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Particle creation in de Sitter space
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In this, the first of a series of papers on quantum field theory in de Sitter spacetime, the invariant
vacuum state appropriate for inflationary models of the early universe is identified and shown to de-
cay due to the Hawking effect. The created pairs have an energy-momentum which leads to a first-
order decrease of the effective cosmological constant, independently of any matter phase transition.
A mechanism for dynamically relaxing A,ff—+0 is thereby suggested.

I. INTRODUCTION

In classical general relativity the possibility of adding a
cosmological vacuum energy density, A, to Einstein's
equations naturally raises the question of why this term is
not present in the universe we observe (A», &10
MPL ). This question becomes an acute one when the no-
tion of spontaneous symmetry breaking of the vacuum
state is introduced into high-energy physics to describe
unified field theories of apparently diverse interactions.
In such a theory it is impossible to demand zero vacuum
energy in both the symmetric and asymmetric phases and
difficult to see why it should be zero in the present
broken-symmetry phase.

A universe with A&0 rapidly approaches the de Sitter
solution. ' In this series of papers a systematic study of
quantum field theory in de Sitter spacetime is carried out.
The importance of the causal structure of the space and
the Hawking effect to an understanding of the
cosmological-constant problem and inflation will be the
main point of emphasis. Details of the matter dynamics
are completely ignored —at least at first. Thus a nonin-
teracting scalar quantum matter field is considered. Since
the matter Lagrangian is quadratic in (I), the field theory
is completely characterized by its two-point function.
There is no phase transition and the physics is seemingly
"trivial. " However, this is not the case at all.

The vacuum state of the matter field must first be care-
fully specified by consideration of the realistic time-
dependent problem posed by inflation. This "vacuum" is
unstable; it decays via the emission of scalar particle pairs
due to the Hawking effect in de Sitter space. The treat-
ment will be that of canonical quantization of the 4 field
in a fixed classical gravitational background. This re-
quires defining appropriate "in" and "out" states and
finding the Bogoliubov mixing transformation between
them, in analogy to Hawking's original treatment of
black-hole radiance. We begin in Sec. II with a review of
the relevant methods of quantum field theory in curved
backgrounds. The correct state for inflation is seen to be
completely analogous to the Unruh vacuum in the
Schwarzschild case, when the field is massive.

In Sec. III the Bogoliubov transformation associated
with the particle creation is exhibited and the decay rate
calculated. Section IV contains a discussion of the vari-

ous de Sitter-invariant states and a proof that the
~

in),
~

out), and Euclidean states are three different members
of a one-parameter class of invariant "vacua. " In Sec. V
the energy momentum of the created particles is evaluated
by computing the difference in the vacuum energy be-
tween the

~
in) and

~

out) states. This change in vacuum
energy can also be regarded as a change in the effective
cosmological constant. The sign is such as to imply a
spontaneous decrease in A, tr as the particle creation
proceeds. Again the situation is similar to black-hole de-
cay or electric-field decay by charged particle creation
"shorting out" the background field. The existence of de
Sitter-invariant states with arbitrarily low energy density
is demonstrated in Sec. V also. Thus the classic condi-
tions for instability are realized.

In order to make the paper as self-contained and read-
able as possible, technical results extraneous to the main
line of argument are relegated to the Appendix. The con-
ventions are those of Misner, Thorne, and Wheeler (Ref.
21). The units are Planck units: G = 1/Mp) =))t=k
=c=1.

II. CANONICAL QUANTIZATION IN CURVED SPACE:
GENERAL METHOD

Consider a noninteracting scalar field N in a classical
gravitational background. The Lagrangian is

2
z, = ——,'g"(a.c)(a„c)— e' — e'.

In order to quantize the field (I) we should first consider
the solutions of the scalar wave equation

( D,D'+m +JR)4—

a, (g' v' —g ab)+m +JR C&=0.

If it were possible to uniquely define positive- and
negative-frequency solutions to this equation, then the
field could be expanded in a Fock-space representation

e= y(a, e,(+)+a,e,( )) . (3)

The vacuum state ~ould then be uniquely specified by
a~

~

vac) =0,HA, exactly as in flat space.
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As is well known, the specification of positive- and
negative-frequency modes is dependent on the choice of
time slicing of the four-geometry. If the gravitational
background field were "switched" on and then off, adia-
batically, a preferred time slicing would be specified,
asymptotic noninteracting "in" and "out" states would
then exist, and the canonical quantization procedure again
becomes well defined.

Actually, the adiabatic-switching method is rather awk-
ward, and often it cannot be easily implemented, even in
flat-space problems. Schwinger, in effect, proposed an
elegant way around these difficulties by replacing the
canonical adiabatic prescription with his proper-time for-
malism, together with suitable analyticity conditions on
the proper-time kernel. By this method, he was able to
calculate the decay rate of a constant, uniform electric
field into charged particle-antiparticle pairs —without any
adiabatic-switching arguments.

In canonical language, Schwinger's method amounts to
a definition of positive and negative frequency [by which
the concepts of "particle" and "vacuum" are also given
meaning through Eq. (3)], for t~+ oo and t~ oo-
separately. If the decompositions of the solution space of
the scalar wave equation into positive and negative sub-
spaces at t = + ao are inequivalent, i.e., if the linear
transformation relating the two sets of mode functions
has off-diagonal elements, then particle creation occurs.
This canonical reformulation of Schwinger's method has
been successfully applied and extended to electromagnetic
background-field problems by several authors.

The same method works equally well for background
gravitational field problems, as has been emphasized by
Rumpf. The importance of this observation is that the
Schwinger method involves only analytic continuation in
m . Therefore, it does not presume any analyticity of the
metric, nor even the existence of asymptotically flat re-
gions in the background spacetime. Once the in and out
states are specified by careful consideration of which
time-dependent problem we actually wish to solve, the Bo-
goliubov mixing transformation is uniquely determined in
an observer-independent manner.

