
PHYSICAL REVIEW D VOLUME 31, NUMBER 4 15 FEBRUARY 1985

Feynman rules for finite-temperature Green s functions in an expanding universe

Gordon Semenoff and Nathan Weiss
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We derive Feynman rules for evaluating the real-time Green s functions of a scalar field theory in
a Robertson-Walker universe under the circumstance that at some initial time to the system was in
thermal equilibrium with density matrix exp[ f3H (t—o)], where H (to) is the Hamiltonian at time to.

I. INTRODUCTION

The subject of phase transitions in the very early
universe has received much attention in recent years. Of
interest are the confining-deconfining transition of QCD
at a temperature T—150 MeV, the Weinberg-Salam
SU(2) XU(l) symmetry restoration at T-100 GeV, and
the grand-unified-theory (GUT) transition at T-10'
GeV. The study of their physical effects on the universe
requires not only a detailed knowledge of how field
theories behave in a hot, dense environment but also a
knowledge of the nonequilibrium properties of these sys-
tems as they pass through a phase transition. If we sup-
pose that the system was in thermal equilibrium at some
time prior to the phase transition, then the deviation from
equilibrium as the universe expands is uniquely deter-
mined by the quantum (Heisenberg) evolution equations
for the field in the curved background space-time of an
expanding universe. If the initial state of the system is
specified as a thermal density matrix, the density matrix
at any later time is uniquely determined by these equa-
tions. In particular, it is possible (at least in principle) to
follow the system through its critical point. In this paper,
we show how to evaluate the real-time Green's functions
for an interacting scalar field theory in a background
Robertson-Walker (RW) universe subject to the condition
of therinal equilibrium at some initial time to (i.e., we as-
sume that the density matrix at time to is exp[ —PH(to)]
where H(to) is the Hamiltonian at time to). These results
are applied to the evolution equations for the Higgs field
in a hot expanding universe in the following paper.

The subject of field quantization in curved space-time
has been studied extensively. Both the choice of a vac-
uum state and the definition of a particle are ambiguous.
In particular the vacuum state (and thus the vacuum
Green's functions) depend crucially on the choice of coor-
dinates. Even in flat space-time, the vacuum seen by
quantizing in inertial coordinates appears as a thermal
density matrix to a uniformly accelerating observer who
quantized in Rindler coordinates. Thus if a field is quan-
tized in an expanding universe, the vacuum state will de-
pend on the choice of coordinates. Furthermore, if the
system is chosen to be in a vacuum state at some time to
[i.e., the ground state of the Hamiltonian H(to)], it will
not, in general, be in an eigenstate of the Hamiltonian at a
later time t. Our condition of thermal equilibrium will
thus depend on the choice of coordinates as well as on the

S= f d' v' —g [—,'g "a„ya.y —V(y)],

where
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R is the scalar curvature and m, y, A, , and g are real pa-
rameters. In the metric (1.1) the action becomes

2

S = f dt d r a (t) — ——
2 (VP) —V(P)
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(1.4)

Another common system uses conformal time,

with line element

ds =C(q)(dg —dr ),

initial time to.
Several authors have previously considered thermal

behavior in a background gravitational field. Drum-
mond has considered the case where the quantum Hamil-
tonian H(g) is an analytic function of conformal time g.
He postulates the initial density matrix

tO+i p/2
T exp[+i . H(i))dg] (where Texp is the time-

tO —iP/2
ordered exponential) and derives Feynman rules for
evaluating the Green's functions using complex-time con-
tour methods. Hu studied the evolution of the density
matrix using a quasi-adiabatic expansion. In our work,
we do not require H to be an analytic function of g. We
deal with an initial condition in which the density matrix
is exp[ —. PH(to)]. We show that the complex contour
methods discussed by Drummond and by Niemi and
Semenoff can be generalized to this case.

