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We consider the creation of massless scalar particles by a moving mirror in two-dimensional
space-time. The correct form for the Bogoliubov coefficients is given and their high-frequency
behavior is investigated. We next consider the energy radiated by the mirror and show that this is
related in the expected way to the number of particles produced only if a particular condition on the
trajectory is fulfilled. The well-known moving-mirror formula of Fulling and Davies, which gives
the radiated energy as a functional of the mirror trajectory, is here rederived from the Bogoliubov
transformation, without recourse to regularization. Finally we analyze the response of a particle
detector, and solve the paradox of how the detector can respond even when the mirror is radiating
no energy.

I. INTRODUCTION

Quantum field theory in the presence of a moving
boundary or "mirror" contains many of the special
features of curved-space quantum field theory without the
added complication of the background spacetime actually
being curved. ' Moreover moving-mirror systems turn
out to be important in their own right, especially concern-
ing the second law of thermodynamics, where they have
been postulated both as a way of breaking it, or, in the
black-hole case, of saving it.

However, even the simplest moving-mirror system —a
massless scalar field in two dimensions —is not fully un-
derstood. The Bogoliubov coefficients, which describe the
number of particles present, have been given only approxi-
mately and a folklore has arisen concerning their validity
and high-frequency behavior. Few exactly soluble cases
exist to test these properties.

In addition, the relationship between the particles and
energy radiated by the mirror is unclear. For instance, it
is known that the mirror can radiate zero, or even nega-
tive, energy while still producing particles. This gives rise
to the following questions:

(i) Can we find the total energy released by adding the
energy of each quantum, i.e., does

f (T )dx= f con(co)dco,

and if not, under what conditions does this cease to be
true?

(ii) Will a particle detector respond to particles which
appear to carry no energy?

(iii) If the detector does respond, where has the energy
needed to excite it come from?

This paper is an attempt to put previous work on a
firmer footing and to answer the above questions. The
Bogoliubov coefficients are given in a form which is exact
for most purposes, and definite statements concerning
their validity and asymptotic behavior are made. Exam-
ple trajectories are given. We next examine under what
conditions Eq. (1.1) is true, and demonstrate that this

equation is consistent with the known definitions of parti-
cles and energy. In so doing we rederive Fulling and
Davies's' formula for the energy flux using the Bogo-
liubov coefficients. Finally we show that a detector will
respond to particles which appear to carry no energy, and
that this does not present a paradox. The solution of this
problem contains a simple example of the particle detec-
tion mechanism given recently by Unruh and Wald.

II. THE BOGOLIUBOV COEFFICIENTS

We will consider a massless scalar field N in two-
dimensional space-time, in the presence of a moving boun-
dary which follows a trajectory'

x=z(t), ~z (1. (2.1)

in y —(4srco) ' (e '"'—e '"~'"')

out X =(4+co) ' (e ' f'"' —e '"")
/

(2.2)

(2.3)

where U=t+x and u=t —x are advanced and retarded
coordinates, and the mirror trajectory is related to the
function p by

z(r„)= —,
' [p(u) —u],

r„=—,
' [p(u)+u],

and f(p(u))=u.
The mirror's velocity is given by

dz p'(u) —1

dr„p'(u)+ 1

(2.4)

(2.5)

and the requirement that the trajectory be timelike im-
poses the restriction p'(u) ~0 and f'(u) &0. We shall
choose a coordinate system in which the mirror passes

We will impose perfectly reflecting boundary conditions
on the field at the surface of the barrier. Solving the
Klein-Gordon equation for this system enables us to de-
fine "in" and "out" modes, in the region to the right of
the mirror:
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through the origin at time t =0. Hence f(0)=p (0)=0.
The modes (1.2) and (1.3) can be used to define in and

out vacuum states, respectively. This is true even when
the mirror is not asymptotically static in the past or fu-
ture. Thus there always exists a well-defined in (out) vac-
uum state, despite the fact that there may never be a time
in the past (future) when the field is empty of particles.
The in and out vacua will not, in general, be the same, and
there exists a Bogoliubov transformation relating them
(see Ref. 3 for a review):

~ 0

0 CO
d~ COCO +CO + COCO +CO (2.6)

where

a„„=(@„,X„), /3 = —(ip„,X' ) (2.7)
I,

FIG. 1. Conformal diagram of a mirror trajectory with U

asymptotes.