The cosmological-constant problem is essentially a
question of determining the energy of the vacuum, which
is not very meaningful in curved space until we specify
what vacuum we should be discussing. Schwinger's
method, in either its proper-time or canonical formula-
tion, provides a precise definition of vacuum in curved
backgrounds which is formally consistent, physically
reasonable (for example, in possessing a semiclassical limit
and predicting particle creation where it is expected), and
which is equivalent to adiabatic methods, whenever the
latter can be implemented.

The basic idea of the canonical method is to define
positive- and negative-frequency solutions to Eq. (2), C&r+

according to whether the inner product

(f,g)z= f dX'if'(d, —8')g (4)

is positive or negative. If X is a spacelike surface in the
past of every point in the spacetime (i.e., a complete Cau-
chy surface for the classical time evolution), then the

modes +~(+~, assumed complete and orthonormal, and
obeying

will be called incoming particle (antiparticle) modes if
they can be analytically continued in m to the upper
(lower) half m plane and are regular at past infinity. The
corresponding canonical operators a~, aj in (3) satisfy

[a,,a, ]=a(X,X'),

c'~+'=[c'~ 'l* @),(+)=[c'~( )1* (10)

in a gravitational background.
The corresponding transformation for the operators a~

and b~ is 0~-
a~

The two basis sets are inequivalent, i.e., particle creation
occurs, if and only if P)„&0. The canonical transforma-
tion between the two bases may be realized formally by a
unitary transformation in Hilbert space

bq ——kaq k (12)

Actually, this transformation will turn out to be purely
formal because the Fock spaces spanned by a)„and bq are
generally unitarily inequivalent, i.e., (out

~

in) ~0 in the
infinite-volume limit. This causes no serious difficulty,
provided we are careful to ask only physically sensible
questions of the background-field formalism. Thus, the
total number of created quanta in infinite volume and in-
finite time is infinite, but the creation probability per unit
four volume is finite. This may be calculated from an ex-

[a,,a, ]=[a„,a, ]=0,
and define the in state

ag
~
in) =0.

This specification of the
~

in) state corresponds to a pre-
cise set of initial conditions for the time evolution of the
field. In the same way, if X is a complete Cauchy surface
for the reversed time evolution, i.e., a surface in the future
of every point in the spacetime, then the out~oing modes

N)„—' and the corresponding operators b~, b)„define the
out state

bq i
out) =0 .

An outgoing particle (antiparticle) mode can be analytical-
ly continued into the lower (upper) half m plane and is
regular at future infinity. Since the wave equation (2) is
second order, there must exist a linear relation between
the two sets of solutions,

@~(+) &) 13~
(+)

( —) (9)g,' a,
with

~
a)„~ —

~ P~ ~

=1. In (9) the assumption has been
made that the matrix is diagonal in A, , as this is the case of
interest. Also, we have used the fact that
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pression of the form'

~

(out
~

in)
~

exp( —I V4),

where V4 is the four-volume in which the particle
creation takes place. Thus

I =21m', tt= — lim ln
~

(out
~

in)
~

1 2

V4 ~ V4

Io

r=O

SURFACE
OE STAR

In addition to the decay rate we will also be interested in
the two-point functions in various states. The antisym-
metric two-point (commutator) function is unchanged by
the canonical transformation (12). Information about the
particle creation resides instead in the symmetric function

G„",', (x,x') = (vac
~

4(x)C&(x')+C&(x')@(x) vac),
where

~

vac) is any of the vacuum states to be considered.
For simplicity, we will hereafter drop the superscript on
the symmetric two-point function.

Let us apply these formal considerations to the familiar
example of the Schwarzschild black hole,

ds = dt 1 —— + +r dQ . (14)
r 1 2M/r—

The Penrose diagram for this geometry is shown in Fig. I.
In the static coordinates (14) the background appears
time-independent and indeed it possesses a timelike Kil-
ling field 8/Bt. However, the horizon at r =2M gives rise
to nontrivial mixing between positive- and negative-
frequency modes. If a Fock decomposition is specified
with respect to incoming spherical waves on W and A
then the quantum state of the matter field is fixed. It is
the

~

in) vacuum state considered by Unruh, and corre-
sponds to the time-dependent problem of spherically sym-
metric stellar collapse (cf. Fig. 2). When this same state is
reexpressed in terms of the outgoing modes of the field on
A + and W+, we find a thermal distribution of created
particles with temperature T= 1/8m.M. The outward flux
of radiation at late times implies a corresponding decrease
in the mass M: the hole decays.

A very different state is obtained if one considers the
time-independent Schwarzschild spacetime on the Eu-

clidean section. Since the quantum states of the N field
are in one to one correspondence to the Feynman's
Green's function solutions of

( D'D, +—m +JR)GF(x,x') =5(x,x') (15)

and since the Euclidean section t ~it turns the hyperbolic
differential operator in (15) into an elliptic operator, the
continuation uniquely specifies a vacuum state —the
Hawking-Hartle vacuum. This state corresponds to an
equihbrium situation where the rate of emission from the
hole is exactly compensated by the rate of absorption of
matter into the hole. In particular, it is completely time
symmetric.

In the language of Green's functions the Unruh in state
corresponds to adding a particular (symmetric) solution of
the homogeneous version of Eq. (15) to the Euclidean
Green s function, in order to account for the different ini-
tial conditions on W and A . The resulting Unruh
Green's function possesses all of the same symmetries as
the Euclidean function (such as spherical symmetry) but it
selects a preferred direction of time corresponding to the
collapse problem and decay of the black hole. Comp1ete1y
analogous statements can be made for the de Sitter case to
which we turn.

FIG. 2. The Penrose diagram for the exterior geometry of
spherically symmetric gravitational collapse. I— denotes the
timelike infinities, I spacelike infinity, W —null infinities, and
A + the future horizon at r =2M. The shaded region must be
replaced by the interior geometry appropriate to the detailed col-
lapse problem. The Bogoliubov mode mixing at late time is
completely determined by the exterior, unshaded section of the
spacetime, however.

III. CANGNICAL QUANTIZATIGN IN DK SITTER
SPACETIME

The Penrose diagram for global de Sitter spacetime is
shown in Fig. 3. A convenient coordinate system that
covers the'whole spacetime is the one in which the spatial
sections are closed three-spheres (K = 1):

ds2= —dt +H cosh Ht(dX +sin XdQ ) . (16)

FICx. 1. The Penrose diagram for the globally extended
Schwarzschild spacetime, with the angular coordinates 0,$
suppressed.

