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Decaying particles do not "heat up" the Universe
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It is usually assumed that a massive relic species, which comes to dominate the mass density of
the Universe and later decays, "heats up" the Universe when the age of the Universe = its lifetime.
We show that if its decay follows the usual exponential decay law, then the Universe is never reheat-
ed, rather it just cools more slowly. We calculate the evolution of the temperature and entropy, and
find that to within numerical factors of order unity, the usual estimates for the entropy increase are
correct. Our results have implications for primordial nucleosynthesis in scenarios where a massive
relic with lifetime = 10 —10 sec is present, and for baryogenesis in the new inflationary Universe
scenario.

I. INTRODUCTION

In the standard, hot big-bang cosmology (for a review
see Ref. 1), the energy density contributed by a massive
particle species (denoted by X) becomes negligible,

radiation is p„=(vr g, /30)T and the energy density in
X's is px ——(rm~)s. The entropy per comoving volume is
S =sR . In the simultaneous decay approximation (SDA)
it follows immediately from energy conservation (at the
decay epoch t=l ') that
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where "before" refers to just before the decays (t=r~),
"after" refers to just after the decays (t=r„+), and
I =zx ' is the X decay rate. Here and throughout we
use units in which A=kz ——c =1, and Newton's constant
6:—fnp~, where m&E ——1.22)& 10' GeV.

In brief, what we find is that when one takes into ac-
count the fact that the decays are not simultaneous, but
instead follow an exponential decay law (dN»

N&I dt), the —temperature of the Universe never in-
creases, i.e., dT/dt is always &0. What happens instead
is that the temperature falls more slowly, T ~ R r rather
than R ' (see Fig. 1), due to the entropy release from de-
cays. Up to numerical factors of order unity, the "reheat
temperature, " more precisely the temperature just after
the entropy release (t=I' '), and the entropy increase are
given by Eqs. (1). In the next section we carefully set up
the problem of decaying relic particles and solve it; in this
section we also briefly discuss some applications of our re-
sults. In Sec. III we summarize our results and discuss
some possible implications.

when the temperature falls below its mass, unless that
species possesses a nonzero chemical potential (e.g. ,
baryons), or it drops out of equilibrium and its abundance
"freezes out. " In the case of p&0 or freeze out, the relic
X abundance relative to photons (nz/nr) remains approx-
imately constant, and p&/pr grows as T ' or
R(t)[=cosmic scale factor]. Eventually the energy densi-
ty of the X particles dominates that of the photons —and
the total energy density, if t (10' sec. {The present ener-

gy densities of matter [baryons and other nonrelativistic
(NR) matter] and radiation (3K background and vV back-
grounds) are such that earlier than about 10' sec after the
bang p„d&p,«„.) If the relic X particles subsequently
decay into light (i.e., relativistic) particles which thermal-
ize, then the entropy of the Universe and radiation con-
tent will be increased.

The usual approximation made is to assume that the
decays happen at time t=r~ (= lifetime of the X), over a
short time interval (At &&r~). In this case it is straight-
forward to compute the increase in entropy per comoving
volume and the increase in temperature. [In doing this
simple calculation we will assume that at the time of de-
cay, px »p„). Let the relic abundance of X's be r =nz/s-
(after freeze out and before decay), where s =2~ g, T /45
is the entropy density and g~ counts the effective number
of relativistic degrees of freedom. The energy density in
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where the sum runs over all species with I«T which
are in thermal equilibrium. Note that the energy density
in relativistic particles (—=p„) and temperature (=T) are
related to s and S by

p„= ,' Ts(—T)
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FIG. 1. The evolution of p, and S as a function of the cosmic
scale factor z=—R/RQ in the case where the energy density of
the X particles dominates the energy density of the Universe
during the decay epoch. The line labeled old shows the energy
density in the original radiation component; the line labeled new
shows the contribution to the radiation energy density from X
decays and is proportional to R '. From z=z (when the
old and new contributions are equal) until x=1,p„~R, im-

plying that T ~R '—decays do not heat the Universe, they
just cause it to cool more slowly. From z =z to x=1 the en-

tropy per comoving volume S increases proportional to R ' '; at
x=1, S levels off. For x »1, S approximately equals a con-
stant and p„~R . Although the axes are labeled with arbi-
trary units, data for the curves were generated by numerically
integrating Eqs. (16a)—(16c).

