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Using several physical criteria, we show that a reasonable quantum vacuum can be defined in Bi-
anchi type-I universes, at the cosmological singularity {and the asymptotic far future region}, provid-
ed the initial expansion would not be very violent.

INTRODUCTION

This work is devoted to the problem of the quantum
vacuum definition in curved space-time and can be' con-
sidered a synthesis of Refs. 1—3 (other papers on the sub-
ject are Refs. 4 to 38; see also Ref. 39 and the bibliogra-
phy therein).

The only method to solve the problem seems to be to
fin the quantum state of curved space-time that has as
many properties of the flat-space-time vacuum as possi-
ble. The flat-space-time vacuum has several properties,
some of them can be generalized to curved space-time, the
others cannot.

In Ref. 1 four properties of the flat vacuum are general-
ized to a linearly expanding Robertson-Walker universe.
Two of these properties survive a further generalization
(e.g., in Ref. 2 one of these properties are studied in a gen-
eric Robertson-Walker universe). These two properties
are our criteria C.l and C.2 that we study in a more gen-
eral geometry, a Bianchi type-I universe. C.l is based on
the Wick trick or Euclidean form of the metric and C.2 in
the addition of a term i e to the squared mass. These two
properties are formulated via the Feynman propagator ob-
tained using the in and out vacua, and therefore they de-
pend on the vacuum definition at two different times, the
far future and the far past (or the singularity).

As the particle notion is observer dependent, the vacu-
um definition is also observer dependent, thus all these
manipulations must be d.one in a particular and well-
defined coordinate system, the one "adapted" (cf. Ref. 40)
to the space-time paths of the set of chosen observers. We
always choose the comoving system of coordinates, i.e.,
the natural generalization of the inertial system of Min-
kowski space to curved space. Thus, a change of system
would produce a change of vacuum (in Appendix II we
give a simple example).

On the other hand, in Ref. 3 two other properties are
introduced: the vacuuin must minimize the energy (this is
our third criterion C.3) and the kernel related to the vacu-
um must behave like the corresponding flat-space-time
kernel in the coincidence limit x —+x . This last property
can be formulated in a different way asking that the Cau-
chy data of the positive- and negative-frequency basis

should be the one given by. the WKB method. These
properties depend on the vacuum definition at only one
time —when the energy is minimized, or when the Cauchy
data are given. Therefore, they are of a different kind
than C.l and C.2 that depend on the vacuum definition at
two times.

The energy minimization (i.e., the Hamiltonian diago-
nalization) is strongly criticized in the literature (cf., e.g.,
Refs. 11 and 30, or 41) as a criterion to define the vacu-
uin. In fact, there are different possible definitions of the
Hamiltonian (cf. Ref. 41), the created particles could be
infinite (cf. Ref. 11) and the uncertainty relation prevents
an instantaneous definition of the energy (cf. Ref. 30).
But the vacuum must be the minimum of something, as
Hajicek pointed out (cf. Ref. 42). We shall use the energy
deduced by integration from the energy-momentum tensor
because it is the best candidate for the physical energy in
curved space-tiine. Therefore, there will be no
Hamiltonian-definitio ambiguity (cf. discussion in Ref.
3) and we shall minimize the energy only when the uncer-
tainty principle allows it. We shall prove that, under this
requirement, the number of produced particles is finite.
In this way we believe all objections are overcome.

The flat-space-time vacuum is endowed with the four
introduced properties. This is also the case of all curved
space-time vacua adopted unanimously by all authors as
good reliable vacua: the vacuum in a static metric and the
conformal massless vacuum [while the adiabatic vacuum
has only the last two properties, because, being an asymp-
totic vacuum, it only depends on one time (cf., e.g., Ref.
39)]. Therefore, we shall conclude that a good vacuum is
the one that has the four properties and we shall study
different evolutions of Bianchi type-I universes to see if
we can find new good vacua.

On the contrary, in zones of space-time where one or
several of these properties are missing, we cannot define
the vacuuin and the particle notion becomes fuzzy.

We shall call a strong vacuum at a given time the one
endowed with property C.3 and with positive- and
negative-frequency basis Cauchy data given by all the
terms of the WKB expansion, and a weak vacuum when it
satisfies property C.3 and if also its Cauchy data are only
given by the zeroth-order term of the WKB expansion.
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We shall see that normally, when the in and out Fock
bases are defined through strong vacua, properties C.l
and C.2 are satisfied and the number of the produced par-
ticles, their energy, and momentum are finite; we shall
therefore conclude that the strong vacuum is a good can-
didate for a physical vacuum in curved space-time.

However, the weak vacuum is not as satisfactory; e.g.,
between two Fock bases defined through weak vacua the
particle nuinber is finite but the energy and momentum
are not finite, in general. Actually, we introduce the weak
vacuum because some evolution of the radius of the
Robertson-Walker universe like t' or t allows only
weak vacua at its singularity.

In Sec. I we fix the notation and we comment on the
different criteria that can be found in the literature to de-
fine the vacuum.

In Sec. II we study criteria C.1. and C.2, and we give
sufficient conditions that warrant the applicability and
equivalence of the criteria in a Bianchi type-I universe.
We also study exainples where the criteria do not define a
unique vacuum, as well as examples where the criteria are
not equivalent.

In Sec. III we compute the Cauchy data that minimize
the energy in a Bianchi type-I universe. We also study in
which cases the minimization can be done, i.e., when the
uncertainty relation allows it.

In Sec. IV we compare the results of the previous sec-
tions with the approximate vacua computed via the WKB
method, and we define the weak and strong vacua. We
also study the total number of created particles and the
created energy and momentum, and state several
theorems.