The transformations to other frequently considered coor-
dinates are given in the Appendix for reference. The par-
ticle creation will turn to be independent of the value of
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IC, i.e., whether the universe is spatially closed, open, or
at.
In coordinates (16) the wave equation (2) becomes

1 a a H23
cosh Ht — +M @=0 .

cosh Ht ~t ~t cosh Ht

the matter field. For future use, we define the quantity
1/2

M
H

9
4

(20)

The solutions to (17) are easily written down in terms of
standard functions 'of analysis

Here the notation

M —=m+gR

(17)

(18)

4 (t,X,O, Q)-yl, (t)Yl !~(X,O, Q) .

The Yk~ are S3 spherical harmonics obeying

~3Yllm =«k+2)Y)lm

(21)

(22)
and

1 8 . 2 8 1 0 . 8
sin g + sinO

sin g BX BX sinO BO BO

which are (k+1) -fold degenerate (m = —l, . . . , +l;l
=0, 1, . . . , k). The orthogonality and completeness rela-
tions as well as useful addition theorem for the Yl,l may
be found in the Appendix. The yl, (t) then obey

1

sin 0 ()P
(19) 1 g 3 Vk H k(k+2)

cosh Ht + 2 yk+M yk =0
cosh Ht +'t ~t cosh Ht

the Laplacian on the unit three-sphere has been intro-
duced. Since R=4A=12H defines the constant H (in
Planck units), M is simply a constant. It is clear that
apart from overall scales, physics depends only on the di-
mensionless ratio M/H, which is the ratio of the horizon
scale of the background to the Compton wavelength of

I

(23)

which is a form of Legendre's equation. For purposes of
analyzing the asymptotics of the solutions as t ~+~,
however, it is more convenient to write the solutions in
the form'

y~
—'(t)-cosh (Ht)exp[( —k ——', +iy)Ht]F(k+ —,',k+ —', +iy; 1+i@;—e ') (24)

or

yl(+)(t)-cosh"(Ht)exp[(k+ —', +iy)Ht]F(k+ —', ,k+ —', +iy; 1+iy; —e+ '), (25)

where F is the hypergeometric function 2F~. The first set
of solutions (24) have simple asymptotic properties as
t~+ 00'.

y!',—+'(t)~exp( —,'Ht+iyHt), t~—+oo . (26)

The second set (25) have simple asymptotics at t~ —oo ..

yl, (+)(t)~exp(+ z Ht+iyHt), t~ —oo . (27)

Any of the four solutions may be obtained from any of
the others via the relations

The y!',
—' functions define a similar decomposition at

t =+ (x)'.

g ( bklm @klm +bklm +klm )
klm

The
~

in ) and
~

out ) states are defined by Eqs. (7) and (8).
The Bogoliubov mixing coefficients of Eq. (9) are found
from Eqs. (24) and (2S) and the inversion transformation
for the hypergeometric function. The result is

3'! (~)= [3'a (~)]

3 k( —)(t) [3'k(+)(r)]
(28) I (1—iy)I (iy) i( —)"

1.(k+ ' )I (
' k) sinhrl. y

(32)

3 k(+)(r) 3 k (29)

Because of (26) and (27), y~
—' and yl, (+) may be used as

basis functions for the canonical quantization of the N
field in the sense of Sec. II. In other words, yk[+~ define
positive-and negative-frequency solutions with which a
Fock basis may be constructed at t = —~ ..

k! @(+)kl ++kl @(—)kl (30)
klm

These coefficients satisfy ~al, ~

—~Pl, ~

=1 for all k,
showing that the transformation is canonical. The magni-
tudes

~
a~

~

and
~ pq ~

are independent of k as well. Thus
we may set

al, =e "cosh2(9, Pl, =i( —) sinh28,

where O is a fixed constant given by

sinh2O= cschmy .



758 E. MOTTOLA 31

The relative amplitude for producing a pair of particles in
the final states (klm) and ( kl —m) if none were present in
the initial state is

value of kzh~„which may be taken to infinity without af-
fecting the result.

The slice of four-volume in the time interval b t is

& o«
I bklmbkl —m I

in &

&out
I
in)

By making use of (12) and (33), the square of this ampli-
tude becomes

26 V4 —— cosh Htht~
H

7T2
e 'Hht

4H4

3lnN ~+2

e4H' (39)

kl I pk/~k I
'=ta '26)= '~y (34)

or

+klm = 1 —~klm (35)

This is also the absolute probability of creating no parti-
cles in the given mode. The absolute probability that no
particles are created in any mode, i.e., that the vacuum
remains the vacuum is

I
&out

I
in&

I

'= +NkI
klm

=exp gin(tanh my)
klm

by (34) and (35).
Since wk& is independent of k, l, m, the sum in (36) is

quite divergent. This is the divergence referred to in Eq.
(13). We cut off the sum at k =N and then let the cutoff
change. Then

k l
b. g g g 1=(N+1) b,N —+e '

k =01=0m =—l

as N~ce . (37)

This can be related to the change in the four volume by
the following consideration. The physical momentum of
a state with quantum number % is

N
kphy, as N —+oo .

coshHt

This is clear from the wave equation (23), for example.
For any realistic probe of when decay of the vacuum has
occurred, k~h„, will be bounded from above. For fixed
k phys

' LeLX is then related to the total elapsed time since
the beginning of the decay process when the initial state
was prepared (i.e., the beginning of the inflationary epoch)
and we have

b N b.(coshHt ) ~Hht
coshHt

or

1nX—+Ht (38)

as X and t both become large. This is independent of the

which gives the relative probability of creating a pair in
the given mode. Absolute probabilities are obtained by re-
quiring the total probability of creating 0,1,2,. . . pairs to
be unity:

Nklm ( 1+Wklm +~k(m + ' ' ' ) = 1

in the same limit. Thus, Eqs. (37)—(39) yield

6, g ln(tanh my )~—I 5V„
klm

with

8HI = 1n(cothmy) .
m2

This result, though implicit in earlier work [the
transformation, Eqs. (32) was written down by Gutzwill-
er ] has not been explicitly understood in terms of the
problem of vacuum decay. By relating the de Sitter prob-
lem to a more standard canonical quantization problem,
along lines precisely paralleling background-field methods
in electromagnetism, the interpretation of the Bogoliubov
mixing coefficients is made apparent. Some remarks as to
the limits of the validity of Eq. (40) and-its significance
for inflation are in order.