(y,X)= i f—dx cp(x, t)d, X*(x,t) (2.8)

is the Klein-Gordon inner product.
If the /3 coefficient is nonzero, then the vacua are ine-

quivalent and particle production occurs. The number of
particles produced in mode cu' is given by

n(co'}=f den
~
P (2.9)

On substituting the modes (2.2) and (2.3) into (2.7), we can
calculate the Bogoliubov coefficients. Since the inner
product (2.8) is independent of time, we can choose to
evaluate this at t =0 for simplicity. After an integration
by parts, we find

' = +(2') '(co/co') '/

[
icox+i c—o'f (x)

0

+ i( )
—icop( —x)+i~'x]

+ [(e —icox e icop( —x—))

+iong'f(x1+ Vibhu'x)] ao (2.10)

+CON

p„~
00

+(2~)—1(~/~~)1/2 dX e icox+iro'f(x)—

(2.11)

If the mirror is not asymptotically static in the past and

We have temporarily assumed that the mirror is asymp-
totically static in the past and future. In general, because
of the occurrence of 6-function-type terms, a and p
are only well defined when integrated over co or co'. In
this case the boundary term in (2.10) vanishes.

Fulling and Davies neglected the second term in the in-
tegral in (2.10) as being small compared to the first.
However, we can simplify this term using the substitution
y =p ( —x), f(y) = —x. We then obtain

p(0)
+(27T) '(co/co')' '

d+ e —iCOy+iCO'f (y)
p( —oo)

We also know that p(0) =0, and since the mirror is
asymptotically static in the past, p ( —co ) = —oo. Com-
bining this term with the first, w'e obtain

future, then this formula must be modified. Suppose the
mirror becomes asymptotically null in the future, to the
line u =u „, then incoming modes e ' " with u &u,„
will not intersect the mirror and so should be excluded
from the integral (Ref. 2). Similarly if the mirror has a
past asymptote u =u;„ then the modes with u & u;„will
not intersect it either (see Fig. 1). Thus the integral (2.11)
should be replaced by

NN

p +(2~) (~/~ )
/ f dU e

—imam ice'f(v)
min

(2.12)

We have implied by replacing the x in (2.11) with U

that we are really integrating along the u direction, over
the region of overlap of the simple incoming modes e
and the modes e —+'" '" that look simple after reflection
from the mirror. Note that the boundary term no longer
vanishes when either u;„or u „are finite. When in-
tegrated over co or co', however, it will be small, and will
vanish when integrated over both co and co', and thus it
may be neglected. Alternatively, we may change variables
and integrate by parts in (2.12) to obtain a formula in
terms of the function p(u):

UNCO'

p„„
g

(2 )
—1( ~/ )1/2 f "d~ —icup iu) ice'u

min

(2.13)

Here u;„and u „are possible asymptotes of the trajec-
tory in the u direction and may be taken to be infinite if
no such asymptotes exist. The boundary term obtained in
calculating (2.13) is similar to the one in (2.10) and may
be disregarded for the same reasons.

The above discussion concerns the definition of parti-
cles. The energy density produced by the mirror is found
by calculating the expectation value;„(0

~ T„~0);„. This
requires the use of some regularization technique, and was
first given by Fulling and Davies' using point separation.
They found

( T„„)= —(24m. ) '[p"'(u)/p'(u)) ——', (p "(u)/p'(u) } ],
(2.14)
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The total energy released by the mirror is given by in-
tegrating (2.14) from u;„ to u

E=f (T )dx= f (T„„)du. (2.15)

As stated above neither the energy density, nor the total
energy, is necessarily positive.

III. EXAMPLE TRAJECTORIES

The simplest example to consider is that of a mirror
which remains static for all time. In this case f(v)=v,
and we find from (2.10)

cx~~ =5(co—co ),
(3.1)

P„=—(co/co') '/ 5(co+co') =0

as expected, and, of course, no energy is radiated either.
A simple nontrivial trajectory is the hyperbolic trajecto-

ry' which corresponds to

FIG. 3. Conformal diagram of the mirror trajectory corre-
sponding to (3.4).

F(v)=Bv/(B —v) . (3.2)

cc = ——e ' + K, (2iB(coco' )' ),8
'Tr

P e
—i(ro ro )BK—(2'B( ~)1/2)

77

(3.3)

This trajectory is of particular interest because it is known
that no energy is radiated. Thus we appear to have the
paradoxical situation that particles are created without en-
ergy. This point will be investigated further in Secs. V
and VI.

We may also construct a trajectory by joining together a
static trajectory for t (0 with a hyperbolic trajectory for
t & 0, in a C' way (Fig. 3), giving

f (v) =&(v)Bv /(B —v)+ v8( —v) . (3.4)

This has v;„=—ao and v,„=B(see Fig. 2). Substitut-
ing these values in (2.11), the integral may be evaluated ex-
actly' to obtain

f (v) =0(v)Bv/(B —v)+0( —v)/Iv/(/I —v)

which gives

E=(2 B)/12~/IB .—

(3.6)

(3.7)

This is an example of a trajectory where the total energy
radiated need not even be positive. Again a and P cannot
be evaluated exactly, but will be nonzero.

