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The classical cosmology implied by Kaluza-Klein models is studied in some numerical detail. The
constraints imposed on the parameters describing the early, n-dimensional epoch by the known

properties of the current three-dimensional epoch are explored. The conclusion is that the present
conditions are remarkably robust, depending essentially only on the total entropy within our horizon
and requiring no fine tuning of the Kaluza-Klein parameters.

I. INTRODUCTION

There has recently been considerable interest in the
study' of the early cosmology of Kaluza-Klein
scenarios. Several authors have noted that such models
give rise to extremely rapid inflation of the scale factor
describing the usual three dimensions at the time of the
"collapse" of the extra, Kaluza-Klein dimensions. Such
behavior can provide an explanation of the observed iso-
tropy of the background radiation at the time it (re)enters
the causal horizon, and thus a resolution of the well-
known cosmological flatness problems. In a previous pa-
per' we discussed this scenario (at least in classical terms)
quite generally. The conclusion was that, for D, the num-
ber of extra dimensions, of order 40, the currently ob-
served entropy (-10 ) may be understood with only
moderate (-10) excitation of each of the n=D+d
=8+3.dimensions. Here we consider the relevant equa-
tions in rather greater numerical detail. %'e integrate
Einstein's equations numerically in order to investigate
behavior near the collapse time. These numerical results
are compared with the analytic matching" scheme pro-
posed in the previous paper and developed here. The
agreement between the two approaches is surprisingly
good. Thus the analytic technique is sufficiently reliable
to afford a straightforward understanding of many of the
important features of such scenarios. A point of particu-
lar interest is an appreciation of which parameters in the
early universe are free and which are constrained by the
physics, by reasonable assumptions, or by observations
(necessarily) made in the later, three-dimensional universe.
We find that present conditions are prescribed almost en-
tirely by the magnitude of the entropy in the comoving
volume of our present horizon and are insensitive to the
detailed behavior at early times. Thus no fine tuning of
the early parameters is necessary, a desirable situation, but

also little can be inferred about the detailed behavior of
the n-dimensional epoch from present observations. %'e
close by elaborating on our earlier discussion of the relia-
bility of our general conclusions. In particular, we argue
that, while quantum effects must surely play a sizeable
dynamical role during the epoch of collapse, our con-
clusions will be insensitive to the inclusion of such effects.

II. THE MODEL

The quantities r and R are the scale factors describing
constant-curvature spaces of d (=3) ordinary and D ex-
tra dimensions, respectively. We can write Einstein s
equations in the compact form

R",= —8~GS" —Ab"

Here R" is the Ricci tensor where the indices p and v
run over the values 0 to n. In terms of the stress-energy
tensor T" the other tensor S" has the simple form

n —1
(2b)

Note that here we are allowing for the presence of a
cosmological term and a more general stress-energy tensor
than was used in Ref. 1. This is in order that the interval
during which the extra dimensions are decoupling may be
treated more adequately than was possible with the previ-
ous approach. As explained more fully below, the equa-

Our starting point' is a classical description of the
universe which is assumed to be radiation dominated in
the epoch of interest. The geometry is specified by a line
element

ds = dt +r (t)g Jd—x'dx~+R (t)g, t,dX'dX
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tions during the epoch from the big bang until R collapses
to its final value RKK are the same as those used in Ref.
1. The stress-energy tensor T" is assumed to exhibit the
simple diagonal (perfect-fluid) form

r

thermal equilibrium. We shall return below to treat the
issue of the reliability of this assumption. With this as-
sumption entropy is conserved. Thus in a volume comov-
ing with the expansion (or contraction) of the universe the
entropy S is constant. In particular, in a comoving n-
dimensional volume specified by r and R the entropy is
given by'

P
(2c) 5= (r "R T")N'"'

n

VD
Q~ D

RKK

P
=constant, (6)

Here p is the energy density and p and P the pressures in
the d- and D-dimensional spaces, respectively. The dots
stand for D —2 diagonal P terms. The factor 6 in Eq.
(2a) is the (n +1)-dimensional gravitational constant re-
lated to Newton's constant G~ by

G = VDG~ ——VD,

where VD is the volume of the compact D-dimensional
manifold. For example, if this volume is a sphere (as will
be assumed in what follows) with physical radius RzK,
then

(D+ 1)/2
D

r ~KK
D+1

2

(4)