First, let us state the obvious: the calculation leading to
(40) is based on field quantization in a classical back-
ground. Thus, quantum gravitational effects must be
negligible or the calculation is meaningless. Quantum
gravitational effects will be of order GH =H, in Planck
units. Thus, a necessary condition for the validity of (40)
is H((1.

Second, the background metric has been taken to be
fixed, i.e., and effects of the particle creation on the
metric have been ignored. This amounts to neglecting the
energy-momentum of the particles as a source term in
Einstein s equations. In the final section, we will calculate
T,b and discuss the effects of the particle production on
the geometry, to first order in A.

Finally, the limitations of the canonical method must
be addressed. The

I
in) vacuum represents a well-defined

specification of the quantum state of the N field over a
complete Cauchy surface. For a noninteracting field
theory with Lagrangian (1) in the metric (16), no approxi-
mation whatever is involved in this specification. Howev-
er, in any realistic model of inflation the universe is not
globally de Sitter. If the particle creation rate is slow
compared to the expansion of the universe, then the
matter density will be attenuated exponentially rapidly
and the

I
in) vacuum is indeed the state of the field that

is left behind. In the Appendix it is shown that the initial
data on the t= constant —+ —Oo hypersurface, which speci-
fies the

I
in) vacuum in coordinates (16), is equivalent to

zero particle content in the open and flat (k = —1,0) coor-
dinate frames as well. Thus, the

I
in) vacuum really is

analogous to the Unruh vacuum state in the
Schwarzschild case. It is precisely the state specified by
initial data on a time slice which is the beginning of the
inflationary epoch, independently of what went on before.



31 PARTICLE CREATION IN de SITTER SPACE 759

16H p~y 16H
(41)

where TH ——H/2~ is the Hawking-de Sitter temperature.
Thus, the divergence of (40) at y=0 is unphysical and
means only that the

~

in) state cannot be the vacuum or
ground state of the field, even approximately. In the
literature this is sometimes referred to as the breakdown
of the adiabatic method. ' The additional condition
H «M is the one significant difference between the de
Sitter and Schwarzschild backgrounds. The asymptotic
flatness of the latter guarantees a finite, small I for any
value of the test field mass.

IV. INVARIANT STATES AND GREEN'S FUNCTIONS

In flat space, Lorentz invariance plus regularity at
spacelike infinity fixes a unique vacuum state and corre-
sponding two-point function. In de Sitter space there is a
one-parameter family de Sitter-invariant "vacuum" states
(Ref. 16). The one that is usually discussed in the Eu-
clidean vacuum, obtained by considering the de Sitter
metric on the Euclidean section,

—l

H 2
(42)

The geometry is then S4 and the G(x,x') solving Eq. (15)
may be constructed from the harmonic functions regular
on S4 (Ref. 11). In order to show how this state is related
to the

~
in) and

~

out) states considered in our previous
discussion of particle creation and the other invariant
vacua, let us introduce yet another representation of the
scalar field operator:

@(X) = gyk(t) Yklm(03)cklm +H. C.
klm

(43)

The yk (t) are now taken to be those solutions of Eq. (23),
normalized by Eq. (5) which are regular on the Euclidean
section. In terms of the variable g:i sinhHt we may ex-—
press yk(t) in the form of a Legendre function'2

If we confine our interest in the future evolution to a
three-volume which began the inflation with a scale of or-
der H, then the difference between the globally defined

~

in) state and the actual state of the system must be ex-
ponentially small over this region —provided that the par-
ticle creation rate is small.

Inspection of Eqs. (40) and (20) shows that the particle
creation rate is not small when M becomes of the order of
H. Physically, this means that although the formal speci-
fication of the

~

in) vacuum is completely unambiguous,
the actual state of the system with light fields will be very
far from the

~

in) state. In the conformal (M =2H ) or
massless (M =0) limits, the particle creation rates are
high enough that in any realistic model of inflation with
interactions, the created particles would have time to in-
teract and thermalize before red-shifting. Then a much
more reasonable choice of vacuum state is the thermal
state, specified by continuation from the Euclidean sec-
tion. Since we do not analyze this state in this paper, we
should restrict ourselves to the massive limit, M &~H. In
that limit

(44)

yk(t)=yk( t) ( ) yk(t) (45)

The state which is annihilated by ck~, denoted by
~
0),

Cktm
I

o&=o (46)

is the Euclidean vacuum. One way to show this is to
evaluate the two-point function in this state explicitly:

Go(x, x') = (0
~ I @(x),@(x')I ~

0)
=gyk(t) Yktm(&3)yk(t') Yk(m(&3)+(x~x') .

klm

(47)

(48)

A more elegant method is to use the fact that (48) is de
Sitter invariant. This follows immediately upon recogniz-
ing that the Iyk Ykt I are basis vectors for an infinite-
dimensional representation of the de Sitter group SO(4, 1),
labeled by v. ' Then the sum in (48) is simply a group
character in this representation. The de Sitter invariance
implies that Go(x, x') can be a function only of the geo-
desic distance between x and x' or

z(x,x') = —sinhHt sinhHt'+coshHt coshHt'cosA, (49)

where 0 is the angle between the spacelike components of
x and x' on S3. This is the only nontrivial invariant sca-
lar function of two arguments. Since Go ——Go(z), the par-
tial differential operator in Eq. (15), viz. , D,D' may be re-
placed by an ordinary differential operator in z "

D'D, Go(z(x, x') ) =—H (z —1) z
+4z Go(z) .

dz 2 dz

(50)

Upon substituting Go ——(d/dz)w, Eq. (15) then becomes
Legendre's equation with v(v+1)=2 —M /H = —,