II. ENTROPY RELEASE BY DECAYING RELICS
IN THE STANDARD COSMOLOGY

n

TQ
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Using the fact that the number density of photons
nr =[2/(3)lvr ]T and Eq. (3b) for s(T), it follows that

where a =2~ g„/45. [It should be recognized that Eqs.
(3b) and (4) are rigorously valid only at temperatures for
which there are no particle species with mass approxi-
mately equal to temperature. At temperatures T for
which .there is one (or more) particle species with m = T
we will use the entropy density s=(p+p)/T to define

g, (T), via Eq. (3b). In practice this technical point
creates no difficulties. ]

Choose an initial epoch tp such that (1) to « I ' (i.e.,
X particles have not yet begun to decay); (2) the X parti-
cles are NR, i.e., To «mx, and their abundance is frozen
out (no X particles are being created or destroyed, i.e.,
constant number per comoving volume). Now specify
their initial abundance by the ratio of their number densi-
ty to the entropy density ( =r),

A. Equations for decaying particles
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With some loss of generality, we make the following
physically reasonable assumptions: (1) At all times the
microscopic entropy of the Universe is dominated by rela-
tivistic particles. (2) The entropy released by the decaying
X particles is rapidly (b, t «H =expansion time)
thermalized. (3) We restrict the problem to Friedmann-
Robertson-Walker (FRW) cosmological models (i.e., the
standard cosmology).

The first assumption implies that S (—:the entropy per
comoving volume) can be expressed as

=1.80g~ n&,

n

TQ
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The energy density in X particles at this epoch is just

pxo= "mx~ (To) . —
The evolution of px is governed by

(7b)

S =g (t) s(T), (2) Px = —3IIPx —~Px ~

where s ( T) is the entropy density,
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The quantity g„(T) as usual counts the effective number
of relativistic degrees of freedom:

where H=—R/R, R is the cosmic scale factor, and the
overdot signifies time derivative. The first term on the
right-hand side of Eq. (10) represents the dilution of p~
due to the expansion of the Universe, while the second
represents the decays. Equation (10) can be written in a
more suggestive form,

d(R px)
dt

= —I (R px),
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where the basic physics is clear: the number of X's per
comoving volume (Nx ——R px/tnx ) follows an expo-
nential decay law. The solution to Eq. (10) is just

—3
R

px =pxo e
Rp

The change in entropy per comoving volume is given by

dS=-d~,
T

where dg ( = the heat added per comoving volume) is due
to the decays,

dQ =1R p&dt .
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Thus the evolution of the entropy per comoving volume is
given by

Equations (15a)—(15c) can then be written as

f~=z 'e- (16a)
3
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Equation (12) can be integrated (at least formally):
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where the subscript zero denotes the value of that quanti-
ty at the initial epoch (t =to).

The evolution of the cosmic scale factor R (t) is
governed by the usual Friedmann equation

H —= R
(14)
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where po is the effective energy density of everything be-
sides relativistic particles in thermal equilibrium and X's.
For example, the other forms of energy density might be
vacuum energy ( ~po=constant), a stable, NR particle
species ( =- po cc R ), a relativistic particle species which
is decoupled, e.g., neutrinos when T & 2 MeV
( =-poccR ), or the "effective energy density" of the
curvature term (=k/R ) which we left out of Eq. (14)
( ~pooc+R ).

The relevant equations then are
—3

=xH '(fx+f. +fo)'"
Z

(16c)

where prime denotes d /dx. Since by choice
xp ——I to «1, we have set the lower limit in the integral
in Eq. (16b) equal to zero.

Equation (16b) has an obvious interpretation in terms of
the evolution of the energy density in radiation. Recall
that p„=0.75a '/ S R and suppose that a (T)=
constant; then multiplying (16b) by 0.75a '/R " leads
to an equation for p„:

X

p„=p„oz + p&o z(x')e "dx' z . (17)

The first term on the RHS of Eq. (17) is just the "origi-
nal" energy density in radiation, red-shifted ccR; the
second term is the energy density in radiation due to the
X decays.