Another trajectory of interest corresponds to

In this case the energy density is given by a 5 function at
the "join" and the total energy radiated is given by

1
(3.5)

Unfortunately, a and P cannot be evaluated exactly, but it
is easy to see that P will be nonzero. Moreover, the parti-
cles will be emitted continuously: they cannot be localized
to the time when the energy was released.

Alternatively, we may join together two hyperbolic tra-
jectories:

f (v) = —v 'in[(B —v)//1] B, — (3.8)

where 2 =Bexp(B~) so that f(0)=0. This trajectory is
well known to give a Planck spectrum of particles. How-
ever, previous calculations of

~

f3„~
~

have involved
several approximations. When using the correct form
(2.12) no approximations are necessary. The result is

~ P ~

2 (2 )
—1( 2mco'/a 1)—1

The energy density is

T„„=v /48m

(3 9)

(3.10)

FIG. 2. Conformal diagram of the mirror trajectory corre-
sponding to (3.2).

which also corresponds to thermal radiation.
All the above trajectories (except the trivial one) have at

least one null asymptote. For a simple trajectory without
this feature, consider a mirror which is initially static, ac-
celerates for a short time, and moves with constant veloci-
ty thereafter. We can join these three parts together in a
C way, by choosing
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ExpancHng I2 In a slmllar way, we fInd

P = (—2 ) '(to/to')'~' —(e ' f'"') — (e '"f'"')
COCO

OX r x=0+ - r ~
QX

x=0

r+1—l
(4.6)

Now iff (x) is C~ at x =0, then f' '(0+) =f' '(0 ) if and only if r &p, so that the leading term in (4.5) gives

lim IP„„ I
=to'(2m) co ' + 'I f' +"(0+)—f'~ "(0 )

I
(4.7)

Similarly, we find for the to' limit

lim
I P„„ I

=to(2m) to' ' + '[f'(0)] ' + '
I

f' +"(0+) f'I'+ "(—0 )
II

(4.8)

Thus if f(x) is C, we do indeed find that p
falls off faster than any power of co or to'. However, the
only physical limitation on the continuity of f (x) is that
p & 1 (so that the velocity of the mirror is continuous).
Therefore, in general,

I
P„~

I

will fall off like co '2&+ '

orm' ' p+ '

We can check this limit using f(x) as given by (3.11)
with the corresponding p„„given by (3.13). The asymp-
totic properties of J„iE„ar—e given in Watson, ' or may
be calculated direct from the integral representation by a
saddle-point method. The result is

2
lim

I P„„ I

= b
I
a b

I

—to'to
CO~ oo 4

2

lim IP „ I

= b fa b
I

toto'—
CO ~oo 4

(4.9)

This is in agreement with the results calculated from (4.7)
and (4.8) with p =2.

If the trajectory has a u asymptote then the above
method breaks down as the limits on the integrals in (4.1)
become u;„and u,„. However, if we define

V. RELATIONSHIP BETWEEN PARTICLES
AND ENERGY

The relationship between particles and energy in quan-
tum field theory is far from clear, and moving-mirror
systems provide a good illustration of the problems in-
volved. One would expect to be able to calculate the total
energy by summing the energy of each particle in the ob-
vious way (1.1), but in general this naive prescription will
fail. For example, the hyperbolic trajectory given in (3.2)
radiates particles but no energy, and it is even possible to
construct trajectories that radiate negative energy [e.g.,
(3.6)—see also Ref. 4]. Even in the more physical case of
a mirror which is static for t &0 (3.4), we know that the
energy need not be where the particles are. In this section
we shall examine the conditions required so that the total
energy is given by (1.1). The problem of whether we can
detect particles which carry no energy is dealt with in Sec.
VI.

Starting with the definition of Tz, and expanding the
in modes in terms of the out modes using (2.6), Davies
and Fulling obtained

~Xp ~Xp'
( Tn„) =f dp dp 2ppp

f (umin) i u & umin

Umin & U & Umaxf(u)= f(u),
f(umnx) ~ u)u

(4.10) where

~Xp ~Xp'+ 2 Re ppp~pp ()u Bu

ppp f P~p P'„p d to——,

(5.1)

(5.2)

and note that f ( u;„)= —an, and f(u,„)=+ no, then we
may extend the limits to + Oc without changing the value
of the integral. This procedure does not affect the con-
tinuity of f(x) at the origin so the results (4.7) and (4.8)
go through unchanged.

imp
= cx~pp~p dc'

We have disregarded a divergent term which is present
even when the mirror is always static.

