' (II )'~
kr

(47)

(aq,„=complex numbers) Ciribov shows that AJ' lies
"within" the horizon if the following condition holds
(note that Ref. 11 uses a different normalization of the
structure constants)

[g /[6Q(n —1)]]g I a~, I
/k & 1 .

kra

After quantization [substituting

a~„~(A&/2)' '(b&,„+s„b a„),

(48)

see Eq. (25)] Gribov replaces the numbers
I aq, „ I

by the
corresponding ground-state expectation values yielding in
the Bogoliubov approximation

(49)

The condition (48) is then equivalent to [compare Eq.
(40)]

Qa-0(n= I) &I . (48a)

Gribov derives from these structures a "confinement
scenario" by assuming that the function A, k makes the
quantity Q0(1) fulfill the equality instead of the inequali-
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ty in Eq. (48a),

Qo(1)=1 . (50)

The ghost propagator sklk, approximated by the first
iteration of Eq. (43) tsk =[1—Qk(1)] 'J, develops then a
1/k singularity for k =0, a signal of confinement. Us-
ing an assumption corresponding to Eq. (50) (rephrased in
the hyperspherical formalism), Cutkoski also obtains
such a singular behavior for the "longitudinal" propagator
oklk .

Inspection of the structure of our results does not sup-
port the assumption Eq. (50) entering into this confine-
ment scenario. The crucial point is that Eq. (50) is only
valid if the vacuum state is dominated by gluon-field con-
figurations very near to the horizon. The distribution of
these field configurations is in our case described by the
function A.k. Within our concept, however, this function
has to be determined Uariationally by minimizing the
ground-state energy Eo(A, ) given by Eq. (46). Now all
contributions to Eo(A, ) are positiue, this holding especially
for the Coulomb and the Faddeev-Popov terms e, and e&

which are neglected by Gribov. (Note that the functions
sk and ok are always positive. )

Assuming kk such that Eq. (50) holds or that sk or O.k
become singular for k =0 would yield for the energy den-
sity

eo(X) =Eo(X)/Q=+ ~

(because e, and e~ diverge), whereas a choice of A,k giving
nonsingular solutions of Eqs. (43) and (45) gave finite
values for eo(A, ). (All these considerations are valid for a
finite cutoff M and for Q~ao. ) Thus the variational
principle and the repulsive nature of the Coulomb and
Faddeev-Popov interactions at the Gribov horizon suggest
that the vacuum expectation values sk and o.I, will not be-
come singular. In fact, it is expected that the minimum
of eo(A. ) will yield a solution Ak where the condition (48a)
is clearly fulfilled, making the quantization procedure
(which disregards the Gribov ambiguity) consistent. (In a
recent paper, Cutkosky came to a quite similar con-
clusion )A num. erical confirmation of these conjectures
is, of course, needed and will be sought in the near future.

I

VIII. THE MASSES OF GLUEBALLS

Observable properties derived from a field theory are
related to excited states. %'ithin our YM theory the sim-
plest physical states are color-zero two-particle excitations
(in the sense of the Bogoliubov theory they could be called
also two-quasiparticle excitations). In order to elucidate
the structure of the energy functional of such glueballs, it
is convenient to consider first (unphysical) single-particle
(sp) excitations,

~

kar)=bk, „~ P) . (51)

The energy expectation value for such gluonlike states
may be written

& k« ~~
~
k«&/&k«

~
k«&=E, +«k),

where Eo, the vacuum energy (46), is proportional to the
volume and e(k), the sp energy, is independent of the
volume. Within our cluster expansion, e(k) gets only con-
tributions from the operators Ho, V4, and V„yielding

Clearly, a variation of the function A, k, when according to
Gribov parametrized by A, k =(k +~ /k ) ', has to
start from large values of ~; the "free vacuum*' given by
v=O would violate the condition (48a) and hence cannot
be considered as a physically significant state of the
theory.

%'e mention that the situation with the Gribov ambi-
guity can be compared to treatment of the (radial) prob-
lem of the nuclear vibrations in a molecule, when the (adi-
abatic) potential V(r) is approximated by const&&(r ro)—
and the eigenfunctions are assumed to be oscillator func-
tions

f„(r)=h„(r ro—)exp[ c(—r —ro)'] .