Now let us discuss the qualitative behavior of the solu-
tions to Eqs. (16b) and (17). First consider the early epoch
x&1; suppose that z(x)=(x/xo)" (note, n= —,

' if the
Universe is radiation dominated: n = —, if it is matter
dominated). Using the approximations a ' = constant
and e "=1, together with z=(x/xo)", Eqs. (16b) and
(17) can be easily integrated,
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supplemented by p, =0.75a ' S R . These equa-
tions can be cast in a more useful form by introducing the
following dimensionless variables:

x =I t,

Referring to the first and second terms on the RHS of
Eqs. (18a) and (18b) as the "old entropy" ("old radiation")
and the "new entropy" ("new radiation"), respectively, we
can see that the new-entropy term increases
cc (x or t) "+"'/ oc R "+"'/"", while the new-radiation
term increases ocR +'/"(ocR for n= 2; ocR / for
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where we have assumed that xp &x —&1. If p„p/pxp is
sufficiently large, then Eq. (19a) gives a value for x & 1,
meaning that px never dominates p„and X decays never
produce a significant amount of entropy (i.e., relative to
the initial entropy).

For x »1 the integral in Eq. (16b) converges because
of the e " in the integrand. Physically this corresponds
to the entropy per cornoving volume reaching its asymp-
totic value after all the decays have occurred. The ratio
of the final entropy per comoving volume to the initial
value is
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I= f a'/z(x)e "dx .

If z=(x/xp)" for x near 1, say, 10 &x &10, when al-
most all of the decays occur, then I is very easy to evalu-
ate,

I=a xp (22a)

where a ' is a weighted average of a '/ (if a is not con-
stant) in the interval near x=1. [One would expect
z = (x /xo)" for x & 10 if the energy density of the original
radiation, or the unspecified components represented by pp
dominated the total energy density during the entire decay
epoch. ]

If, on the other hand, the energy density of the X parti-
cles and their decay products dominate the total energy
density during the decay epoch, then z will not be
represented by a single power law; rather n will change
from —, to —, as the X particles decay and the entropy they
release begins to dominate the energy density of the
Universe. This is the case of greatest interest, since it cor-
responds to the situation where the entropy production is
significant. Without loss of generality we can choose tp
such that, in addition to xp being && 1, px dominates the
energy density. It is then straightforward to show that in
this limit (pxp »p„p+ppp)

n = —, ). For x & 1, pxoz is just the energy density in X
particles; according to Eqs. (18), the energy density in ra-
diation "dumped in" by decays is just the fraction
I' t/(1+ n) of the energy density in X particles.

An important epoch occurs when the old and new parts
of the RHS of Eqs. (18a) and (18b) become comparable;
denote this epoch by x and z =z(x ). Physically this
corresponds to the time after which most of the entropy
and radiation content are due to the X decays. In terms
of xp, p, p, and pxo, x and z are given by

1/(1+ n)x (1+n)p, p
(19a)

Combining Eq. (20) with either Eq. (22a) or (22b) as ap-
propriate, we have for Sf/So
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for reference rmx /( m P1I') '/2 =0.353(rmx /MeV )(r/
sec)'/ . Note in the first case, Eq. (23a), the result seems
to depend upon the choice of initial epoch through the
poo" / /p„p' factor. However, z cc x" implies that

"; for x «1, p„z . These two facts 1mply
that pp"/ /p, ' is independent of x for x &1. Equations
(23b) and (23c) represent the cases of greatest interest: Eq.
(23b) the case where the initial radiation always dominates
the energy density [small entropy production; note, Eq.
(23b) follows from Eq. (23a) by setting n = —,], and Eq.
(23c) the case where the X particles dominate the energy
density during the decay epoch (large entropy production).
Note that Eq. (23c) is, up to numerical factors of order
unity, identical to the usual estimate, Eq. (ld).

Let us end this section by summarizing our results.
Consider the two cases where the entropy production is
significant, i.e., Sf /Sp »1: (a) the case where during the
decay epoch the energy density is dominated by the X and
its decay products; (b) the case where during the decay
epoch the energy density is dominated by something other
than p„or px, i.e., pp doininates the energy density, and
z =(x/xp)".