Two coordinate systems are commonly used in the
study of RW spaces. The first is the Robertson-Walker
coordinates described by the line element

ds =dt a(t)dr—
where a (t) is a real function of the time t. (We have spe-
cialized to spatially flat RW spaces. ) Consider a scalar
field with action
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where C(g) =a (t(g)) is called the conformal factor. In
these coordinates, it is clear that a spatially flat RW space
is conformally related to flat space-time.

In conformal coordinates, the action (1.2) becomes
r

S= f dgd r C(q) — ——(VP)ay

. 2 . an. 2

II. GENERAL FORMALISM

m =yo(t)P,

and the Hamiltonian H is

(2.1)

Consider a scalar field theory with the action (1.8). The
momentum m canonically conjugate to p is given by

—C(g) V(P) (1.7) H(t)= f d'x +y, (t) +V(f, t)3 (VP)'
2yo(t) 2

We shall include both cases [(1.4) and (1.7)] by considering
a generic action of the form

S = f d x — (VP) —V(g, t)
1'o(t)

2 at 2

where

m'(t)p' y(t)p' A, (t)p'
31 4f

(1.8)

(1.9)

and y;(t), m (t), and A,(t) are real functions of the time t.
In Sec. II we show how to evaluate the real-time

Green's functions (T(P(x(,t() . . P(x„,t„))) for the ac-
tion (1.8) subject to the condition of thermal equilibrium
at some initial time to The U.acuum Green s functions for
the actions (1.4) and (1.7) have been studied for various
definitions of the "vacuum. " ' We extend these results to
the evaluation of the thermal Green's function for the
general case (1.9) by finding a path-integral representation
for them and deriving Feynman rules for their evaluation
in perturbation theory. The Feynman rules for evaluating
real-time thermal Green's functions in flat space-time
have been developed recently ' and our method is
modeled after the work of Ref. 9. We conclude with two
examples. First we derive the expression for the nonin-
teracting Green's functions in de Sitter space. We then
derive an expression for the expectation value of the
stress-energy tensor in an arbitrary RW space (for the case
=0).

PH(to) — t3H(to)—
p(to)=e ' /Tr e (2.3)

The states of the system will evolve via the Hamiltoni-

an H(t), so that if we measure the expectation value of
any operator Q in the evolved system, we find (in the
Schrodinger representation)"

(Q)(t)=Tr[p(to)U(t to)QU (t to)] (2.4)
t

where U(t, to) =exp, [i f, H(w)dr) and t denotes time or-

dering of the exponential. The Careen's functions for the
system are given by

G(x„t,, . . . , x„,t„)=Tr[p(t )(P(x, ) 'P(x„)),],
(2.5)

with

P(x;)= U(t;, to)P(x;, to)U '(t, , t, ),
where p(x;) is the Schrodinger-representation field opera-
tor.

To derive a path-integral representation for G, we sup-
pose, without loss of generality, that to&t] « -. t„
and rewrite (2.5) as

Let us suppose that the system is prepared at some initial
time to in thermal equilibrium at a temperature T =P
[with respect to H(to)]. The density matrix at to is thus
chosen to be

r T
G(x&, . . . , x„)=Tr (p(to) exp, i H(~)d~

to

T
Xexpt i H ~d~ x„exp, i H cd~ x„] -

x&
n n —1

&expt i H ader
tp

J
(2.6)

where T is an arbitrary large time (eventually we shall let T~ oo ), and P(xj ) is understood to be P(xi, to). Following the
method of Ref. 9, we can write

G(x&, . . . , x„)=N f + dg(x, t)exp(i')P(x&, t&) . . P(x„,t„) .

t&P



FEYNMAN RULES FOR FINITE-TEMPERATURE GREEN'S. . . 691

The integral is over fields P(x, t) for t on the path P of
Fig. 1 which are periodic; P(to EP, ) =P(PEP3). P is di-
vided into three parts. P& is the path from to to T i—e,
Pz is the return path from T —i e to to —2ie, and P3 is a
path from to 2—ie to to i/—3 (see Fig. 1). The path action
Sp is given by the sum

Sp ——Sp, +Sp +Sp

tp-
t -if+0

to- iP

P)

P2

with Sp =S [Eq. (1.8)j, Sp ——S and

Sp =/ f d Tf d'x —
1 (0t())

1 8

FIG. 1. The time path over rvhich fields are defined in
evaluating real-time thermal Green's functions.