We proceed by assuming that at early times the
universe is described by the "symmetrical" situation
p=P=p/n with A=O. In this case Einstein's equations
resolve into three equations for r(t) and R(t) which are
not independent due to the Bianchi identity and the con-
servation of energy-momentum. If the curvatures corre-
sponding to the two scale factors are kd and kD, the three
equations are

where N~",I is the number of participating polarizations
(which we will take to be n —1 for the explicit calcula-
tions below) and a„ is the (n+1)-dimensional Stefan
Boltzmann constant,

nI n+1
2

g(n+ 1)

(n +1)/2

p=Xp, )an T(n) n+1 (8)

It is useful for the subsequent discussion to combine
Eqs. (6) and (8) and define two constants of proportionali-
ty via

8rrGp =f„r"+'
/

and

with g the Riemann zeta function. In the special case
D =0, the quantity in the square brackets in Eq. (6) is de-
fined to be unity. If we set the constant on the right-hand
side of Eq. (6) to —10, we are implicitly defining r to
correspond to the scale of the presently observable
universe. The corresponding energy density p is specified
by

d—+D—= —SmGp,
r R
r R

(5a)
h„

(R 1")'/" (9b)

d
, +dt ~

+ d—+D—
r R

SAG=S~Gp = p,
n

Using Eqs. (5)—(8), the explicit form of the first of these
constants can be deduced to be

(5b)
16n(n —1)I g(n+1)(D —1)

2
r

kD d R r' R+ —+ d—+D—
dt R r R

R
R

=SmGP= p .
SmG

n

(d 2)/2I- D + 1

2

(5c)

The parameter kD we scale to +1 so that R is not the
physical radius but, for a sphere, R =R/V'D —1, where
R is the physical radius [recall Eq. (4)]. The parameter
kd we take as zero in the present studies. (As discussed in
Ref. 1, it is only necessary that kd be small compared to
k~.)

To proceed in this classical framework we make the
(more dubious) assumption that, during the epoch of in-
terest, the interaction rates are such as to maintain

for D ~ 1 which, for D=40, has magnitude

f43 1.021X10 R~K

while for the special case D =0 (with G =6 = 1)

f3=16.5 .

The second coefficient is given by

(lob)

(10c)
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r

I. +' W&'S
2

2(n —1)I g(n + 1)(D—1)
2

1/n

(1 la)

again for D ) 1, with magnitude

h43 ——15.66 (1 lb)

for D =40, while for the special case D =0 (with the ratio
VD/RxK set to unity)

h3 ——2.25@10". (1 1c)

and

R(t) —At
t~O

(12a)

To obtain the latter numerical results the specific value

S=10 was used. This same value will be used in the nu-

merical analysis discussed below.
It is straightforward to evaluate the time dependence of

the scale factors predicted by the classical equations [Eqs.
(5)]. As noted in Ref. 1, the behavior near the big bang,
t=0, is easily found to be

to the first power. An important exception is the length
of the interval between the time that the collapse stops
(t, ) and the time by when the extra "dimensions have
decoupled (td) which scales essentially as RKK . More
specifically it follows from Eqs. (10a) and (13) that the
characteristic length scale (r "R )'~" varies as
RKK '"+"=RKK' ". This will be illustrated by the
numerical results discussed below.

Since it will be instructive to connect the currently dis-
cussed Kaluza-Klein epoch to the subsequent Robertson-
Walker regime, we shall make one further assumption be-
fore proceeding to integrate numerically. We shall make
the (highly dubious) approximation that the classical
equations of motion describing the universe hold right
through the period of collapse, while there will be discon-
tinuous changes in the equations of state when the physics
is thought to change. In particular, when R collapses to
the value RKK we will simply set R—:RKx for all subse-
quent times (with all time derivatives of R set to zero in
Einstein s equations). This is specificaHy realized in Eq.
(2) by setting the pressure for the D dimensions to
P = I/(SmGRKx ) and taking p =p/d. At the same time,
in order to ensure that the large time equations match the
usual Robertson-Walker forms, we introduce a cosmologi-
cal constant

at 2/(n + 1)
t~0

(12b) A=SmGDP/(n —1)=D/Rxx (n —1) .