Case a. Assuxne that by t = tp, px &&p„ then
z=(x/xp) /. From x =xp to x=x the entropy per
comoving volume and radiation energy density are dom-
inated by the old or original components. During this
period the new-radiation energy density increases~R; p,R and S remain nearly constant. From
x =x to x=1, the new contributions to S and p„are
dominant, and

9 —2/3 —1/3 (22b) p cCR / cC t T c)CpP» CC CC ~ OC P» OC

where the 1.09 is the result of numerically integrating
Eqs. (16a)—(16c). (The details of this are given in the Ap-
pendix. )

and SccR' /. For x&1, S levels off at the value Sf
[given by Eq. (23c)], and p„begins to decrease
ccR "(TccR '). Note that the temperature is always
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decreasing, albeit, at a rate slower than the usual R ', for
x &x &1. Using Eq. (23c), and taking z(1)=xo ~, it
follows that the temperature when the entropy levels off
(x=1) is

Tf=—,a (I mp))'~ (24)

log(P, )

log (S)

'new rad' 'old rad'

log (z)

FIG. 2. Schematic representation of the evolution of p, and S
as a function of z—=R/Ro in the case where the energy density
of the Universe is dominated by an unspecified component
(po~R "), such that R &x t" during the decay epoch. The lines
labeled old and new show the original radiation component and
the contribution from X decays, respectively. The new corn-
ponent evolves ~ R +' " and from z =z onward dominates

p, . From z =z until x=1, T~R" "' ", i.e., only increases
if n ( 3 . From z =z until the end of the decay epoch (x=1),
S ~R "+"' ". After the decays (x &&1), S approximately
equals a constant and p„~R

which only differs numerically from the usual estimate,
Eq. (lb), by factors of order unity, but which has a very
different interpretation. The Universe is not heated up to
this temperature at t=l" ', but rather has cooled down to
this temperature. The entropy increase is

=2.25a
Sf i/4 ™&

(m„r)'"
I'Pl g1.83g~

(m, l )

which differs from the "usual estimate, " i.e., Eq. (ld), by
only about 10%%uo.

Case b. Assume that due to the unspecified source of
- energy density po, z =(x/xo)" during the decay period.

From x =xo to x =x the entropy per comoving volume
and radiation energy density are dominated by the so-
called old or original components, and S= constant,
p„~R . The new contribution to p, is increasing as
R +' ". At x =x the new contributions to S and p„
begin to dominate the old or original contributions and
p ~R +' ", T~R +' "", and S~R "+"' ". Note

' 3/8
pro

poo
(rm )'~ (I m, )

"~ (25)

The evolution of p„and S for these two cases is shown in
Figs. 1 and 2.

B. Applications

In the new inflationary Universe scenario there can be
an epoch where the energy density of the Universe is dom-
inated by coherent scalar field oscillations. The energy
density in these scalar field oscillations behaves just like
NR matter (a cold condensate of NR Higgs particles).
Eventually these oscillations decay into radiation (i.e, rela-
tivistic particles). The decay of the coherent field oscilla-
tions is equivalent to the decay of NR Higgs particles and
is described by an equation which is identical to Eq. (10).
The reheating of the inflationary Universe in this case is
just the situation we have considered in case (a), namely,
pxp))p„o+poo. Thus the evolution of the radiation ener-
gy density is as shown in Fig. 1, and the radiation tem-
perature at the time when the entropy levels off (usually
referred to as the reheat temperature) is just given by Eq.
(24),

TRH- —,a (I mp&)
& ——1/4 1/2

In the inflationary cosmology the baryon asymmetry of
the Universe (nz/s=10 '

) must be produced after infla-
tion (any initial baryon asymmetry is exponentially dilut-
ed by the tremendous entropy production associated with
inflation). If the baryon asymmetry is produced in the
standard way, the out-of-equilibrium decay of superheavy
bosons produced in the reheating process, then the time-
temperature relationship for the Universe and the evolu-
tion of the entropy per comoving volume are both crucial
for calculating the baryon asymmetry which evolves. In
that regard, the results of this paper are of some
importance —as the baryon asymmetry is being produced,
the entropy per comoving volume is increasing and the
time-temperature relationship is not the usual one. We
are currently investigating these effects.