Substituting for the modes from (2.3), and integrating
over all u, we obtain

I

E=(2m) ' f du f dp dp'(pp')' [p~~ e '& ~ '"+Re(p~~ '~e+~)] . (5.3)
+min 0

If the mirror has no u asymptotes, u;„=—oo, u, = + ~, and the u integration can be performed to give two 6 func-
tions. This gives

E=f dpp f dco
I P~p I

(5.4)

as stated in Eq. (1.1)
Thus it seems the simple particle-counting prescription for finding the energy will be true in general only if the mirror

does not have a u asymptote. If it does, other terms arise in (5.3), and (5.4) will no longer be valid.



W. R. WALKER 31

We can put Eq. (5.4) on a firmer footing by substituting for P p from (2.12):
V

)
—2 d d "d d ~ i—co(x —x' ie—) iP—[f)x) f(—x'+iE)]

0 0 Vmj

where we have replaced x' by x'+ie for convergence, noting that Im[f (x'+i e)] & 0 as f'(x') & 0.
Performing the p and co integrations first, we obtain

E=i (2~) f dx dx'(x x' —ie)—[f(x) f (x—'+&'&)]
"min

(5.5)

(5 6)

We next change variables to x —x' and x +x', and use

f d(x —x')=P f d(x —x') ——, f d(x —x'), (5.7)

where the contour in (5.7) is taken clockwise around the
pole at x —x'=i@, and P denotes the Cauchy principal
value. However, the principal value will be zero, as we are
integrating an odd function of x —x' between symmetric
limits. Evaluating the contour integral in (5.7) gives

V

(24m) ' f™xdy[f'(y)] 'I f"'(y)f'(y) ——', [f"(y)]'I,

(5.8)

agree with this.
The physical significance of the u asymptote is that the

mirror is traveling towards the region under consideration
at the speed of light, even if only in the infinite past or fu-
ture. Thus the mirror is moving at the same velocity as
the particles it emits. It is no surprise, therefore, that this
is a special case.

Note that (5.4) only says that the total energy will be
equal to the sum of the energies of each particle. Indeed,
only if ppp is diagonal and ppp" 0 can we localize the par-
ticles to the same region of spacetime as the energy, for in
that case (5.1) gives

where y =x +x'.
Substituting y =p (u) gives

E= —(24m) ' f du[p"'(u)/p'(u)

——,(p "(u ) /p'(u ) ) ] . (5.9)

( T„„)= f n(co)codco, (5.12)

and we must construct wave packets to convert the parti-
cle number per mode to a number rate. A trajectory with
this property is the thermal one (3.8).

—(24m) 'p "(u)/p'(u)
~

+(48vr) ' f du(p "(u)/p'(u))

We can rewrite the boundary term in (5.10) using (2.4) as

(5.10)

Thus by using the Bogoliubov transformation to evaluate
the energy of created particles, we have recovered the
familiar result (2.14) of Fulling and Davies, which was
originally obtained using a regularization procedure
(point-separation) on the formally divergent quantity
( Tp. ).

As a final check on consistency (5.9) may be integrated
by parts to give

VI. PARTICLE DETECTORS

We have shown that the theory of particle and energy
production is entirely self-consistent, and that it is quite
possible for particles to be produced even though the mir-
ror is emitting zero or negative energy or that the particles
and energy need not be "in the same place. " To make
sense of this we must answer the questions raised in Sec. I
concerning the response of a particle detector.

The treatment given below is based on the detector
model of Unruh and Wald. The free Hamiltonian of the
detector is

(6.1)

—(12m) '(1+z)' (1—z) '~ a
~ Q

(5.11) and the interaction Hamiltonian is

where a=(1—z )
~ z is the proper acceleration. If

a(+ oo )&0 there will either be a u or a U asymptote, with
z~+1 or —1, respectively. Hence the boundary term
will vanish if there is no u asymptote, and the overall re-
sult will be positive as required. If the mirror has a u
asymptote, then (5.4) will no longer be true, but (5.9) will
still hold (with appropriate limits). Then the boundary
term in (5.10) will no longer vanish, and the integrated en-

ergy need no longer be positive.
This, then demonstrates that there is complete con-

sistency between the predictions of particle and energy
production by the mirror. If the mirror does not have a u

asymptote, then the energy radiated will be positive and
may be found by adding up the energy of each particle as
in (5.4). If the mirror does have a u asymptote, however,
then the energy radiated may be negative (or zero) and
(5.4) is no longer valid. The examples given in Sec. III all

Hl ——e f N(x)(QA+g*A t)dx, (6.2)

where t/r represents the internal field of the detector which
can occupy two states denoted by t) and

~

1'). A and
3 ~ are the raising and lowering operators for these states,
and 0 is the energy difference between them. e is a small
coupling constant which we have taken to be time in-
dependent. We shall restrict the detector to be a pointlike
object, and so g and g will become 5 functions of posi-
tion.