Appendix A is a mathematical theorem.
Finally, in Appendix B we review the change of the

reference system in flat space-time and see how the vacu-
um is modified by this change.

I. STATEMENT OP THE CRITERIA

A. general formalism

3

ds = dt + g—aj (t)dxJ (1.2)

[in the special case aj(t) =a (t) a spatially flat Robertson-
Walker metric is obtained]. If we write the field as (cf.
Ref. 39 for an introduction to the subject and also Ref.
41)

P(x)= f d k[a u-(x)+a „u „(x)],
where

(1.3)

In this paper, we consider a neutral scalar field P(x)
that satisfies the Klein-Gordon equation

( V~V&+m +JR—)P(x) =0,
where V& is the covariant derivative, m is the mass, g is
the coupling coefficient, and R is the Ricci scalar
(p =0, 1,2, 3, R=c = 1; we are working with natural units).

We shall study the vacuum definition in Bianchi type-I
metrics, i.e.,

3 2

y„+p„a m + g z +(g——,)+q =0,
Qj

where

R =a (3D'+ , D —+6aq),
D =(a )'a

(1.4)

—1 —1 2
q = =—„g(a;a; —ajaj )

a l (j
The overdots denote t derivatives, and the primes denote

g derivatives. The set [u (x),u' (x) J is an orthonor-
k ' —k

mal basis of solutions of Eq. (1.1) if the functions q& (g)k

satisfy the normalization condition

g-+g —+ —g~g~ = l
k k k k

The field is quantized in the usual way replacing the coef-
ficients a and a in (1.3) by the creation and annihila-

k k
tion operators which obey the commutation relations

[a „,a-„,]=5(k—k '),
(1.6)

[a- a-, ]=[a- a-.]=0.k' k' k' k'

The vacuum state is defined as the one that satisfies
a

~

0) =0, Vk. A basis in the state space can be con-
k

structed from the vector
~

0) and the operators a „,lead-

ing to the so-called Fock representation.
Let us consider another complete orthonormal set of

solutions Iu, u* ). This set defines a new vacuumk' —k
state

~
0) and a new Fock basis. The functions u and

k
u are related by a Bogoliubov transformation

k

Q ~ =EX—+Q ~+/3~Q
k k k k —k

and therefore

with

'P +~-0'
k k k k k

(1.9)

It is easy to see that the two Fock bases are different if
~ P„~ &0. In this case one has a „~0)&0 (this means

that a &a ). The expectation value of the number of
k k

particles defined by the a in the state
~

0) is
k

N= f d kiP„i (1.10)

I.et us now discuss in more detail the criteria to find the
correct vacuum in a curved space-time.

u (x)=(2n. ) e'"'"
k a (t)

[al(t)a2(t)a3(t)]

and we define the conformal time ri= dt'la(t'), the
Klein-Cxordon equation becomes
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S. Criteria for the particle model definition

As can be seen from the last section, there is an ambi-
guity in the vacuum definition due to the fact that there
are an infinite amount of bases solutions for Eq. (1.1).

In Minkowski space, there is a natural set of modes

(x) (2 )
—3/2ei7) x

+2' ~

=(~k~ +m )
k

which makes the vacuum invariant under the action of
Poincare group. In curved space-tiIne the Poincare group
-is no longer a symmetry group of the space-time and,
therefore, there is not a well-established criterion to select
the u „(x).

We shall study the most usual criteria that can be found
in the literature on the subject.

3

dsq =dt's + g a~ (A, te)edxj (1.14)

(this rule has been introduced in Ref. 2 where C. l is gen-
eralized performing the field quantization through the
Feynman path integral). To apply C.2 it was found to be
necessary in Ref. 1 to add an infinitesimal imaginary part
to the particle momentum for the criterion to work near
the initial singularity.

In Sec. II we shall extend these results to Bianchi type-I
metrics.

In Ref. 1 it is shown that both criteria work in the con-
sidered case leading to the same propagator (and so to the
same in-out basis). To apply C.l it is necessary to work
with a Euclidean metric which can be obtained from the
usual one (the one adapted to the cornoving frame of
reference) by considering aj(t) as functions of A,, with
A, =1 and doing the substitutions t~ —it„A,—+iA,„' we
then obtain

Criteria based on Feynman-propagator
generalization

The Feynman propagator is defined in Ref. 1 as

G,(x,x )=t (O.„, i 0,„)-'(O«t
~

T[P(x)P(x')]
I 0~.&

(1.12)

3

GF(x,x )=l u~ (x, t) )u~ (x,t(),
k ' + k

k

where

(1.13)

t) ——maxIt, t'I, t& ——rninIt, t I,
u =particle model at t = oo

k

u'" =particle model at t =0
k

a =Bogoliubov coefficient [see Eq. (1.7)] .
k

If GF(x,x') is known, the in-out basis can then be deter-
mined from Eq. (1.13). In Ref. 1, four criteria to general-
ize the Feynman propagator in an isotropic universe with
linear evolution and conformal coupling (g'= —,

'
) have been

tested. We shall consider here two of them in more gen-
eral evolutions and couplings:

(C.1) GF(x,x') is the analytic continuation of the
unique Green's function of the operator ( —V&V('

+ m +JR) in the Euclidean space.
(C.2) GF(x,x') is the limit when a~0+ of the unique

Green's function of the operator ( V&V"+m —is+ JR)—

where the in and out vacua are the vacuum states at t=O
and t =no..

io,„)=io, ,),
o.„,&= lo, „&,

T =time-ordered product

and we suppose that space-time has a singularity at t=0.
Using Eqs. (1.3) and (1.7) we see that

2. Criteria based on energy minimization

In Ref. 3 the following criterion is established to define
the vacuum state at time t =to.