An alternate to the standard method of baryogenesis is
direct production of a baryon asymmetry by the decays of
the Higgs particles themselves. Suppose that the decay
of each Higgs particle on average produces a net baryon
number of e. The quantity e is related to the C, CI' viola-
tion in the decay of the Higgs particle. (Note that the
baryon number per decay e need not be directly produced
in the Higgs particle decay, but could just as well be the
result of a chain of decays, e.g., Higgs particle —+other
particles~quarks and leptons, with net baryon number e.)
The baryon-number-to-entropy ratio (—:n~/s) produced

that unless n & —, (corresponding to po decreasing as R
or faster), the temperature is always decreasing. At x —1,
S levels off to the value given in Eq. (23a), and subse-
quently S equals a constant and p, ~R . The tempera-
ture when the entropy levels off (x=1) is

3n/8 3 ]/4n Pl!aoTf-( —, )' '
8m
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this way depends upon e, the number density of Higgs
particles (—:nx), and the entropy produced. The baryon
number produced per comoving volume is just eX~p,
where K+0 is the initial (i.e., for x «1) number of Higgs
particles per comoving volume. In terms of r and So (the
initial entropy per comoving volume),

eXzp ——erSp .

The baryon asymmetry produced this way is just

&&xp

Sf

Sp=GI"

Sf

(m r)'"
/4 Pl

mx

where we have used Eq. (23c) for So/Sf (in the limit of
Sf ))Sp, which is clearly the regime of interest for the in-
flationary Universe). The usual estimate for nels is

(m r)'"
=0.48a t

which, as it turns out, is a remarkably accurate estimate.
Of course, the baryon asymmetry directly produced by the
decay of the Higgs-field oscillations may subsequently be
damped by baryon-number nonconserving processes (e.g. ,
2~2 scattering processes).

[Throughout this discussion of the reheating of the in-
flationary cosmology we have assumed the existence of an
initial entropy per comoving volume ( =So). In the infla-
tionary scenario this quantity is expected to be very small
and highly model dependent. As is apparent, though,

I

none of our results depend upon Sp—it is merely used as
a fiducial. We could just as well have used Xzp as our
fiducial. ]

Next consider the so-called decaying-particle cosmolo-
gy. This is a scenario in which until rather recently
(R/R„,d,~ ) 10 or so) the energy density of the Universe
was dominated by unstable, NR relic X particles, which
subsequently decay into particles which today are still rel-
ativistic and which make a considerable contribution to
the present energy density of the Universe. (The purpose
of this scenario is to solve the "A problem"; i.e., to recon-
cile the inflationary prediction of 0=1 with the observa-
tional data Q,b,—0. 1—0.3, by producing a smooth com-
ponent of energy density with 0=0.9—0.7, which by vir-
tue of its uniformity would not have been detected. )

In this scenario the decay products do not thermalize
because they are effectively interactionless. The equations
we have derived in this section are still applicable, though,
when we realize that 4a ' S" is the energy density in
relativistic decay products times R (=R "p„, p„= energy
density of the R decay products), and take So, the fidu-
cial, to be the entropy per comoving volume in photons.
With this identification r =nx/sr, using the fact that
sr 3 60——nr., it follows that r=0 2787)x (.g~=nxlnr). In
this scenario the energy density of the X and its decay
products dominate the total energy density during the de-
cay epoch so that for I we can use the expression in Eq.
(22b). Using our previous results we then find that after
the decays (x ) 10),

=2.82(rmx ) '( I m p( ) (27)
Py

Since both p„and pr cc R (after the decay epoch), p„/pr
remains constant; using the fact that the present fraction
of critical density contributed by photons (—:fir) is

0 h'=2 36X10 '9'

where

= T Ho ——(the present value of the Hubble parameter)0= and h=
2.7K 100km sec 'Mpc

it follows that

n~h2 = 1.21 ~ 10 5(gxmx)4 (I mp))g4

40 gx x
100 eV

4/3
7

10' yr

' 2/3

III. CONCLUDIN(x REMARKS

The conventional lore of the early Universe has it that a
NR, relic species which comes to dominate the energy
density of the Universe, and then subsequently decays,
heats up the Universe when it decays. We have shown
that if the decays of the species follow the usual exponen-

For a more detailed discussion of the decaying-particle
cosmology see Ref. 6.