+ —y)(to)(&P)'+ &(P, to) G„(x,t;y, t, ) =6„(x,t;y, r=O),

(2.8)
The integral (2.7) is over fields P which satisfy the
boundary condition (P at to on path P& ) =(P at P on path
P3). The times t„.. . , t„should be chosen on P& for
evaluating the time-ordered product of the quantum fields
and they should be chosen on P2 for the anti-time-ordered
operator product. X is a normalization factor

G, 2(x, t;y, t2)
i3t2

2 0

6,3(x,t;y, r)

(2.1 lb)

N '= f +dP( tx)e px(iSp) . (2.9)

6,3(x, t;y, P) =G, &(x,t;y, to),

(2.11c)

Next, let us consider the two-point function
6(x~, t&', x2, t2). By using (2.7), the definition of 6 can be
generalized to include t& or t2 in either P&, P2, or P3. %'e
define

i 6,3(x, t, y, r)

Gab (X1~ t 1,'X2~ t2 )

D exp iS& I& t& x2 t2

t2 Hpb

(2.10)

It is straightforward to find the interpretation of G,b in
the field theory. 6» and 622 are the time-ordered and
anti-time-ordered propagators, respectively. G33 is the
Euclidean Green's function at to and 6~2, 62& are the
Wightman functions; 6&2 ——

. ($(X2, t2)p(x&, t, ) ). The fol-
lowing continuity conditions now follow:

where we have written t =to ir for t—EP 3We shall
need these results shortly.

The Green's functions can be evaluated in perturbation
theory by separating Sp into its quadratic (A, ,y3~0) and
interaction parts and then expressing the interaction parti'of e as a power series in A, and y. The result will be a
Feynman diagram series for the Green's functions.

More precisely, let Sp ——Sp '+Sp where Sp ' and Sp are
the quadratic and interaction parts of Sp, respectively.
Then

G(x), . . . , x„)

6„(x,t;y, T)=G, 2(x, t;y, T),
(2.11a)

(ESp )
D exp iSp

yg f

6, i(x, t;y, t2)
Bt~

6~2(x, t;y, t2)
Bt2 (2.12)

Sp ———f d'x [—,y, (t)P'(x, t)+ —,'A(t)P'(x, t)j~ f d'x[ —,
'
y, (t)P'(x, t)+ —,

' A(t)P'(x, t) j

+i f dr f d'x[ —,
' y'(to)$'(x, r)+ 4 A(to)P (x,r)j . (2.13)
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We thus have three types of P and P vertices which we
call type 1, 2, and 3, corresponding to the various legs of
the path P on which P is defined. They are

general solution to (2.18) can be written as a particular
solution plus the general solution of the homogeneous
equation:

—ly3(t), 0 = 1

+iy, '(t), a =2,
y3(tQ), a =3

iA—(t), a =1,
+iA(t), a =2,
—X(tp), a =3 .

(2.14)

K»(t, t') =f, (t)f,(t')0(t —t')

+f,(t)f, (t')&(t' t)+—g a,,'J' "f,(t)f, (t'),

We next work out the propagator. To do this, we shall
need to invert the operator

Q1 = i yQ(t) +yQ(t) ——y1(t)V +m (t), t eP, ,
a' . a 2 2

Bt

IC»(t, t') =f,(t)f, (t')8(t t')—

2

+f, (t)f2(t')B(t' t)+ g —~,',"'f (t)fJ{t ),

Q2—= —Q1, «P2
8

Q3 —= —yp(tp) —y1(tp)V +I (tp), r&P3
8

(2.15)

K33 (r, r') =h 1 (r)h 2 (r' )9(r r')—
where an overdot denotes d/dt. This propagator, which
we shall call E, wiH be

K:IC (x, t;y, t') —with (t, t') E (P1,P2,P3 ) .