' —y .
The general solution is of the form

A P„(z)+B P„(—z) .
d d

dz dz
(51)

Now, P„(—z) is singular at z = 1 where Eq. (15) has a 5
function source. On the Euclidean section z= —1 is pos-
sible only for x =x ' where Eq. (15) is quite regular, but
P,(z) is singular. Thus, the coefficient A in (51) must
vanish in the Euclidean state. Then 8 may be fixed by
comparison to the flat-space limit H ~0, near
(x —x') =0. The light-cone singularity structure must be
I/2~ (x —x') . Since

V= —
2 +lf

which is regular under (42), and as t passes through zero.
If we denote by x the antipodal point to x, with coordi-
nates ( t, rr—X,vr—8,$—+sr), then yk satisfies
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1P, ( —z) ——coshmy(1 —z)
dz z~l K

2 cosh7TQ

H~OH (x —x')

we obtain 8=H /4mcosh~y and'

H d
Go(x, x') = sech ~y P, ( —z), z & 1 .

4m. dz
(52)

When x and x' are timelike, z&1 and Go is obtained
from (52) by taking the real part of the function analyti-
cally continued around the branch cut from z = + 1 to ~.

If A&0, the two-point function and corresponding vac-
uum state is still de Sitter invariant. However, (51) shows
that A&0 corresponds to placing an "image source" at
x=x' in addition to the 5(x,x') in (15). The direct
source at x' results in causal propagation in the interior of
the forward light cone of x'. Since t '= —t', the image

. source at x ' results in propagation in the interior of the
backward light cone of x '. It is for this reason that the
authors of Ref. 16 effectively set A =0 in order to elim-
inate the acausal behavior associated with the image
source. However, in the half space covered by the coordi-
nates of (A9), for example, there is no physically unac-
ceptable acausality: cf. Fig. 5. It is true that only for
A =0 are the real and imaginary parts of the Feynman
propagator related by the ordinary i e prescription.
Changing 3 changes the symmetric part of GF without
changing the antisymmetric, commutator part. Again
this causes no problems when restricted to the half space
of Fig. 5.

Just as in electrostatics where the method of images
provides the solution to Poisson's equation in half spaces

k(8;5k) =exp(iSB)exp i g 5kcklmcklm
klm

kS—
2 g ( ) (CklmCkl —m +CklmCkl —m )

klm

(53)

Under k(8;5k), ckl becomes

+ (8;5k )ckl k '(8;5k )

= e [CoshBCkim +i ( —) sinhBckl m ]
—i 5k ~ k ~

(54)

Therefore, using Eqs. (9), (11),and (45),

k(8;5k)4(x) k '(8;5k)

has the same form as (43) with yk(t) replaced by

yk(t) —+e [coshByk(t) —i( —)"sinhByk(t)] . (55)

Forming the state k(8;5k)
I
0) and evaluating the two-

point function in that state gives

with certain conditions on the boundary, the introduction
of an image source in Eq. (15) provides the solution to a
certain real-time problem specified by conditions on the
past horizon. In other words, if A&0, (51) is an accept-
able two-point function in only half of the full de Sitter
spacetime. The two-point function in the other half de-
pends on additional information about the preinflationary
epoch, just as the two-point function in the collapse prob-
lem (Fig. 2) depends on the interior solution.

The de Sitter-invariant states labeled by a real parame-
ter 0 may be characterized by means of a unitary operator
acting on the Euclidean vacuum I0).' ' For arbitrary
values of 0 and 6k define

g Icosh Byk(t)yk(t')+sinh Byk(t')yk(t)+i( —) sinhBcoshB[yk(t)yk(t') —yk(t)yk(t')]I Ykl (Q3) Yki (03)+(x~x') .
klm

(56)

Notice that 5k has dropped out of this expression so that
it cannot affect the de Sitter invariance of the answer.
The sums in (56) are evaluated in the Appendix. The re-
sult is

Ge(x, x') =cosh28Go(x, x') —sinh28coshmyGO(x, x ') .

(57)

Since z(x,x ') = —z(x,x'), Eq. (57) is precisely of the
form (51). We recognize 8 as the one real parameter that
distinguishes one de Sitter-invariant state from another.
From the explicit formulas for the mode functions (24),
(25), and (44), and the transformation law between them
(55), it is possible to verify that the outgoing and incom-
ing modes correspond to specific values of 8 and 5k (la-
beled by the subscripts out and in) obeying

25k (5k )out (5k )iu 2(5k )out ~

(58)
20= 0,„,—0;„=20,„, ,

where 0 and 6k are the constant parameters defined by
Eqs. (32) and (33). Then

in) = +( 8' 5k)
I
()):+

I
0

I
out) = k(8;5k )

I
0) = k,„t I

0),
(59)

and the unitary operator which connects
I
in) to

I
out)

states in Eq. (12) is

These relations prove a posteriori that the
I
in ) and

I
out) states are de Sitter invariant, being two particular

members of the one-parameter class of invariant states
corresponding to equal and opposite values of the parame-
ter 0. The Euclidean state is "halfway" between at 0=0.
The special property of the

I
in) and

I
out) states is that

they correspond to adding an image source to Eq. (15) at
the antipodal point of x' of the same magnitude as the
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H
G,'„"'(x,x') = . [P„( z)—+P (z)] .

4~sinhmy dz
(61)

direct source at x'. This is verified by substituting into
the general form (57) the value 8 given by (33) so that

described in Sec. III, we need only calculate the difference
in the energy between the

I
in) and

I
out) vacuum states.