Here the coefficients a and A specify the initial condi-
tions. Having specified the total entropy via Eqs.
(9)—(11), these constants are, in fact, not independent.
Using Eqs. (9)—(12) in Eqs. (5) yields the relation

n/d(n +1)

a=A "h" f" 2n(n —1)
(13)

a =A =112 9RKK10/11 (14)

Here the numerical coefficient depends on the values of 5
and D while the general dimensional scale is carried essen-

tially (for D large) by R&&. This result exhibits a general
feature of the solutions of the classical equations for D
large and for comparable values of the coefficients A and
a. Most dimensionful quantities, for example, the values
of r and R when R is maximum, and the times when R is
maximum and when it collapses, scale essentially as RKK

Thus we see that there are basically five input parameters
to the classical numerical problem, three of which are ei-
ther fixed or at least constrained by observations. In the
latter category is the total entropy S, which appears in h„,
the final size of the compact dimensions RKK, which ap-
pears in fn, and the number of ordinary dimensions d =3.
The other two parameters are the number of compact di-
mensions, which we will take here as D =40, as an exam-

ple, and the initial condition on the Kaluza-Klein scale
factor, input here via the coefficient A [which then speci-
fies the corresponding coefficient a for the ordinary di-

mensions via Eq. (13)j. As a specific example of the im-

plied relationships consider the further constraint of full
(but unjustified, as discussed below) symmetry, a =A. In
this case both a and A are specified to have the value (in-

dicating the extra symmetry constraint by a tilde)

Thus T", is henceforth traceless in only d+ 1 dimensions.
The same is true of R" which, due to our explicit as-
surnptions, is proportional to T" during all epochs.
These specific classical definitions are intended only as
(crude) approximations to whatever microphysics serves
to stabilize R at RKK. Thus I' and A are not to be con-
sidered as distinct, new parameters but rather as simply a
naive classical characterization of this microphysics such
that the parameter

RK& ——1/(SmGP) =D/A(. n —1) .

With these choices Eqs. (5) are replaced by
~ ~

d—= —8m.op,r
(15a)

r r—+(d —1) — =SAG
r d

(15b)

and

R =RKK ——constant . (15c)

Likewise, instead of treating in detail the physics of the
decoupling from the energy density p of the extra degrees
of freedom as the temperature decreases, we will simply
discontinuously change from full excitation of D+d di-
mensions to excitation of only d dimensions. While this
is a fairly gross approximation, it will have little effect on
our detailed results and no effect on our general con-
clusions. Note that in any case these simplifications are
relevant only during the tiny time interval of collapse
when the most serious approximations are the restriction
to equilibrium and classical behavior. The time of
"decoupling" of the extra dimensions is then specified by
the requirement that r, R, and the temperature be con-
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tinuous while the physics (i.e., the equations) are not.
Thus if r+, R+, T+ refer to the values of parameters just
before and just after decoupling, the requirement of con-
tinuity is that

R =R+,

From Eq. (9b), however, we have that

hn
r dR

d
T+ r+

hd
(16b)

These imply a relation which can be rewritten in two par-
ticularly useful forms. At decoupling R and T satisfy

(h )n
(17a)

(hd )"R T
I decoupling =

and

r
decoupling

' n/D
n

hd
(17b)

Note, in particular, that Eq. (11) guarantees that the
right-hand side of Eq. (17a) is independent. of S and de-
pends only on D and d. For d =3 and D=40 this con-
stant is 0.12 which guarantees that, for RzK )Rpl, T at
the time of. decoupling is bounded above by 0.12Mpl.
Thus the collapse of the Kaluza-Klein dimensions does
not necessarily lead to a reheating to temperatures above
the Planck temperature. We shall return to this point
bel'ow and explicitly show that in general the reheating
leaves the temperature below Mpl.

As discussed in Ref. 1, there is the question at this
point as to which occurs first: the "stabilization" of R at
R~& or the decoupling of the D dimensions? This issue
can be simply restated in terms of whether the quantity
RT, at the time R reaches R~& assuming no decoupling,
is greater than or less than the bound in Eq. (17a). The
answer is greater for any sizable entropy value as will be
demonstrated shortly by our numerical results and using
the analytic approximations of Ref. 1. Thus the collapse
stops before decoupling occurs for "realistic" parameter
values.