2+ h2(r)h1(r')8(r' r)+ g—~{331h.(r)h. (r~)

K is, of course, just the free-field (y3 ——A, =O) two-point
function, i.e., K coincides with G of Eq. (2.10) when
y3 —A, =0. We define IC b (x, t;y, t') to be the inverse of
(2.15) when t EP, and t'EPb. It satisfies the equations

2

K»(t, t')= g o.,'J'"f;(t)fJ(t'),
(2.21)

Q, (t)IC.,(x, t;y, t') =5„5'(x—y)5(t t'), —

K,b(x, t, y, t')Qb(t') =5,b5'(x —y)5(t t')—(2.16)

2

K»(t, t')= g a,',"'f;(t)f,.(t'),

(with no summation on a, b). Furthermore K satisfies the
continuity'conditions of Eq. (2.11).

Spatial translation invariance can be used to write

2

3(t, r') = g a'J'' f'(t)hJ'(t') (a = 1,2)

dK,b(x, t;y, t')= f, e "'" "'K.'b(t, t'),
(2n. )

and E,b satisfies the equation

Q,'(t)K,'b(t, t') =5,b5(t t'), —

(2.17)

(2.18)

Equation (2.21) will satisfy Eq. (2.18) for all values of
a,'J" '. Furthermore we shall see that the parameters u,j*(a, b)

are uniquely determined by the boundary conditions
(2.11).

First consider (2.11a). We have
where Q» has the same form as Q, (2.15) with V' re-
placed by —q 2.

A particularly useful form for K can be obtained by
first finding any two linearly independent solutions to the
homogeneous equations

K, 1(t,T) =K 2(t, T),

a a
at

K' (t t') = K't (t, t') at t'= T .

We define

Q', (t)ff(t) =0, Q', (r)h, (r) =0 (1 =1,2),

satisfying the Wronskian conditions

(2.19) -(a,a) (a, a)a gJ
—n,J +5)25J1,

—(a, a) (a, a)
T iJ' =~cJ' +&i1&j2

(2.23)

j,(t)f2(t) —f, (t)f, (t) = —1 zy.(t),

h 1(r)h 2(r) —h 1 (r)h2(r) = —1 /yo(to )

(2.20)

From (2.21), (2.23), and (2.22) with a= 1, we have, for all
t &P1,

g a ,'1"'f;(t)f; (T)= g a,'J'"f;(t)f&(T),

[These conditions are preserved by Eqs. (2.19).] The most (2.24)
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or

g tr, ,'J""f;(t)fj(T)= g ~'„"'f;(t)fi(T), Let us define

p2(t)=[y, (t)q +m (t)]/yp(t) . (2.32)

„„ fi fia""
f2 f2 r

The matrix

,
fi fl

~(1,2)

f2 f2 r
(2.25)

Then

h(r) =-)(( (to)h (r) . (2.33)

f2 f2 T

is invertible since its determinant f if2 —fif2&0 [see Eq.
(2.20)]. We thus conclude

We can choose, as solutions to this equation,

1h)(r)= exp[ —)(t(to)r]
[2yo(to)V (to)] '"

(2.34)
—(1,1) (1,2) (2.26)

1
h2(r) = exp[)(((to )r] .