Since the theory is "free," the
I

in) state is the state of the
field for all t (up to a phase). At late t the vacuum is
specified by

I
out), however; thus, the difference

V. ENERGY-MOMENTUM AND DECREASE IN A,gf
T b= &in

I
T.b I

in& —&o«
I
~.b I

out& (62)

The energy-momentum tensor of the scalar field in-
volves bilinear operators in N. Thus, it is generally ill de-
fined in the quantum theory, as is reflected in the quadra-
tic divergences in G(x,x') as x~x'. However, in order
to evaluate the effects of the particle-creation process

must be the T,b of the created particles. ' The divergences
in either term separately cancel when the difference is cal-
culated. Indeed, we can express T,b in terms of the sym-
metric two-point functions calculated in the previous sec-
tion:

OX OX

+g(&,b
—,' g,b& ) ———,'

m 'g, b [G;„(x,x') —G,„,(x,x; )] . (63)

Owing to the de Sitter invariance we may replace

a a ~—H g-b
ax ax dz

2

[m +12H (g ——,)] &0,
32m sinhmy

M) —H)2H (69)

2
+ab 2 gab+ 3H gab ~

to obtain

H IT.b — g.b li——m +3(+
dz 2H

(64)

+out= +in+ 8~P & +in (70)

Thus, the scalar particles actually have negative energy
density with respect to the vacuum at late times. We can
now treat this small (order A') energy density as a source
term in Einstein's equations to find out what the effect of
the particle-creation process will be on the geometry, to
first order in fi. Since T,b ———pg, b with p & 0 we find

X [G;„(z)—G,„,(z)] . (65)

Substituting Eq. (61) gives the finite result

+ ++
z=l

(66)

The derivatives are easily evaluated from

P (z)=F —v, 1+v;I; 1 —z
2

(67)

and the expansion of the hypergeometric function near
zero. The result is

2

T,b= — . [m +12H (g ——,
'

)]g,b .
32m sinhmy

(68)

This vanishes in the conformal limit M =2H as it must,
because in that ease (T,b ) is given entirely by the trace
anomaly and ig therefore independent of vacuum choice.
Hence the difference (62) must be zero. Regarding T,b as
the energy-momentum of a perfect fluid with equation of
state p+p=O we find that

The effective cosmological "constant, " as measured by the
horizon scale is decreased by the particle-creation effect,
forM ~ —H.

Now, the actual calculation of this effect has involved a
fixed background field and asymptotic states at t=+ oo.
However, the bulk of the mode-mixing takes place on a
time scale of the order of H ', as may be seen by con-
structing time-dependent mixing coefficients for positive
frequency modes defined at an arbitrary time t. Thus, in
reality, the geometry will begin to feel the effect of the
particle creation after a few expansion times. This sug-
gests that in a self-consistent treatment of the problem the
horizon scale would begin to increase and continue to do
so without bound, until the particle creation ceases at
H =0. The coherent vacuum energy of A&0 would then
be dissipated into an arbitrarily diffuse cloud of scalar
quanta, much as the coherent energy of an electric field is
dissipated into e+e pairs or that of a classical black
hole is evaporated into Hawking radiation. The time scale
for this process may be crudely estimated by taking

dH 8~ p (71)
dt 3 H-''

In the limit H « m (the approximation only improves in
time if it is initially satisfied) this gives
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~m /0e"
m4

(72)

for the characteristic time scale over which H changes ap-
preciably. This would still allow for enormous inflation,
if m/H is large. A consistent calculation of this evolu-
tion must go beyond the background-field formalism and
explicitly violate de Sitter invariance by introducing a pre-
ferred time slicing.

We can use our de Sitter invariant two-point functions
to make one final point. Consider the result that would
have been obtained for T,b if we had compared the ener-
gies not of the

~

in) and
~

out) states in (62) but of gen-
eral 8 and —8. Using Eq. (57), the result (69) would be
identical with the replacement of csch~y by its general
value sinh20. Thus, by choosing 0 larger and larger we
would find de Sitter invariant "vacua" with arbitrarily
negative energy densities. Of course, we should not trust
this conclusion when

~ p ~

becomes comparable to the
background A itself, without treating the back reaction
self-consistently. But it does show that the de Sitter back-
ground is unstable to matter perturbations which change
0, for any value of A&0. In particular, the Euclidean
vacuum 0=0 is rendered unstable to matter Auctuations,
although it is an equilibrium state with no decay rate in
the sense of (13). The (in)stability analysis of the Euclide-
an vacuum will be the subject of the next paper in the
series.

ACKNOW LEDCiMENTS

APPFNDIX

In this appendix the mathematical properties of de
Sitter space and functions defined on it will be reviewed,
and some new technical results presented.

Einstein s equations with a cosmological constant pos-
sess the maximally symmetric solution

I thank N. Mhyrvold for pointing out to me much of
the literature cited in the references and B. Allen for use-
ful discussions. This material is based upon research sup-
ported in part by the National Science Foundation under
Grant No. PHY77-27084, supplemented by funds from
the National Aeronautics and Space Administration.

xo ——H 'sinhHt &, x
&
——H 'coshHt

& cosX,

x2 ——H 'coshHt] sing cos0,

x 3 H——'coshHt& si~ sin8 cosp

x&
——H 'coshHt

~ sinX sin8 sing,

t) E[—oo, oo]; X,8C[0,a]; /A[0, 2'] .

(A4)

When (A4) is substituted into (A2), Eq. (16) of the text
follows with t& ——t. The spatial sections are three-spheres
of radius H 'coshHt, ( k = 1) and the space is an hyper-
boloid of revolution with isometry group O(4, 1). Given
two points on the manifold x and x', the quadratic form

z(x,x') = —xpxp +x&x ~ +xzx 2 +x3x 3 +x4x4 (A5)

x2 ——H 'sinhHt &sinhk, cos0,
x 3 —H 'sinhHt

&
sinhA, sin8 cosp

x4 ——H sinhHt, sinhA, sin8 sing,

t ) H[ —oo, oo]; A, C [0,oo],
then the line element (A2) becomes

(A6)

ds = —dt
&

+H sinh Ht ~(dk, 2+sinh2A, dQ ) .

(A7)

The spatial sections are now open (k = —1) hyperboloids.
Comparing (A4) and (A6) these open coordinates can only
cover the part of the space for which cosg)sechHt&.
This is illustrated in the Penrose diagram of Fig. 4.

Flat coordinates ( k =0) may also be introduced by'

is invariant under this isometry group. Moreover, this is
the only invariant function of two points, other than (A3)
itself for x and x' separately. If (A4) is substituted into
(A5), Eq. (49) is the result.