(C.3) The vacuum at time t = tp,
~
0, ), is the state that

minimizes the total energy at that time, that is to say, the
one that minimizes

H(,, ) f (0,, i Tp——i 0,,)„„do,
0

(1.15)

where T„"=energy-momentum tensor,

X,,={x=(t, x);t =tpJ

do =g' (tpx)d x,
g =detgzo with gzo the metric tensor .

Reference 3 deals with the spatially flat Robertson-
Walker metric and, as was mentioned in that work, C.3 is
equivalent to minimizing (0,

~
Tp i 0, ) instead of H(tp).

It was also found that the resultant vacuum diagonalizes
H, that is to say

:H:=a ' d ka-a-fm a +k +6/(1 —6g)a ]'
k k

(1.16)

In Sec. III we shall find the vacua which minimize the en-
ergy in the anisotropic case, and we shall compare

~
Op)

and
~

0 ) with the ones found in Sec. II.
The energy is, of course, determined up to some uncer-

tainty because the uncertainty principle states that

AEht —1 .

ci)) R

In our case At cannot be greater than R ', the radius of
curvature or, more precisely, greater than
(& „) ' =(&„„i,„) ' (&&„i being the components
of the curvature tensor), because only in that range can we
consider the geometry more or less flat, while ~&-he@.
We need Leo (co to have reliable measurement of the ener-

gy; thus, we must have
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(only if this equation is fulfilled is the notion of frequency
meaningful as it is also demonstrated in Ref. 42). We im-
mediately see that there is no problem in fiat space be-
cause R=O, or in asymptotic zones where 8~0, but, as
we shall see, that could also be the case in some special
kinds of singularities.

3. Adiabatic uacga

In Ref. 43 the following argument is given to generalize
the kernels h(x, x') and hi(x, x') to curved space-time: a
highly energetic particle would not "feel" the curvature
effects if its wavelength is much smaller than R
(Rm, „being again the biggest component of the curvature
tensor) and thus it must resemble a flat-space particle.
Furthermore, as the high-energy behavior of a field theory
is governed by the singular structure of the kernels when
x —+x', that structure should be reproduced by G, (x,x').
It then seems reasonable to require the following condi-
tion:

II. STUDY OF THE CR,ITERIA
BASED ON FEYNMAN-PROPAGATOR

GENERALIZATION

A. Statement of the criteria using the in-out basis

Before we use the criteria in general evolutions we shall
express them using the in-out basis. It will simplify the
operations and it will allow us to deeply understand how
they work.

Looking back at Eq. (1.13) and bearing in mind the
derivation done in Refs. 1 and 2, we can see that it is pos-
sible to work directly with the Fourier transform of the
propagator. In fact, in these papers it was demonstrated,
in Robertson-Walker universe, that a good Feynman
propagator can be found in all the cases such that there
would exist a unique function g-(g, g') solution of Eq.

k
(1.1) (we shall write that function in the Euclidean metric
in criterion C.1 or we shall add an i tE to its m in criterion
C.2) such that

a"a,(s)
lim G, '(x,x')= lim g F„'(x,x')

X~Xp x~xp „p (r)m2)"

ik (x —x')
Gp(x, x')=f, g (g, g')d k

a g)a iI'
(1.13')

X ~XO X ~Xp

Fp'(x, x')=1, F '(x,x')=0 if R;Jkt=0,

Fbeing the regular functions at xo such that

(1.17)
and such that it would not be divergent when g —+g,„
(i.e., t —++pp) and also when g —+g~;„(i.e., t —+0) (of
course, the same thing must happen with g'). g (2),rI')k
must be continuous when g =q' but it must have a jump
in its first derivative there because GF(x,x') must satisfy
the equation

cx= 1~2~. . .

and s the geodesic distance between x and x'.
This condition is a relaxation of the quantum

equivalence principle studied in Refs. 44—46.
In Ref. 43 it is shown that (1.17) is sufficient to define a

particle model in a spatially flat Robertson-Walker metric
(the proof was made, up to the second order, in a power
series in II, H being the Hubble coefficient). The model
obtained is

i f w~(g)dg-
k

~mp~(
)

e
k [2w ( )]1/2

k

where w is the solution of
k

( —V„V"+m +JR)G(x,x')=5(x —x ')a (t) .

From Eq. (1.13) we see that the properties of g (x,x')
k

can be translated to properties of the u basis, and also that
these properties are necessary, not only in Robertson-
Walker universes, but also in more general cases (such as
Bianchi type-I universes) if we want a finite GF(x,x ).
Then the criteria C.1 and C.2, translated to the in-out
basis language, read as follows:

(C.l') The out basis is the analytic continuation of the
unique solution of Eq. (2.1) (see below) which does not
diverge when g —+g,„. The in basis (conjugated) is the
analytic continuation of the unique solution which does
not diverge when g~g;„. Both functions must also
satisfy the normalization condition. The translation of
the Klein-Gordon equation for y (g) when the metric is

k
the Euclidean reads

k
W-+ + 2k

k

Iw~

W~
k

=m2a2+k2+(g ——,
' )Ra

(1.19)

k.
q)" y„a2 g +—m2+(g —,

' )R, (ri, )+q, (r—i, ) =0,
J ) QJ

(2.1)

computed from a WKB approximation.
On the other hand, it can be seen that this approximate

solution, up to a given order, reproduces the DeWitt-
Schwinger propagator up to the considered order and de-
fines the "adiabatic vacuum" (cf. Ref. 39, Chap. 3).