[2yo(to))(((tp)]' '
(The matching matrix at T is the identity. ) Similarly one
finds

Here hi satisfy both the equation (2.33) and Wronskian
condition (2.20). M(23) [Eq. (2.30)] can now be evaluated:

(1,2) —(2, 2) (3, 1) ~(3,2) (2.27)

We can now consider the matching conditions at the
point P23 where the paths P2 and P3 meet. From (2.11b),
we have, for example,

y (t ) f(+'Pf) f—)+)Pf)
M(23) = —l

. 2P(to) f2+ipf2 f2—+&'ij,f2

(2.35)
K)2(t tp)=K(3(t r=0)

(2.28) M(23) is the matching matrix at P23 and we find

, K»(t, t')
at'

f'=tp

Using (2.21), we find

=i K)3(t,r)
() q

a~
(1,3) (1,2)=a ' M(23)

(23) ~

—(3,3) ~(3,2)M
(23)

(2.36)

fi(to) fi(to)
~(1,2)

f2(tp) f2(tp)

which can be written

h)(0) ih)(0)=a"3)
h2(0) ih2(0)

(2.29)

Finally, , we must evaluate the matching matrix at the
boundaries; tp HP& and pEP3. Let us call this point "p."
From (2.11c), we have, for example,

Kq)3(t, P) =Kq)) (t, tp),
(2.37)

o.""=o.""M
(23) ~

where

i K'[3(t, r). a
a7.

~=p

Using (2.23), we find

, K'[) (t, t')a
at'

t =fp

fi(t()) f, (t()) h)(0) iI(0) i)

M(23) = f2(t() ) f2(tp) i) 2(0) ih 2(0)
(2.30) h)(p) ih)(p)

~(1,3)

I)2(P) (7) 2(P)

fi(to) fi(to)
y (1,1)

f2(tp) f2(to)
(2.38)

is the matching matrix at P23.
The functions h;(r) can be evaluated explicitly since

they satisfy the equation

We can now define the matching matrix Mt) by

y (1, 1) (1,3)Mp' (2.39)

—yo(to)h(r)+ [yi(t())q +m (tp)]h(r) =0 . (2.31) Mt) can be evaluated using Eq. (2.34),

Mp ———i

T

yo(to)
'" e "(f2+ti f2) e "(f)+it f))—

2p(to) e~&(f2 iijf2) e~&(f i iaaf—i)— — (2.40)
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We then have
—(1,1) (1,3)M

p ~

p ~

o.""=a""M
p ~

We now use (2.26), (2.27), (2.36), and (2.41) to obtain

(2.41)

MpM(23) =
—PP(t0)

e 0
PP(t0)

e
(2.44)

[provided, of course det(l —M)&0]. First consider a'3'3'
which is the simplest to evaluate. From (2.35) and (2.40),
we find, using (2.20),

M(23)Mp ~

—(2,2) —(2, 2)
y =a M(23)Mp,
—(3,3) -(3,3)
y ' =a ' MpM(23) .

(2.42)

Using (2.42) and (2.43), we have

0 1—(3,3)
Pp(t ) PP(t0)0

(2 45)

0 —1a=
1 0 (1—M) (2.43)

Recall the definition of a and y [Eq. (2.23)]. The solution
to the equation y =cd for any matrix M is simply When combined with K33 in Eq. (2.21), this leads to the

usual Euclidean Careen's function at finite temperature.
The expression for a ""and a ' ' ' is more complicat-

ed. From (2.35) and (2.40),

with

y()(t() )—
(23) P 2 ( )

2Q (tp )sinh/3p — cosh/3p
2p
To

2Q2( tp )Slnhpp

—2Q) (tp)sinhPp

—2Q ( tp )sinh/3(M — cosh/3(M
2p
3'o t0

(2.46)

Q, (t)=[f,'(t)+)(t'(t)f (t)] (i =1,2),

Q(t)= ff)(t)f2(t)+p'(t)f)(t)f2(t)] .
(2.47)

A simple calculation yields det(M($3)Mp) =1, det(1 —M(23)Mp) = —4sinh [p(Lt(tp)/2]. Thus

—Q2coth P
(2 2) 7o o(t )

2p(tp)
Qcoth /3~ +"

'Yo

Q coth P~
'Yo

—Q(coth /3
2

t0

(2.48)