These eigenfunctions do not vanish at r =0 and "leak"
therefore into the unphysical range of negative r values.
But everybody agrees that this is a minor deficiency if ro
is large enough and n small, so that f„(0) is very small.
In the same sense there might be a small leaking of the
states across the horizon in our case. It is planned to in-
vestigate this structure in more detail when doing numeri-
cal calculations.

e(k)= —,'(k Ak+1/Ak)+[g /Q] —,
'

Ak QAq+ —,
' gh(kq)(ik+Aq)~crk q/(Aqkk

~

k —q ~

2)

q

Note that, like Eo also this sp energy is a sum of only
positive terms. The physical glueball states we want to
consider we choose to have total momentum zero, so that
the energy expectation value can be interpreted as the
glueball mass. Since the total color has to be zero these
states have the structure

S,J ——5,~, for S =0,
S,z ——e~;J. , for S =1,

—35;,6,), for S=2.

(55)

~
6) =[(n —1)Q] '

Se~i;( kr) e(j,kr')

xy«)bk-&-k-
I 0& .

Assuming an orbital angular momentum L, the function
y(k) has the structure

A suitable choice of the coefficients S,J yields the
correct coupling of the gluon spins to a total spin S: y(k)=R( jk i

)I'~(k/if
i

) . (56)
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Due to the Bose nature of the gluons we have the selection
rule

e,' =[g /(0')] g y(k)
~

'h(kp)(A, +A, )'
kp

S +I =even . (57) /ok p/(Ap&k
~

k —p ~

') (62)

Coupling S and L, to some angular momentum J, we ob-
tain the following quantum numbers J (P =parity) for
glueballs with small I,:

I. =0: J =0+,2+,
L, =1: 0,1,2
I.=2: 0+, 1+,2+,2+,3+,4+

(58)

The function R (k) has to be determined from the Ritz
principle by minimizing the expectation value
(6 ~H

~
6)/(6

~
6), the function A,k being kept fixed

from the vacuum problem (note that the state 6 is always
orthogonal to the vacuum state 1(). The expression for the
glueball mass will be given here only for S =0, the impor-
tant sign structure, however, which is discussed below, is
valid for any SI.J. Assuming S,J ——5;J, we obtain for the
norm of the state I 6 )

(59)

e, =—g ~
y(k) (

e(k),0
4

6'2~ =6' +6'
e2& ——[g /(20 )]g y*(k)y(p)AkA&[4 —h(k,p)],

kp

e ~~
———[g'/(20')] g y*(k)y(p)h(k, p)

kp

X(&q+&k) uk q/(Akk~ I
k —p ~

),

(60)

[the function h(k, p) is defined in Eq. (46)]. Note that this
glueball energy has a structure well known from standard
many-body theory which is characterized by the contrac-
tion type. We indicate this by a compact (but obvious) no-
tation:

6=b'b'),
( G

i
G)Eo ——(b b H btbt),

(61)
e,p ——(b b H btbt),

epp ——(bbHb b ) .

Thus e,~ and
aqua

have the interpretation of being the con-
tributions to the glueball mass from the single-particle en-
ergies and from the "residual" two-particle interaction,
respectively, ez~ being again split up into contributions
from the four-point and from the Coulomb interaction
(assume (6

~
6)=1 here and for the following considera-

tions). Taking only the Coulomb contributions e,'„and
2p to e,~ and eqz, where e',

~ is def ined by

The energy matrix element becomes within our cluster ap-
proximation

(6 iH i G) =ED(6
i
6)+e,„+e2~,

—these contributions are supposed to be the most impor-
tant ingredients of the glueball mass —we observe an im-
portant difference in the sign structure: The Coulomb in-
teraction is attractive in the two-particle, repulsive in the
sp matrix element. Hence the glueball mass appears as
the difference of two contributions where, however, the
individual terms are expected to become large for large
values of the momentum cutoff M. This is because e(k)
[=e(k,g(M), M) in the sense of Sec. II; see also Sec. IX]
represents a "self-energy" which cannot be fixed in the
cutoff limit [the gluon state is unphysical and hence e(k)
is not observable]. Thus it is plausible that e(k) and e,'„
will become large with increasing M, the same then being
true for the (negative) 2p contribution e zz in order that
the glueball mass itself is fixed. If one now constructs a
set of wave-packet glueball states parametrized through
the distance R of the two gluons,

i
G (R) ) =g [cos(k p) R]f(—k)f (p)

)& eJ (k, r)ej (p,s)bk, „bz„~P)

[a simple ansatz for f(k) would be f(k)-exp( —ak )]
and defines the "adiabatic potential" between two gluons,

(63)

V(R)=(G(R) ~H
~

6(R))/(6(R)
~

6(R))—&o (64)

[we omit here the rather lengthy explicit expression for
V(R)], it is expected that this quantity rises with increas-
ing R (for large finite M to some large, finite value) since
the two-particle matrix element @2' will go to zero for
large R (here it is important that the function ok defining
the effective Coulomb potential is nonsingular, see Sec.
VII) whereas the sp terms will stay constant (and large).