In Sec. IV we shall study the agreement between the va-
cua defined by C.3 and these approximate solutions. We
shall also see in which cases the total number of created
particles, by the universe expansion, is finite.

where

R, (t), )= —R(g, ), q, (g, )= —q(g, ),
and a prime denotes d jd rI, . When the functions
y,'"'(A,„g,) and y,'"'(A,„g,) (which are the well-behaved
solutions when g~g;„and g~iI,„) have been found,
the out and in conjugated bases are obtained substituting
g, ~iri and A,,~ iA, in such solution—s. The bases are
fully determined by applying the normalization condition.
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(C.2') y'-"* (y-"') is the limit when e~0+ of the unique
k k

solution of Eq. (2.2) (see below) which do not diverge
when g~g;„(i)~i),„). Equation (1.4) with m —ie
and kj —i e instead of m and k, respectively, is

kj —l E'
1y" +p a m i—e+ g +(g——,)R+q =0.

( )

The in-out bases are again fully determined by the nor-
malization condition.

These criteria will work in all cases when they fix a
unique in and out basis and these bases can be normalized.
It is easy to show that both criteria work when the metric
is the Minkowski metric giving the usual orthonormal
positive- and negative-frequency basis.

B. Application to Bianchi type-I metrics

In this section we shall apply the criteria C.1' and C.2'
to metrics like

3

ds = dt +—g az (At)dxj.
j=1

We shall find sufficient conditions on the functions aj(t)
for both criteria to work and to be equivalent. On the
other hand, we shall show examples where they do not
work and others where they are not equivalent.

First we shall study the case aj(t)=a(t) (Robertson-
Walker metric) and later the general case. As we have
seen, the existence of a unique (unless a multiplicative
constant) well-behaved solution is necessary when

;„and ilail, „of Eq. (2.1) and (2.2) for the cri-
teria to select the in-out bases uniquely.

To study the asymptotic behavior of solutions of Eqs.
(2.1) and (2.2) we use the following theorem, which is an
extension of theorems 2.1 and 2.2 in Chap. 6 of Ref. 47
and it can be demonstrated using the theorem 10.2 of the
quoted reference.

(T.l) In a given finite or infinite interval (b„b2) let

f(x) be a twice continuously differentiable function with
R,f(x)&0, g(x) a continuous function and

X d 2~ —1/4
y f f—i/4 f f—i/2

17
b& &X &b2

Then, in the interval, the differential equation

, =(f+g)tp

has two twice continuously differentiable solutions

p&(x)=f ' exp f f'/dx [1+ei(x)],
r

q&2(x) =f ' exp —ff ' dx [1+e2(x)]

such that

~
ej(x) ~, f ' &exp(V&. „)—1, j=1 2

dx

prOvided that Vb „&~, j=1,2,.

l. Application of the criteria
to Robertson-8'alker universes

with initial singularity

a. Sufficient conditions for the applicability and
equivalence of the methods T. he methods based on criteria
C.l' and C.2' select in-out bases and are equivalent if a (t)
satisfies the following conditions (we shall suppose con-
formal coupling, that is to say, g= —,

' ).

1. a (t) is a twice continuously differentiable function, ex-
cept eventually, in a finite number of points.
2. a(0)=0, lima(t)=ao & co.

3. f,
" Q Q+a a

2

dt& oo

for some to and R —+ 0.

4 OO
'o a(t') t o

for some to (i.e., g;„=—oo).

In fact, Eqs. (2.1) and (2.2) read

y-" —(p a +u )y =0,
k k

where

2 2p =m

u =k
for Eq. (2.1) and

(2.3)

e
—ikg

q '-"(ii)
—~ v'2k

(2.4)

In the same way, taking f=u +p a, g =0,
bi ——arbitrary [larger than the first point of discontinuity
of a(t)], b2 ——q,„, it can be seen that the out basis chosen
by the criteria is the solution of Klein-Gordon equation
with the asymptotic behavior

exp i f (m a +k )' dim-
out

[2(m a +k )' ]' (2.5)

b Extension to t.he case g;„=0. If condition 4 of
II 8 1 a is not fulfilled, the criteria C.l' and C.2' do not
work near the initial singularity because t=0 is a regular

p =is—m

u 2=i@—k2,

for Eq. (2.2) where the primes in these two equations
denote, respectively, d/dpi, and d/dpi.

To study the behavior of the solutions near the initial
singularity (t~0, i.e., ri~ —oo) we can use T.l with

f= u, g =p a, bi ———oo, b2 ——arbitrary [smaller than
the first point of discontinuity of a(t)]. If the criteria
C.1' and C.2' are applied, it can easily be shown that the
basis selected is the solution of Klein-Gordon equation
whose asymptotic behavior near the initial singularity is
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point of Eq. (2.3) and then all solutions are well behaved
there. However, the in basis can be obtained using the fol-
lowing trick: let A (g) be a function defined as

(2.6)

ly the in basis it is sufficient to add the following condi-
tion:

5. f Radt& oc

for some e.

Then C.1' and C.2' work and select the basis

e -ikg
, q&0

2k

a~@I~ +p ~pl ~ 'g )0
1c 1K 1c 14

(a' e '""+pke' "), ti & 0
2k,I,out

qk"'(n» n&0

(2.7)

If a(t)=t for t &to, this condition is satisfied if a&1
(and in the special case a= —,

' ). The criteria work in the
out region without additional requirements.