Equation (2.43) gives us a' '"=a ( ' 'Mp which yields

f2 (Pf2——(f) t/ f))—a""= i [yp(tp)I2/t(—tp)]' (1—e '
)

e "(f2+ipf2) —e "(f)+tpf()
(2.49)

Finally, one can also show that

(1,3)
(

(3, 1))T (2.50)

where the superscript T denotes the matrix transpose.
In summary, to evaluate a Green's function of type (a,b)[G~~(t, t')], write down all Feynman graphs with two external

legs labeled by q, a, t and q, b, t' (see Fig. 2). There are (() and P vertices of types 1, 2, and 3 given by Eq. (2.11). For
each line of momentum q, the propagator is given by K~~(t, t') of Eq. (2.23) with a ( ' ', a ("),and a (2'~) given by Eqs.
(2.47), (2.25), and (2.48). a ' and a ' are given by Eqs. (2.49) and (2.50). a ' =a ' and a
[see Eqs. (2.23) and (2.48)] and a' '"=y' ' '.

As an illustration of the Feynman rules, let us look at the form of the two-point function in the pure P theory (y =0)
to lowest order in A,(t). Using the Feynman rules above, we evaluate the graphs of Fig. 2 and obtain

3 3

G~y(t, t')=K~t, (t, t')+ y 6, J dt" J 3
A(t")K~, (t, t")K~/(t", t')K,",(t",t"), (2.51)

c=1 (2')
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a I b b a

it is sufficient to show

Q2(f) —Q (f) Q2(s') —Q (g)
UT —Q(f) Q)(f) —Q(g) Qt(Ã)

U= (3.10)

FICs. 2. One-loop correction to the propagator in P field
theory.

with e& ——i, e2 ———i, and e3 ———1. The integral over t"
runs from to to ac for c= 1,2 and from 0 to )33 for c=3.

To see this, define

Q b=f fb+j (t)f fb .

Then (3.10) requires

U'TQ(f) —1U'
Q ( )

—t

(3.1 1)

(3.12)

f, (t) = U.bÃf(t) . (3.1)

Let us keep the solutions h, (r) on the path P3 [Eq. (2.36)]
unchanged. Equation (2.20) requires

III. PARAMETRIZATION INDEPENDENCE
OF THE GREEN'S FUNCTION

Recall that f (t) of (2.21) were any two linearly in-
dependent solutions to Eq. (2.19) which satisfied the
Wronskian conditions (2.20). The Green's functions (2.21)
must be totally independent of the choice of f 's. We can
check this explicitly by considering another set g, (t) of
solutions to (2.19) satisfying (2.20). Suppose

But under (3.1)

Q(f)=UQ(g)U ', Q(f) '=UQ(g) 'U '. (3.13)

This establishes (3.12) and thus the parametrization in-
dependence of the free Green's functions. The Feynman
rules then clearly imply thht this result holds for the fully
interacting Green's functions.

IV. DE SITTER SPACE—AN EXAMPLE

As an example of the formalism of this section, let us
consider quantizing a scalar field in de Sitter space given
by the line element (1.1) with

fafb fafb =gagb —ga gb =—&ab [—t j'yO(t) ] .

This implies

UeU =e,

(3.2)
a (t) =e

In conformal coordinates, rj = —H 'exp( Ht), —

C(rj) = (Hrj)

(4.1)

(4.2)

i.e.,

detU=1 . (3.3)

We shall consider quantization in both of these coordinate
systems. In RW coordinates, the action (1.8) of the scalar
field has

The Green's function E33 is clearly unchanged. Consider
first

y,(t) =a'(t), y, (t) =a (t),

m'(t) =a'(t)(m'+JR) .
(4.3)

Ka~3(t r')= gaIj' (f)f((t)hj(r') (a =1,2) (3.4)
In conformal coordinates,

(3.&)

i,j,k

where the f dependence of a;j [as seen in Eq. (2.49)] is ex-
plicitly shown. Under the transformation (3.1),

g a' ' '(f)U;kgk(t)h (r') .

y,(t)=C(g), y, (t)=C(q),

m (t)=C (g)(m +JR),
(4.4)

We thus require

g a'j'"(f) U k akj (3.6)

This can easily be checked from (2.49) and (2.50) using the
transformation properties of f.