If instead of (A4) we set

xo ——H 'sinhHt
&
cosh', x

&
——H 'coshHt

R~b ——Ag~b, R =4A —= 12H (A 1)

This space is a four-manifold which may be embedded in
a flat five-dimensional space

ds = —dxo +dx] +dxq +dx3 +dx4

with the constraint

Xo +X ] +X2 +X3 +X4 —1 /H (A3)

An explicit coordinatization satisfying (A3) and covering
the entire space is given by

FIG. 3. The Penrose diagram for global de Sitter spacetime
in coordinates (16). The vertical lines &=const. are geodesic
curves in the de Sitter metric.
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r =H 'coshHt
& si~,

tanhH~= tanhHt ~ secX,

so that (Fig. 6)

c&ds2= —dr (1—H r2)+
2 +r dQ

1 —H r

(A10)

(Al 1)

Now consider the wave equation (15) in the coordinates
(A4). The equation separates as in (21). The Y'ki are
eigenfunctions of the Laplacian (19) on S3, with
k =0, 1, . . . , which are orthonormal,

d +3~k'l'm' hakim ~kk'~ll'~mm'

and complete
co k I

&ki «3»ki «3)
k=Ol=Om =—l

(A12)

coshHt, sing =pe~',

sinhHt
& +coshHt

&
cosX =e

t E[—oo, oo.],p H [0, ao ] .

Then

(A8)

FIG. 4. The subspace of the full de Sitter spacetime covered
by the open coordinates (A6) and (A7). The coordinates are
singular as t

& ~0, which corresponds to the two different rays
emanating from the central point at A, =O.

=5(Q3,Q3)

5(x —x')5(8 —8')5(lp —y') (A13)
1

sin 7 sinO

with respect to the measure on S3,
dQ3 sin X sin8 dX d8 dp. The Fki form a basis for the
(k+1) -dimensional representation of SG(4, 1) (Ref. 13).
From this fact and (A12), (A13) follows the addition
theorem

k l

+kl (Q3 ) +kl (Q3)
l =Om = —l

ds = dt +H—e '(dp +p dQ ) (A9)

which covers only the half space for which
cosX )—tanhHt&. This is illustrated in Fig. 5.

Static coordinates are introduced by means of
where

k+1 sin[(k+1)Q]
sinQ

cos[(k+1)Q], (A14)
1 1

2~2 sinQ 9Q

FIG. 5. The subset of the full de Sitter spacetime covered by
the flat coordinates of (A8) and (A9). The curve t= —(x)

divides the spacetime in half so that the antipodal point x lies in
the lower right half if x lies in the upper left half. The lower
half can be omitted, just as the shaded region of Fig. 2, to corre-
spond to a preinflationary {non-de Sitter) phase of the early
universe.

FIG. 6. The static coordinates (A10) and (A11) showing the
curves of the timelike Killing field 8/B~ and the particle hor-
izon, similar to the event horizon of Figs. 1 and 2.
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cosQ —=cosX cosX'+ sinX sinX'[cos8 cos8'+ sin8 sin8'cos((t —P') ] (A15)

is the cosine of the angle between Q3 and Q3 on S3 in Eq.
(49). The Yk)~ also satisfy

On the other hand, in the coordinates (A8) and (A9)
which cover the half space in Fig. 5,

Yk) (&3)= Yk) m(-&3)

Ykr~ (Q3) = ( —)"Yk)~ (Q3),
(A16)

az

at
= —coshHt

&
e

. at .=-- (A22)

where Q3 is the antipodal point to Q3 on S3.
For the functions yk, it is straightforward to verify that

the substitution

Inspection of Fig. 5 or direct computation shows that
along a line of fixed p,Bt, /Bt & 0 so that (A22) is negative
and

yk(t)-cosh"(Ht)exp[+(k+ —, )Ht+iyHt]F
ar
at

&0. (A23)

leads to a hypergeometric equation for F, so that (24) and
(25) are possible solutions. To demonstrate directly the de
Sitter invariance of the

~

in) and
~

out) states defined by
the asymptotic forms (26) and (27), consider the positive
(negative) frequency condition

(yk(+)iyk(+))x & ( & )0 (A17)

applied to a t( ——(finite) constant spacelike slice. This
condition is unaffected by purely spatial rotations or
translations. However, the de Sitter group O(4, 1) also
contains the analogs of boosts and time translations. A
finite boost in the coordinates (16) sends

sinhHt
&
~cosh' sinhHt

& +sinha coshHt
&
cosX . (A18)

As t(~+op, (A18) approaches + no independently of
a. Therefore, under any finite boost u, t] ——+ ao are in-
variant, although t) ——finite are not. Consequently, the
decomposition into positive (or negative) frequency modes
according to (A17) is invariant under boosts as t) ~+ ao.
Likewise, in the same limit, t] ~t] +At] cannot mix posi-
tive and negative frequency modes for finite ht&. Thus,
the

~

in) and
~

out) states are invariant under the full de
Sitter group SO(4, 1).

To show that this decomposition is also independent of
whether the spatial sections are closed, open, or flat in the
limit M &~H, it is sufficient to note' that the yk behave
like e+' in that limit, I being the classical action for a
freely falling particle:

dx dxI 2 J,g+b dS

/=i sinhHt, yk(t) =(g 1) '~ W—k(g) .

Then Eq. (23) may be put in the form

(A24)

d 2
d8'k

(1—g) „+ (k+1)'
$2

(A25)

Since the spectral decomposition according to (A17) is
equivalent to the sign of the derivative of I normal to X
(«r M»H), the ~in) state defined with respect to
t) ~—oo (closed spatial section) is identical to the vacu-
um state defined with respect to r ~—~ (flat spatial sec-
tion). The open case follows immediately from Fig. 4
since t] ~—ao implies t

&
~—oo as well. Likewise,

t&~+ oo is equivalent to t~+ oo, t ]~+oo, so the
out ) states are the same in all three cases also.
Thus the Green's functions calculated in Sec. IV for the

~

in) and
~

out) states are de Sitter invariant and applic-
able in the half space of Fig. 5—independently of the ex-
cluded half spacetime. This is analogous to the excluded
region of Fig. 2 and shows that the

~
in) state is the ana-

log of the Unruh state of the Schwarzschild case, when
M »H, i.e., when the creation rate (41) is small. This is
precisely the initial condition we would want for a realis-
tic model of inflation, where the excluded half space must
be replaced by the spacetime which preceded the inflation-
ary epoch, about which we presume nothing.