If condition 5 is not fulfilled, then there are cases in
which C.1

' and C.2' do not work. For example, if
a (t)= t, m =0, g & —,', the criteria do not select the in basis
for k ((1—6g)'~ .

2. Application of the criteria to Bianchi type Iunivers-es
with initial singularity

(the coefficients a, P, a', and P' are such that tI(t'"'"'
k

and their derivatives are continuous in van=0). We can
easily verify that the particle creation between t=O and
t=~ 1S

a. Sufficient conditions for the applicability and
equivalence of the methods The .methods select in-out
bases and are equivalent if the functions aj(t) satisfy the
following conditions (we assume conform al coupling
g= —).1

I p-, I'= I: I
q'-„"'(0) I'+k'I q „"'(0)

I

'—k] (2.8)
(1) aJ(t), j=1,2,3 are twice continuously differentiable
functions except, eventually, in a finite number of points.

The extension (2.6) has been used and commented on in
Ref. 2. It is justified because all physical quantities are
given by integrals with respect to v g d x so the fictitious
region introduces neither an extra contribution nor anti-
physical consequences. On the other hand, the result ob-
tai.ned is physically desirable because the physical momen-
tum of the particles is k/a; then, near the initial singular-
ity, they are ultrarelativistic and therefore they must
behave like massless ones. This behavior is, in fact,
shown by Eq. (24).

c. Remarks. As we have already mentioned, in Ref. 1

it was found necessary to add an infinitesimal imaginary
part to the particle momentum in order that C.2' works
near the initial singularity in the case a(t)=t. It is easy
to see that this condition is essential in all cases if we
want C.2' to work in this region; if we do not add such an
imaginary part then the asymptotic behavior of the solu-
tions is

( ) Aeiktt+Be ikti-
~min

and therefore C.2' does not select the in basis because all
solutions are well behaved when t~0.

The condition 3 is fulfilled if a(t)=t for t &to and
a&0. For higher increasing evolutions, which do not
satisfy this condition (i.e., for evolutions such that H
would not vanish when taboo ) the criteria do not neces-
sarily work. For example:

(i) if a(t)=e ' for t &to and A, «1, C.l' selects out
bases but C.2' does not.

(ii) if a(t)=e"' for t &to and A, &2m, C.2' does not
work while C.1' select a function as out bases. Neverthe-
less, this function is real and it cannot be normalized.

The results that we found here can be easily extended to
the case g& 6: in order that C.l' and C.2' select univocal-

(2) aj(0)=0, aj(t) —+ ajo, a~o& ~, j=1,2, 3 .
t~oO

(3) R and q vanish when tab oo, so that
~ ~

J
QJ

QJ
dt& oo

QJ

for some to, j=1,2,3.
'2

dt& ao(4) f aj

for some e&0, j=1,2,3, ai(t) being the smallest radius
when t~0, that is to say

2 2p =m

.2= ~
2

uJ. ——kJ

qe = —q(ne»
for Eq. (2.1), and

p =is—m 2

u. =is—k.2=
J J

q, =q(g),
for Eq. (2.2) where the primes in these two equations

ai(t)(ap(t)(a3(t) for t~O.
(5) The functions aj and a~ do not oscillate around t=O.
Equations (2.1) and (2.2) are, in this case,

q-" —a'q- V'+ g (2.9)
QJ
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exp —i
in basis y'„" =

k i~o +2f

out basis y'-"' =
k

' 1/2

with f-„= g a
2aj

exp —i ma+
[2(m 2a 2+f 2)1/2] i/2

k

(2.10}

(2.1 1)

denote, respectively, d/dri, and d/dpi. We can verify, in
the same way as we did in IIB 1 a that C.1' and C.2' select
the solutions of the Klein-Gordon equation with the fol-
lowing asymptotic behavior:

which minimizes the expectation value of the To corn-
ponent of the energy-momentum tensor (due to the spatial
homogeneity this is equivalent to minimize the total field
energy).

In Ref. 3, the boundary conditions that must satisfy the
particle model, at t =t0, to minimize the total energy at
that time, were found in the isotropic case. Here we ex-
tend these results to the anisotropic case.

The To component of the energy-momentum tensor is
[Ref. 41, Eq. (2.4)],

3
2a4Too ——X'2+(6g —1)a(XX'+X'X)+a g aj (BJX)

b Rem. arks. Condition (4) is fulfilled if aj(t) =t with

aj & 1. It is interesting to remark the analogy between the
isotropic case with g'& —, and the anisotropic case (cf.
II B 1 c). The results of II B2 a can be extended to the case
of nonconforrnal coupling, requiring that

(5) Rajdt & ce for some e&0,j =1,2, 3 .
0

where

+[m a +(1—6g)a —6$Q]X2

—4g'a $ aj BJ(Xi)JX), (3.1)

III. VACUA DEFINED
BY THE FIELD ENERGY MINIMIZATION

A. Application to Bianchi type I metrics

As we have pointed out in I 82, it is reasonable to de-
fine the vacuum state at time t =to, ~0, ), as the one

X(ri, x)=a(rl) f [a „u „(ri,x)+a „u „(ri,x)]d k,
ipk(ri)

u (r/ x)=(217) e'"'"
k a (ri)

Thus, the expectation value of To in the vacuum state
reads

.23+a'X
aj

&0~ To ~0)= f d k y'„p'„'+a(6g —1)(p„p'„'+y~'„)+y~* [m a +(1—6g)a —6gQ]

(3.2)

If we write for each fixed ri

pq(rl)=(2w-„} ' e

One can easily verify that in this case

:H~, &.
——a a a w- (to}d k .MV

0 k k k
(3.5)

W~
p' (ri)= —y iw-+-

k k
k

(3.3)
Therefore, the results obtained also diagonalize 'the total
field energy at that time [under this prescription, Eqs.
(3.4}were found in Ref. 41 in the special case g= —,

' ].