For a, b = 1,2 we write

K~g(t, t') =N~j'"'(f)f; (t)f, (t'),
where N"b' is either ~"" ~' y '', or y ' de-
pending on a, b and the sign of t —t'. We need to show

where R =12H is the curvature scalar in de Sitter space.
(We shall not consider the interaction terms in this discus-
sion. )

In conformal coordinates, the functions f, (rj) satisfy
Eq. (2.19),

f, (g) ——f, (g) [+k +(12/+m IH )rj ]f,(rj)=0 .

(4.5)

A set of normalized [via (2.20)] solutions to (4.5) is given
by

U N(f)U=N(g) .

Since

0 —1 0 —1
U

1 0 U—

(3.8)

(3.9)

f t(rj)=Hg
4

f2(g) =Hrj
4

1/2

1/2

H" '(k j), 7

(4.6)
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with v2 ———, —12$ m—/H . Let us now suppose that at
gp, the system is in thermal equilibrium at a temperature
f3 '. The Careen's functions are then given by (2.21),
(248), and (2.49). Let us now take the limit as gp~ —00.
In this case,

(k) Hgof1(2) ( 9p) exp +i kgo ——v ——
v'2k 2 4

For fixed k,

p2(2)p) =k2+(12$+m2/H2)rip '

so that from Eq. (2.47), to leading order,

Q(t)~kH rip, Q'1"2~0((27p) ) . (4.8)

(4 7) From (2.48),

~ (1,1) ~ (2,2) ~(1,2)

0

1 k
coth +1

2 2

1 k
coth

2 2

0
(4.9)

Thus, for example, the Wightman function

K)2 (21,2)') =—coth
1 Pk

T

—1 f)(2))f2(21')+—coth +1 f) (21')f2(21)
2

i
2

H i)3/2H(2)(k i)H(l)(k )+(ePk 1)—1[ H(1)( k2)1H( )2( k21) +H( ))( k21) H( )2( k2))] (4.10)

The first term corresponds to the "vacuum" Green's function with respect to the go~ —oo vacuum' and the other term
is the thermal correction.

Note that the thermal effects at 2)p~ —ao are not red-shifted away in conformal coordinates. This is not true for
quantization in R%' coordinates.

To see this note that the functions f, (t) in RW coordinates are obtained from (4.6) by substituting 2) = (Ha) . W—e
find

fk(t) ( a) —3j2

' 1/2
H(2) , f2(t)=( —a)

1/2
H(1) k

Ha
(4.11a)

p (t)=k /a (t)+m +JR .

Furthermore

(4.11b)

0

1
coth + 1

2 2

coth
1 p
2 2

0

(4.12)

Now a~0 as t~ —oo. So for fixed P,k

(1,2) —(1,1)
0 0
1 0 (4.13)

problem —we simply show how to calculate the time evo-
lution of any of the states (or density matrices) in ques-
tion.

Thermal effects at to —+ —oo do not affect the Green's
functions since the wavelengths of all the particles present
at tp = —oQ have been red-shifted to infinity.

As discussed in the Introduction, it is difficult to decide
which coordinate system is more relevant for specifying
the initial state. We do not propose a solution to thi. s

V. THE STRESS-ENERGY TENSOR

As a further example, we derive the expression for the
expectation value of the stress-energy tensor, T""for the
action (1.4) with /=0 in the lowest-order (noninteracting)
approximation. The definition
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2 5S
Tp +

g QgPY
(5.1)

—P = & T'& &
=

& T'2) = &
T' ) .