We shall assume the field is initially in the in vacuum
state and the detector unexcited so the initial state is

~
0);„

~
g). Then the final state will be, to first order in

perturbation theory,

~

s )= ~0]. ) ie f e' '—g*(x)@(x)d dr x~01') . (6.3)

We are working in the interaction picture, and have in-
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=
~
Ot ) ie(rf—./0)'~ f dao p'„n l„t), (6.6)

where we have used (2.13). The limits on the t integral
will be u;„and u „as no interference between the
modes can occur except between these times.

Thus the probability for excitation is given by

P„=me 0 ' f de iP„ni (6.7)

This shows that the detector response is indeed a measure
of the number of out particles present, whether they ap-
pear to carry energy or not.

The answer to the next question, of where does the en-
ergy needed for the response come from, is similar to that
given by Unruh and Wald for the Rindler case, and the
result given here is a good illustration of their mechanism.

The key point to notice is that the detector excitation is
accompanied by the emission of an in particle. Thus the
energy of the field will go up when detection occurs. This
can be demonstrated by considering the expectation value
& T» ) „ in the excited state:

I 2 (I+co)T- .'(I+co)
~
s„&iP—, , (6.g)

where —,(I+Co) is the projection operator onto the
~

1').

state. We have T„„=[B@IB]u, where @ is given by
(6.4). This gives

I

eluded the time dependence of the operator A . Substitut-
ing the decomposition for 4& in terms of the in modes

N= f de(a„y +a„y'), (6.4)

we obtain

i
s )= iOt)

ie—f dx dt e+' 'Q*(x, t) f de(p*„(x,t)
~

1 t) .

(6.5)
Assuming for simplicity the detector to be stationary at
x =0, ' we replace g*(x) with 5(x). The result is

Q

~
s„)=

~

Ol) ie —f dt f dere' '+' I'"'
~
l„t)

min

, 2
=2 f da)P nay* jBu fde

~ P„ni, (6.9)

P = ——,meQ a ~p (6.10b)

We can calculate the probability that the detector is not
excited, P, . As expected we find that P, =1—P„where
the P, came from the cross terms in &s

~

s ).
Now we can evaluate the expected energy density when

no detection has occurred. We obtain

5& T„„)i ——f de de'(P & 1 1 ~

i T„„~0) +c.c. ) /P, .

(6.11)

5& T~~ ) g
= —E 7TQ f dc' dco a~nP~ n

BQ BQ

+ c.c. /P, . (6.12)

We next expand the in modes y in terms of the out
modes using (2.6) and integrate over all u, giving a 5 func-
tion in frequency. We then find

and so the energy of the field increases when the particle
is detected. This can occur because the field was not ini-
tially in an eigenstate of energy, and the detection
comprises a partial measurement of the field.

It may appear from the above that we are getting ener-

gy from nothing. To investigate this, we must expand
s ) to second order in e. There will be two extra terms,

both corresponding to no excitation of the detector. These
terms are

——,
' ~E'n-' f d ~ p„„~'

~

Ot )

+ f d~dco'P „.
~

1 1 g), (6.10a)

where

where we have used the orthogonality properties of the
Bogoliubov coefficients. '

This term is just the energy absorbed by the detector 0
multiplied by the probability P, of its being excited. So
the expected field energy in the final state is just the ener-

gy contained in the in state, minus the expected energy
stored in the detector.

This, then, explains how particles which appear to carry
no energy can "exist." The motion of the mirror disturbs
the vacuum fluctuations of the field and causes the detec-
tor to respond with probability P, . The energy required
for this response is independent of the energy radiated by
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f du(&s

= fdu(P, 5&T..&, +P,5&T..&, )

= —,'e2rrQ ' fdpp fdcodco'[2p„np"„'n(a*„pa ~+p'~p ~) a*np'„n(a ~p„—p+a pp ~)

(6.13)
I

the mirror and the field energy goes up on detection. One
might hope to extract infinite energy by continually re-
peating the process. This is not so, because the detector
will sometimes not respond, with probability 1 —P„and
when this occurs the field energy will decrease by just the
right amount to ensure energy conservation in the mean.
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