( w- and w'- are arbitrary and real functions) the values
k k

of w and w' which minimize the field energy at each
k k

time are

3 2

w-„= m a +a g —6g(6g —1)a —6$Q
j=1 aj

iMv 2 (g 1) Mv

1/2

(3.4)

That is to say, the particle model at g =g0 is given by the
(g( )

function ip „(ri}which is a solution of the Klein-Gordon

equation and it has the Cauchy data (3.3} with w- and
k

w' given by (3.4).

1. Comparison with the vacua obtained in Sec. II.
Cases where the field energy cannot be minimized

To derive Eq. (3.4), we have assumed that w- and w'
k k

are real quantities. This condition is necessary for the
basis to be normalizable and for the energy to be an Her-
mitian operator.

This is the case if we have the following: (i) Minimal
coupling (/=0}. (ii) Isotropic metric with conformal cou-
pling (g= —,', Q=O). If these conditions are not fulfilled,
it could not, in general, be possible to minimize Eq. (3.5)
for real values of w ", Vk. It is interesting to note that '

k
io H R if the particle energy

k
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1/2

mz+ g klzla~

is greater than

[6gq+6g(6g —1)H ]'i
and this is the case if the particle wavelength is much
smaller than (R»~i ») '~ or R,'„, i.e., the notion of
frequency is meaningful as it is discussed in Sec. IB2
(R» i being the curvature tensor).

If we require w- (t) HR for k&0 in a Bianchi type-I
k

metric with conformal coupling we must have at to =0,

IV. ADIABATIC VACUA

A. The vacuum definition and the WKB approximation

(4.1)

where w- is the solution of
k

As we have pointed out in IB3, if we require that the
generalization of hi(x, x') to curvmi space-time
[Gi(x,x')] copies the same singularities of the hi(x, x')
[Eq. (17), Sec. I8 3] the particle model obtained is

t'

exp —
& w- g

[2w ( )]1/2
k

ai (0)q(0)=0

and at 0 & tp & ~,
kw~ +Tk
k

I/ 2w-+ 3 w~
k

w-+
k

=co-„+(g——,
' )Ra2+ g,

m &q(to),

while, in a Robertson-Walker inetric with /k[0, —,
'
], at

fp ——0,

a(0) =0
and at 0 & tp & 00,

m &6/(6g —1)H (to) .

From this equation we can conclude that if evolutions like

aj(t) =t ~ are considered, then the necessary conditions to
minimize the field energy at to ——0 and to ——oo agree with
the ones required in Sec. II to apply criteria C.1' and C.2'
(except the isotropic case with gH [0,—,

' ]).
Using the asymptotic behaviors of the in-out bases

selected in Sec. II we can show that the vacua obtained
there minimizes the energy near the initial singularity and
in the out region ( t~ ao ), respectively.

2. Remarks

If criteria C.l' and C.2' work, but the conditions stated
in Sec. II are not satisfied, then, not necessarily the energy
can be minimized. For example, a(t)=t, m=0, g& —,.
In this case C.1' and C.2' select the in basis but the energy
cannot be minimized at to ——0 when

k &6g'(6g' —1) .

If C.l' and C.2' do not work, the condition w HR is
k

not sufficient for C.3 to work. For example, a(t)=e ',
g= —,', 0&m &A, /2 or a(t)=t, 0&/& —,'. Here in both
cases one has w GR. However, C.3 does not work at

k
ro oo in the first exampl——e and at to ——0 in the second
one. The vacua produced by C.3 does not always lead to a
finite particle creation (cf. Ref. 41). In the next section we
shall study this problem in more detail.

computed from the power series

(4.2)

co g(i) 3

w„=co g „., co '=m'a'+a'g kJ'/a, '

(that is to say, a WKB approximation). This has been
studied in Refs. 3 and 43 in a Robertson-Walker universe.
On the other hand, if one computes the kernels Gi or Gf
with the approximate solution up to a fixed order, then
the kernels obtained reproduce the DeWitt-Schwinger
propagator up to the considered order (Ref. 39, Chap. 3).

Keeping this in mind, it is interesting to investigate
when the vacua defined by C.3 agree with this approxi-
mate vacua and what the order of coincidence is. We can
classify the vacua defined by C.3 as follows:

Weak vacuum ' (at t =to) is the one where the Cau-
chy data which minimize the field energy agree with the
Cauchy data of the WKB approximation of zeroth order.

Strong uacuum (at t =to) is the one where the agree-
ment takes place at all orders of I/wI, . In this case the
vacuum has two important properties, it minimizes the
energy, and its kernels copy the singularities of the corre-
sponding flat-space-time kernels (it is the "good vacuum"
in Ref. 3).

B. Cases where a weak vacuum exists

(go)y- (g)=
k

exp —i congk
(4 4)

and its derivative

According to the definition given above, the weak parti-
cle model at g=qo is given by the exact solution of
Klein-Gordon equation which has, at g=go, the Cauchy
data of the WKB approximation of order 0 if, in addition,
it minimizes the field energy at that time. This function
1S

1/2
~ (go)(g)= i-
k

exp —l co ~d'77
k

(&o)
(~0) .6 0

1+a„'(q)+i
k

le~
k

20)~
k

(4.S)
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where

(qo) t (go)
e-„(gp)=e-„(go)/co-„(go) =0 .