I

tial decay law, this is not the case. Instead, due to the
heating effect of the decays, the Universe cools more
slowly (TccR ~, instead of the usual TccR ') and the
entropy per comoving volume increases ( cc R '5~8). Up to
numerical factors of order unity the usual estimate for the
increase in entropy per comoving volume is found to be
correct. What in the usual analysis is called the reheat
temperature is instead the temperature of the Universe
when the entropy per comoving volume levels off (at the
time t=I ').

If during the decay epoch the energy density of the
Universe is dominated by some other form of energy den-
sity and R increases more slowly than t '~ (corresponding
to a source of energy density which decreases more rapid-
ly than R ), then the temperature of the Universe does
increase during the decay epoch ( T-R" "'~ " for
t &I ', where R cct").
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Our results may be of some importance when consider-
ing the effect of relic particle species which decay and
release entropy around the epoch of primordial nucleosyn-
thesis (temperatures 10—0.1 MeV)—the gravitino being
such a particle, and when considering baryogenesis in the
new inflationary Universe scenario. In the former exam-
ple it is usually assumed that the Universe goes through
primordial nucleosynthesis twice (before and after the de-
cay epoch). As we have shown, it goes through the
relevant temperature range for nucleosynthesis only once,
but with a,different time-temperature relationship [with
the NR particles present, H ( T) ~ Hp( T), the expansion
rate without the relic particles present]. In addition, be-
fore the high-energy particles produced by the decays
thermalize, they may produce or destroy various nuclei
which are being synthesized. In the case of baryogenesis,
the Universe will evolve through the epoch of baryo-
genesis with a nonstandard time-temperature relationship,
and the details of baryogenesis depend crucially upon this
relationship. Both topics are currently under investiga-
tion.
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f =z 3e (A4)

By using Eqs. (A2)—(A4), Eq. (Al) for z(x) can be rewrit-
ten as

APPENDIX: EVALUATION
OF I= z(x)a' e "dx

0

We are interested in the case where the X particles and
the entropy produced by their decays dominates the ener-

gy density of the Universe during the decay epoch
(xp &x & 10). In this limit we have

z' x

Z
—=xH z 'e "+a ' 'z a' 'z(x')e 'dx'

0

1/2

y e +y a ' ' a' 'y(x')e "dx' . (A6)
0

If we assume that during the decay epoch a approximate-
ly equals a constant or that its dependence can be ex-
pressed as a =a(x), then it follows that the solution to
Eq. (A6) must be of the form y =y(x), supplemented by
two boundary conditions [Eq. (A6) is a second-order dif-
ferential equation]. The two boundary conditions can be
taken to be

y(xp) =xH z(xp)=xH2/3 2/3

y'(xp) z'(xp)

y(xp) z(xp)

For xp(x &~1, the solution must be that of a matter-
dominated cosmology y ~x; the solution which has
this behavior and satisfies the boundary conditions dis-
cussed above is

2/3

y(x) = 3x
2

(A7)

(recall that for y or z CCX xp =2xH/3).
The existence of the solution y (x) for x « 1 which sat-

isfies the appropriate boundary conditions, and the fact
that Eq. (A6) admits solutions which are independent of
xH demonstrates that the solution we seek has the form
z(x) =xH y (x). The evaluation of the integral I is
now straightforward:

I= a '~ z(x)e "dx
0

=xH a '
y (x)e dx

0

09 —1 /3 —2/3 (AS)

where the 1.09 comes from a direct numerical integration
of Eqs. (Al) —(A4) (and a was assumed to be constant).
As before, a is a weighted average of a during the decay
epoch (x =1). Note that throughout this paper we have
written z(x) as if it were only a function of x; this is
somewhat misleading. As we have just shown, it is y(x)
that is a function of a single variable and
z=z(xH, x)=xH y(x). [Note, by recognizing that
Sf/Sp must be independent of our choice of the initial
epoch, one could have argued that I must be ~ x~ by
insisting that the expression for Sf/Sp in Eq. (20) be in-
dependent of xH. ]

(A5)

By introducing the new variable y =—x~ z, the x~ depen-
dence in Eq. (A5) can be eliminated:
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