In this sense, we obtain here a "signal" for confinement;
a detailed numerical investigation of this structure, espe-
cially of the cutoff dependence, is, of course, necessary to
confirm this suggestion.

e (A, ,g,M) =ED(A, )/0, from Eq. (44),

e( k, k,g,M) =e(k), from Eq. (51),
e(A, ,R,g,M) =e,&+e2&, from Eq. (60)

(quantum number I.SJ

suppressed) .

(65)

We denote by A~ (k,g,M) the minimum of e (A, ,g,M) and

IX. CONSEQUENCES OF SCALE INVARIANCE

The investigation of the cutoff variation of observables
is greatly simplified by the formal scale invariance of the
original theory (taken without cutoff). In order to eluci-
date the emerging structure for the matrix elements under
consideration, let us introduce the dependencies of the
momentum cutoff M and the (unrenormalized) coupling
constant g explicitly into our notations. (The limit
0—+ ap is supposed always to be taken. ) We then have
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by R~(k,g,M) that of e(A, (g,M),R,g,M). Inspection
into the structure of these functions then shows that we
have

e(X,g pM)=e(i, ,g,M)p if A(k)=p 'i((p 'k) . (66)

Here it is important to notice that the solutions
sk ——s(k, A, ,M) and ak ——o(k, A, ,M) of the integral equa-
tions (42) and (43) have the scaling property

s (k, A.,pM) =s (p 'k, A, ,M),
o.( k, l.,pM) =cr(p 'k, k, M) .

Consequently, the minima of e (A, ,g, M) are related by

(k,g,pM) =p 'k~(p 'k, g,M)

(67)

(68)

and the minimum values e (g,M) =e (A, ,g, M) scale like

e~(g,pM) =e (g,M)p

Completely analogous relations hold for excitation ener-
gies:

e( k, i(, ,g,pM) =e(p 'k, i(, ,g,M)p,

e(A, ,R,g,pM) =e(X,R,g, M)p,

if R(k)=p R(p 'k) .

Also, if R (k) is a minimum of (Ae, ,R, G,M), then R(k) is
a minimum of e(A, ,R,g,pM) and the minimum values
scale like

e (g,pM)=e (g,M)p if e (g,M)=e(A, ,R,g,M) .

I.et e„~ now be the lowest experimental glueball mass
and choose LSJ determining e~(g, M) correspondingly.
The cutoff dependence of the coupling constant g (M) is
then determined by fitting this observable (see Sec. II), i.e.,
by demanding e~ (g (M),M ) =e,„~, which according to
Eq. (71) now simplifies to

If S is a two-particle operator

S=QS„(k,p)bk, „bp„, (74)

i}'i is still a Bose BCS state, and the same techniques as be-
fore may be applied for evaluating expectation values.
The simplest ansatz for the coefficients S„,(k,p) would be
to assume a spherical bag characterized by a function
f (k) =f (

I
k

I
) yielding

S=—g f(k)f (p)e/(kr)ej(p, s)bkg„bp„.0
The important new structure here is that the vacuum-
polarization effects, expressed through the operator S,
break momentum conservation (as in any bag model). It
can be shown that it is necessary (and sufficient) to allow
for such a violation of translational invariance in order to
get a nontrivial result for the function S„,(k,p). A
translational-invariant ansatz for 5, corresponding to al-
lowing only for a replacement A,k ~A,k, would yield
A,k=A, k by the Ritz principle. The reason for this result
can be traced back to the different volume dependencies
of the energies of the ground state and of excited states.
The effects of the operator e are only local since the
norm

I Sg I
has to stay finite for Q~co [f(k) in Eq.

(74a) has to be square integrable]. The structure of the
new glueball mass can be classified in analogy to Eq. (61),

(G IH
I
G)/(G

I
G) —zo ——eb &+e„+r»,

where

eb.g ——(yI bbHbtbt
I
it) —z,

(75)

I
G) =8

I P), B=QB„,(kp)bi„„bp„,

we now have to allow for the replacement of
I i') by a

new state
I i' ), including "core polarization" effects.

This leads to the gluebaH ansatz

(73)

e (g (M),Mo ) =Mo /Me, „ (72)

It is therefore sufficient to compute e~(g, MO) for some
fixed cutoff Mo as a function of the coupling constant g
and to use (72) to determine g (M).