The existence of such function is justified by T.l (under
some conditions at g=g;„and g=g,„ that we shall
specify below). The Cauchy data of this function at
g=gp are given by

(g )
mk'(no) =

Zto ~
k

(4.6)

(b) Equations (4.7) must be fulfilled.

C. Cases where strong vacuum exists

To study in which situations the vacua are strong we
must solve Eq. (2.2) with a power series like (4.3), where

3 .2
c0 =ma+a g =ma+kb

k .2QJ

If this is done the Q" can be recurrently calculated; for
example, we have

I

( 0)
tP ~ ( 7)p )= —(P ~ 1W ~ +

k k k 2W
k

where

I IQ'"= —,
'

(g ——,
' )Ra2+g+ —,

'
4

Ql

2

(4.8)

W ~ =6)~, W ~ =QP ~ .
k k' k k

To make these Cauchy data minimize the field energy we
Inust have

MVCO~= W ~
k k

(4.7)
CO~

k
2CO~

k

tMV
k

( MV)2
k

Consequently, in order for the vacuum at 'tIo to be weak
we must have the following:

(a) The hypothesis of T.l must be satisfied that is to
say, a (t) are twice continuously differentiable functions,

1 2 3 and y& „(Q)& oo where rl is a point in the ne1gh-

borhood of g, and

J[~p -'&2—
(~0

—'~')"—p1
—'(g+(g ,' )Ita')]dn —.—

I

It can be shown by a complete induction that the function
Q" has the following behavior when the evolution is
aj(t) =t near the singularity and in the out region

~(i) ~0, i&1
Q)~ f~oo

k

g(i)

Q)k f~02i

2t[ 1 +(a11)]—
if the metric is isotropic and g= —,;

2i(a. —1)
for t &0

when the metric is not isotropic,
for arbitrary g;

aj~ ——smallest index such that kJ&0 .

Using these results and the conditions found in Sec.
IV 8 we can classify the vacua defined by C.3 as follows:

1o. & T~weak vacuum
t, =O, a(t)=t

La & 1—+strong vacuum

Robertson-Walker,
1 0+10+ 00~

S —
6

a(tp) =0~weak vacuum

a(t) =0, t E (tp —6 to+a)'
d Q =0 Vn
dt" to

—+strong vacuum

tp = oo a (t)= t~, a & 0~strong vacuum

to=(), a (t)=t '~~ & 1~strong vacuum

Bianchi type-I
arbitrary g ~ 0 & to & oo,

J = 1~2~3.

aj (tp )=0~weak vacuum

a,.(t) =0, t E (to c,to+E)—
'or

d Q =0 Vn
dt" &0

—+strong vacuum

a.
tp —oo, aj(t)=t ' —+aj &0—stro—ng vacuum .
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(we have not imposed the condition of Sec. I B2 here. )

It is interesting to note that, for the studied evolutions,
the necessary conditions for the vacuum to be strong are
sufficient to apply C.l' and C.2' (cf. Sec. II) (the isotropic
case with conformal coupling is an exception, but if we do
not perform the extension of Sec. II B 1 b then we find the
same result).

qr-'„'+y (k p+q) =0, (4.9)

where p and g do not depend on k and are constant for
i) & iIO (p must be a positive twice continuous differenti-
able function and g a continuous function).

Let z = I p'/ dg and suppose that
Z

$

(i) f I
1((u)

I
du & ~ for some z»zo,

min

(ii) J e ' g(u)du —O(k '),
Zmin k~ oo

where

gp
—1+ —3/4( —1/4) ii

then the following solutions of Eq. (4.9):

+in(z) (2kp 1/2) —1/2e i&[1+h—k(z)]

hk(z)
hk(zmin) =

P(,Z) Zmin

—ik'~[~. )+g~~.)~'"~
nnt

I2[k2 ( )+ ( )]1/2I 1/2 '

are connected by a Bogoliubov transformation such that

IPk I
=O« ')

~

We prove this theorem in Appendix A. If it is applied
to the evolutions with which we are concerned then we
can check that the total particle creation between t=O
and t = ao is finite, if the evolution ceases for g & go and
has the following behavior near the initial singularity

Robertson Walker g = —,',
a (t) arbitrary

Robertson Walker g& —,',
a(t)=t, a&1

Bianchi type-I arbitrary g,

aj(t)=t ',aj &1, j=1,2,3.

The same result can be generalized for the particle
creation between two intermediate times requiring the va-
cua at those times (ti and t2) to be weak. This can be
seen using Eq. (1.41) of Ref. 42 with u =k,

D. Dependence of
I Pk I

with k

Here we shall study under which conditions the total
number of created particles, by the universe expansion, is
finite. We consider, by simplicity, only the case in which
the evolution ceases at a given instant. Let

mza2
2

' P,
'

p =
2 +a g 2 (kpj. —kj)

) aj
which reads

t I

Ii(I-„I =O« ')+O, (ti) +O, (t2) (410)
k k

Since at t ~ and tz the vacua are weak, then
co' (ti)=co'. (t2)=0 and consequently

I p„ I
=O(k ).

Also, if both intermediate times have strong vacua, not
only is the created particle number finite, but also

IP I
~0 faster than any power of k when k —+no. That

k
is evident because there is only one WKB expansion (4.3)
and both vacua have a W that fulfills this expansion,

k
therefore their difference can only be nonanalytical in k,
and must vanish faster than any power of k. In this case
we could eventually find a spectrum like

I P I
-e "or a

k

blackbody radiation behavior. Thus, the energy, and the
momentum of the created particles that can be computed
via integrals like I I Pk I

kd k are also finite. As it is

physically reasonable that also these magnitudes would be
finite we conclude that the strong vacuum is the really
good one.