For evaluating the two-point functions in Sec. IV, we
first note another useful representation of the yk(t), ob-
tained by setting

Thus

= —,[cosh 'z(x, x') ] (A19)
which is Legendre's equation, with p =(k+1),v(v
+1)=2—M /H . Set

ar COSh 'z az

(
2 1)(~2 (3t,

(A20) p=k+ 1~ v= —
2 +lf (A26)

gives the instantaneous "energy" of the particle on a fixed
t) slice. Using (A4), (A5), and (A8), we find a definite
sign for (A20) as t(~ —oo, t'), X' fixed:

y given by Eq. (10).
Then, using Sec. 3.2 of Ref. 9, the solutions (24) and

(25) may be expressed in terms of Legendre functions.
For example,

ar
at1

(0. (A21)
yk+'(& «)-(g' —1) ' 'Q (g) (A27)

By virtue of (28) and (29) similar relations hold for the
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other solutions.
In the complex g plane the functions P"„(g) and Q", (g)

are analytic everywhere except on the cut along the real
axis from —ce to + 1. When p is an even integer P" is
analytic from —1 to + 1 as well.

However, the function Q" (g) has logarithmic singulari-
ties at both /=+1. Thus, from (A27), the positive and
negative frequency decomposition of the in and out basis

defined by (24) and (25) is not regular on the Euclidean
section (g real, between —1 and + 1). For constructing
the Euclidean vacuum we should use only the P" func-
tions, as in (44).

In order to evaluate the Euclidean two-point function,
Eq. (48), we first employ (A14) to perform the sums over /

and m. Then the addition theorem of the Legendre func-
tions '

P,(g' (g 1—)'~ (g—' —1)' ~cosQ)=P, (g)P (g')+2 g ( —)"+'P,"+'(g)P„'"+"(g')cos[(k+1)Q]
k=0

valid for

Re g(g') &0,
~
arg (g(g') —1)

~

&m (A28)

dP, (Z)
sech' y

8m

may be used. Because of the restrictions on g and g',
some care is necessary in applying the theorem. If we let
t =tii+itt, the restrictions will be satisfied if (44) is un-
derstood as defining yk(t) in the strip of the complex t
plane given by —~I2H&tt &0, with 8(+t) replaced by
8(+ttt ). In principle, the theorem must be applied to the

four cases tz &O, tti &0 separately. Actually, since yk(t) is

regular as tie ~0 from above or below, the result in all
four cases is the same and it suffices to consider only
tz )O, t'z ~ 0. In that case

g= —coshHtg slnHti +l slIlhHtii cosHtt

so Imp & 0 but Imp" & 0.
Since yk(t)yk(t') appears in (48) the addition theorem

must be used with g' replaced by g'*~ —g' as tt ~0. The
result, as calculated in Ref. 12, is identical to Eq. (5.2) of
the text.

When the general de Sitter invariant state is considered,
the two-point function, (56) involves two kinds of terms.
The first kind features yk(t)yk(t') or yk(t')yk(t) which is
of the same form of Go(x, x') itself. Thus, the first two
terms of (56) sum to give the first term of (57). The last
two terms, involving yk(t)yk(t') give

—2sinh281m g ( —) yk(t}yi, (t') Yki (f13)I'ki (f13)
klm

(A30)

Again we consider t = tz +i tz with tz )0, Htz
H( vrl2, 0), and sim—ilarly for t'. From (44), the product
ykyk contains a factor i which compensates the ( —)" in
(A30).

As tt, tt are varied from ~I2H to zero, —g and g' pick
up the same phase factor, e' . This means that
Z =g' —( g —1 )

' (g' —1)' cosQ, initially real and
greater than one, picks up a factor of e' after continua-
tion to real t, t'. Since P„(Z) has a logarithmic branch cut
from —oo to —1, the continuation carries the function
onto its second Riemann sheet. The value of the sum
(A30) can then be found by expressing the result of appli-
cation of the addition theorem (A28) to (A30) in terms of
the hypergeometric function, viz. ,

v(v+ 1) H sech'. yF —v+1,v+2;2; 1 —Z
16~ 2

(A31)

Then, using the analytic continuation of the hyper-
geometric series for Z~ —1+

~

Z+1
~

e' we find

H sechvry( i vr ) 1+Z

(A32)

for the result on the second sheet. Since v= ——,'+iy,
I ( —v)I (v+ 1)=m sechvry, and the imaginary part in
(A30) is simply

H d P( Z). —
8m dz

After continuation, Z~e' Z= —z(x,x') so that (A30)
becomes finally

2 sinh28 P (+z) = — Go(x,x } .
H d sinh20
8~ dz sech'

(A33)

out (+ ) ut ( —)yk=izk yk +/4 yk

gives
utw

, =i( —}"e r= —( —)"tanh8

(A34)

(A35)

out

out+k

—2i 5~=e (A36)

Thus, Eq. (57) is the result of the calculation. To demon-
strate Eqs. (58) it is necessary to multiply E s. (24) and
(25) by their proper normalization factor of 2 +'Hy
and then use (44) to express the Euclidean yk in terms of
the correctly normalized yk~+~ or yk(+), respectively.
This requires the relation (3.2) (21) of Ref. 9. For exam-
ple, defining teak"',g~"' by analogy with (9),
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with 8 and 5k defined by Eqs. (32) and (33). Then defin-
ing a'k, P'k" by

and, furthermore, that the ak, /3k of Eqs. (9) and (11) are
given by

yk(+) =tzkyk+13kyk (A37) tzk (tzk ) (f3k ) ~k 2t Im(tzk +k

(A39)
and using Eq. (29) we easily demonstrate that

in out in ute
tzk =tzk ~k = —+k (A38)

Together, relations (A35)—(A39) imply Eqs. (58) and (60)
of the text.
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