X. DESCRIPTION OF BAG FORMATION
%ITHIN THE BOGOjLIUBOV SCHEME

Due to the attractive nature of the residual two-particle
Coulomb interaction in Eq. (60) it might be energetically
more favorable for the system to form a "bag" in the vac-
uum when considering a glueball. It is conceivable that
in this way essentially more "binding" for the glueball is
obtained. Within our Bogoliubov theory, the formation of
such a bag can be easily formulated. Whether it is an im-
portant structure or not could then be decided from the
variational principle.

Clearly, the idea behind a bag formation is that of a
vacuum polarization, i.e., if the glueball state (54) had the
structure

is a "Casimir" energy corresponding to the pressure term
of the bag models and

e, =(QIbbHbtbtI i)i),
(77)

ep~
——( Q I

b b H b t b t
I

t(i ),
I

have the interpretation of sp energies and irreducible
two-particle interaction, respectively. Defining new ele-
mentary contractions in analogy to Eq. (38), it is straight-
forward to extend the cluster expansion for the expecta-
tion values of Eqs. (76) and (77), including the bag forma-
tion. We omit here the rather lengthy results; we only
mention that the sign structure di.scussed in Sec. VIII
remains unchanged, the new bag term e&,g becomes posi-
tive.

Summarizing, we may say that the application of non-
perturbative many-body techniques to a cutoff YM Ham-
iltonian yields promising formal results. A decisive test
of the validity of our approach will be given by a numeri-
cal calculation of the glueball spectrum and by a study of
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the cutoff limit. We intend to perform such computations
in the future.
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APPENDIX

In this appendix we will give some more details of the
structure of the cluster expansion for the expectation
value (37).

Let us first evaluate the "longitudinal propagator"

&0 I p "D".D."v'I @&~&& I && . (Al)

AAAAAA AAAA no overlap,
A A A A A A A A A A A A A A one overlap,

AAAAAA AAAAAA twooverlaps, . . . .

Inspection of the structure of the integral equation (43),
formally solved by iterations, shows that the solution sk
sums up all noncrossing contractions within one D. Let
us demonstrate this explicitly up to third order. We have
from Eq. (43)

&= 1+Q (s) +Q'(s) +Q'(s) + .

where we have dropped the argument k. If sz is the jth
iteration, we obtain keeping terms up to third order

s, = 1+P +P'+P', P =Q (1),
S2 1+P+Q(P)+Q——(P')+P'+2PQ(P)+P', (A4)

s, =1+P+P'+Q(P)+Q(P')+P'
+Q [Q(P)]+2PQ(P) .

From the structure of Eqs. (27) and (30) of the operators
g and D"„we may symbolize a general term of (Al) in
the form [each R from Eq. (30) yields one A]

p D D p
IIA AAAAAAA AAAAAAA /II.

We first consider the case where the operators appearing
in p are contracted with themselves, as indicated in (A2).

The. possible contractions of DD are then divided into
classes according to the number of "overlapping" contrac-
tions,

A AAAAA+AAAAAA+AAAAAA

+A AAAAA+AAAAAA,

contributing to the ghost propagator, Eq. (42). From the
structure of the Coulomb term (Al) it is then clear that all
nonoverlapping contractions in (A2) are given by sk .

Iterating the integral equation (45) it is seen that the
first term yields the contributions of nonoverlapping, the
second term those of once-overlapping, the third term
those of twice-overlapping, etc., contractions arriving thus
at the result, Eq. (45).

It remains to be shown that contractions where p and D
are combined do not contribute within our approximation.
Therefore we first remark that contractions of the type

p D D p
HA AAAAA AAAAAAA AII (A5)

are "crossing" and yield higher-order cluster contribu-
tions. On the other hand, a noncrossing contraction of
the typep, D D p

IIA A A A A A A A A A A A II (A6)

gh, J(q)F; (q)F~(q)oq l(q kq ),
where

(A7)

F~(q) =—g Ankh; (k)q;/
~ q —k

~

k

=q~F( fq f).

The last equation follows from the rotational invariance
of the vector field FJ(q) [R;~FJ(R 'q)=F;(q) for arbi-
trary rotations R]. Since h;J(q)qj ——0, Eq. (A7) is zero.

Considering now the Faddeev-Popov potentials we may
proceed as before and consider first nonoverlapping con-
tractions (with respect to the different D terms), yielding
the same function sk. Taking then overlapping contrac-
tions, however, one easily demonstrates that these all give
higher-order clusters, the same is even true for the non-
overlapping contractions of the terms V& and V2. Thus
only the nonoverlapping contractions of the potential V~

'

contribute to Eo(k) yielding the term e& of Eq. (46).

vanishes due to the transversality of the gluons. In fact,
the contractions of the form (A6) can be summed up in
the form
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