V. CONCLUSIONS

If we require the considered criteria to be compatible,
then we can conclude that there are reasonable particle
models in asymptotic and static periods (this has been ex-
tensively studied in the literature) and we can add, as a re-
sult of this paper, that we also have a good model (the
strong) in the general case of a Bianchi type-I metric at
the initial singularity if the expansion is not very violent.
This is the case if aJ(t) =t with aj & 1.

These conditions can be relaxed in the special case of an
isotropic metric with conformal coupling: we have a
weak vacua at the initial singularity if a a ~ 0 [ift~0
a(t)=t then it must be a& —,

' ].
The condition found in the general case (aj & 1) can be

physically interpreted If aj(t).=t ' then az(t)=ajt '
Consequently the condition found agrees with
lim, oa~ ~ 00 except the limit case aj.=1. This seems
reasonable: the methods work at the initial singularity if
the initial expansion velocity is finite. Although we loose
the classical evolutions t' and t, we must remember
that the cosmologic solution will contain the so-called
"back reaction" phenomenon, so the quoted evolutions
can be the asymptotic states when t~ ao but they surely
do not describe the early state of the universe.

On the other hand, the condition aJ & 1 agrees with the
one quoted in Sec. IB2: to&(R&„2 )'/ (R„„2 being

the biggest component of the curvature tensor and co the
particle frequency) as can be easily shown. Thus, the no-

tion of frequency and energy are meaningful, as a result of
the uncertainty relation, at the singularity (or at least as a
limit when t~0).

Therefore, we arrive at a very clear notion of strong
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vacuum; it is the one that minimizes the energy when en-
ergy is well defined. This happens in fiat space-time, or
when R —+0 in the out asymptotic region, but now we can
see that it could happen equally well in the in region for
certain evolutions.

The matter present in the universe near the initial
singularity should be represented with a more complete
model than the neutral scalar field P (for example, with a
grand-unified model). In addition, the gravitational field
must be quantized there. However, it is possible that the
theorems proved here could remain valid (appropriately
modified) in more complicated models.

This work leaves opened this line of research: to try to
generalize the vacua introduced above to more realistic
universe models, then if this is possible, an important
cosmologic problem, the particle notion at the initial
singularity could be solved.

APPENDIX A
FIG. 1. World lines of Minkowski observers (vertical lines),

Rindler observers (hyperbolas), and Kasner observers (radial
lines).

yp(z) =(2kp' )
' e ' [1+hi,(z)],

with

(A 1)

Here we prove the theorem quoted in Sec. IV D.
Theorem 2.2, Chap. 6, Ref. 47, states the existence of the
solution

that is,

f ip-„izd k&a) .

APPENDIX 8

(A7)

~
hl, (z)

~

&e"/ —1,
+= f, ~@(»~dv.

In addition one has

hi, (z) = — . f dv ttl(v)(1 —e '"'" ')[1+hi, (z)]
zm

(A2)

(see p. 196 of Ref. 47). With the required conditions it is
easy to see that

The particle notion and the corresponding vacuum defi-
nition is always tied to a reference system, e.g., in Min-
kowski flat space-time the inertial systems. In all the
work we have used the cornoving system, i.e., the "local"
inertial systems in Bianchi type-I universes, leaving for a
forthcoming paper an eventual generalization.

In any event, let us settle the point through an example.
Let t, yx, bze an inertial system of Minkowski space.
And let us change the coordinates with the transformation

t =gsinhr, x =g cosh',

hi (z) =—+ +0(k ), zp &z &zi
cz goz —2

k 2ikPo
(A3) Z=Z .

(B1)

where a=constant, go ——g(210), and po ——p(2lo). On the
other hand, the out basis is

(k &0+go)
lP'"'(z) =

[2(k2p+g)1/2]1/2

The Minkowski metric

ds = —dt +dx +dy +dz

becomes in the new coordinates

ds = gdH+dg +dy +—dz

(B2)

(B2')

ill
( 1 +A ) Gill+ p ~O~Ul+ (A5)

then

A =—+0(k ),k

P-„=0(k ),
(A6)

—ikz 8oz

(2kp 1/2)1/2 21kp
1+ . +0(k ')

(z &zo) . (A4)

If we write

It is the Rindler static metric.
As it is static it has a well-defined vacuum, the Rindler

vacuum, which is different from the Minkowski vacuum.
In fact, while Minkowski observers follow x= const lines
(the vertical lines of Fig. 1), Rindler observers follow
~=const lines (the hyperbolas), and have a constant ac-
celeration. Thus, it can be shown (cf. Refs. 20 and 39)
that Rindler observers see a thermal radiation in the Min-
kowski vacuum and vice versa.

On the contrary, if we perform the change of coordi-
nates

t =rsinhg, x =~cosh/,
(83)
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we obtain

ds = —d7 +7 dg +dy +dz

a nonstatic metric that corresponds to the Bianchi type-I
Kasner (1,0,0) metric. In this case, the observer follows
the radial lines, with constant velocity and no accelera-
tion, and we are in a completely different physical situa-
tion where, according to a naive interpretation of our

theory, we shall only have strong vacuum in v —+ ao. This
interpretation is naive because in this case we do not use a
"comoving" system. (Flat space-time is empty, but we
usually consider the inertial system as the comoving ones
because, in fact, empty flat space-time is only a limit case
of a nonempty universe where the notion of comoving sys-
tem is meaningful. ) Thus, this case deserves a deeper
study. In any event it is clear that different systems have
different vacua, even if the geometry is the same.
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