We then have
yields a conserved energy-momentum tensor. For the
free-field version of the action (1.4) with /=0, we have

(5.2)

The energy density and pressure are defined as

P=& To~
(5.3)

P
2 (pP)2 m 2/2

P + 2 +

(
P' (vP)' m'P'

l

Using (2.21)

(5.4)

at~j' fi (t)fj (t)+ +m ff(t)f (t)rr ij —I (5.5)

3 2
t

f &(t)fj(t) +m 2 fk(t)fk(t)(t)= d k (1'2 k k 2k
(2~)

Now use (2.48) to obtain

(5.6)

coth[Pp(tp )/2]p(t)=i2'(tp), {Q(tp)Q(t) — [Q~(tp)Q2(t)+Q2(tp)Q~(t)]J
(2m) 2P(tp)

(5.7a)

coth[Pp( to ) /2]
p(t)=a (tp) I I Q (tp )S(t)—

& [Q2( to )Sl ( t) + Q1(to )S2(t)] I
(2vr) 2P(to)

(5.7b)

with

f,f2+(jj' ,'k')f, f„——;(t)= f; + p k —f—— (5.7c)

The dependence on P is in the factor c tho[Pp(t )/p2]. ,

Despite the divergences in T" at P~ac, the difference
T&"(P)—T&"(ao) is finite. The question of renormaliza-
tion of T""is discussed in detail in Ref. 5.

VI. SUMMARY

Using complex-time functional integrals, we have de-
rived Feynman rules for evaluating real-time thermal
Green's functions for a scalar field theory in a spatially
flat Robertson-Walker background. We believe that the
method can be extended in a straightforward manner to
include fermions and gauge fields as well as open and
closed universes. We start with a system which is in
thermal equilibrium at some initial time to. The system is
then allowed to evolve as dictated by its (time dependent)
Hamiltonian. The n-point Green s functions at times
t], . . . , t„are then given by drawing all of the usual
Feynman graphs with n external legs but with each vertex
having a label i = 1,2,3 and each propagator having a cor-

responding label ( i,j). The vertex factors are given by Eq.
(2.14). The propagator is given by Eq. (2.21). It depends
on the functions h(r)(0&&& p) [Eq. (2.34)] and on the
mode functions f ( t) which are solutions to Eq. (2.19) [see
also (2.15)], satisfying the Wronskian condition (2.20).
The matrices a are given by Eqs. (2.48), (2 49), and (2.50).
Some illustration of the use of these rules is also given in
this paper.

In the free-field case, although the system starts out in
thermal equilibrium at tp, the expansion of the universe
will, in general, drive the system out of equilibrium due to
the red-shifting of the wavelengths. A sufficient condi-
tion for equilibrium to be maintained is that the various
matrices a(k, to) [see, for example, Eq. (2.48)] are indepen-
dent of tp for a suitable (k independent) choice of a (tp
dependent) temperature, P(tp). A sufficient condition for
this to occur is that /3(tp)p(tp) is tp independent for all k
and that Q, Q&, and Q2 are to independent. The first
condition can only be satisfied if m (t) =0 in which case
Ijtl(to) =Pg&(to)k/1 p(tp). If P(t) is chosen equal to
yp(t)/y&(t), then 13(tp)p(tp) is constant. Now m (t)=0
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requires a massless, minimally coupled field ( m =0,
/=0). The second condition can be satisfied either in flat
space-time or for a conformally coupled field (m =0,
g= —, ). We thus see that unless the scalar curvature
R=O, equilibrium is never precisely maintained for free
fields. This result contrasts with other choices of the den-
sity matrix ' for which conformally coupled fields
remain in equilibrium. Even for our choice of density
matrix, if R is small or if the expansion is slow, then g,
g&, and Q2 are nearly constant and if m is small, the sys-
tem will remain nearly in equilibrium. In such a case, we

would expect the interactions to reequilibrate the system.
In the following paper, these methods are applied to the

derivation of evolution equations for the Higgs field in a
hot, expanding universe. Further applications to cosmolo-

gy as well as questions of renormalization are presently
under investigation.
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