Finally, when the decoupling relation of Eq. (17) is satis-
fied (at td), n is set to 3 and the special values of Eqs.
(10c) and (1 lc) are used in the integration for subsequent
times. This defines the calculations performed. With
RKK ——1 (in Planck units) in the symmetric limit of Eq.
(14), the results for R, r, and T are illustrated by the solid
curves in Figs. 1(a)—1(d), where these quantities are plot-
ted versus time (all in Planck units). These figures illus-
trate several important features. The general behavior is
as expected. The scale R first increases uery rapidly with
time and is then essentially constant [recall Eq. (12) and
the fact that t' is a good approximation to a 6 func-
tion] until it collapses Uery rapidly to R~K. Note that the
bulk of the time variation occurs, in fact, within time in-
tervals of length less than one Planck time. Similarly r
rises rapidly and essentially equally with R, is constant
and then inflates uery rapidly until the collapse of R is
complete. In subsequent times it continues to grow but in
a different fashion. In the intervals t, &t&td and td &t
the equations may be integrated analytically to give the
following behavior for r:

n/d ' ' n/d(n+1)
d(n+1)

2(d —1 )nR D/n

(18)

100
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I
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where t and t are constants of integration. Note that for
t &&t, this is the standard Robertson-Walker behavior
(with S=10 ). The integration constant t depends on the

III. NUMERICAL INTECrRATION —I.O—

We turn now to the results of numerical integration of
Eqs. (5) for d =3, D =40, and S=10 for various values
of RKK and A. For small times we simply numericaHy
integrate Eqs. (5) using Eqs. (9)—(11) to write the right-
hand sides in terms of R and r with n =43. This yields R
and r as functions of time, while Eq. (9b) gives the corre-
sponding temperature. According to the discussion of the
last paragraph the first change in the equations occurs at
t„when R collapses to. RKz. For subsequent times
R =RzK so that Eqs. (15a) and (15b) are relevant, and as
noted earlier the form of T" changes. The right-hand
sides are still given by Eqs. (9)—(11) with n =43 (the D
dimensions have not yet decoupled), but with R =RKx.

100

FIG. 1. The behavior of the scale factors and the tempera-
ture as functions of time corresponding to the parameter choice
A =a =112.9, R~K ——1.0, all measured in Planck units, which
result from the numerical integration of Einstein's equations.
The collapse time t, and decoupling time td are indicated. The
solid curves correspond to the results of the numerical integra-
tion while the short-dashed curves represent the analytic
"matching" results. (a) The scale factor R of the extra D di-
mensions; (b) the scale factor r of the ordinary d dimensions
where the long-dashed curve corresponds to the horizon "size"
ct; (c) the logarithm of the scale factor r; (d) the logarithm of
the temperature T.
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FIG. 2. The behavior of the scale factors and the tempera-
tures as functions of time corresponding to the parameter choice
3 =117.0, a=69.95, and RKK -—1.0, all measured in Planck
units. The collapse time t, and decoupling time t~ are indicat-
ed. The solid curves correspond to the results of the numerical
integration, while the short-dashed curves represent the analytic
"matching" results. (a) The scale factor R of the extra D di-
mensions; (b) the scale factor r of the ordinary d dimensions
where the long-dashed curve corresponds to the horizon "size"
ct; (c) the logarithm of the scale factor r; (d) the logarithm of
the temperature T.

-2.0-

t IOOO

FIG. 3. The behavior of the scale factors and the tempera-
ture as functions of time corresponding to the parameter choice
A =949.0, a =567.5, and RKK ——10.0, all measured in Planck
units. The collapse time t, and decoupling time td are indicat-
ed. The solid curves correspond to the results of the numerical
integration, while the short-dashed curves represent the analytic
"matching" results. (a) The scale factor R of the extra D di-
mensions; (b) the scale factor r of the ordinary d dimensions
where the long-dashed curve corresponds to the horizon "size"
ct; (c) the logarithm of the scale factor r; (d) the logarithm of
the temperature T.

specific value of r at the end of the Kaluza-Klein epoch
and therefore on our detailed assumptions about classical
behavior during the collapse and decoupling regimes.
Thus its specific value in the present calculations is highly
suspect. However, it is clearly of order the time of the
collapse and thus much smaller than the present time (of
order 10 ' in Planck units). Hence the subsequent history
of the universe is insensitive to our inability to evaluate
this number accurately. Similar statements apply to the
integration constant t.

The behavior of the temperature is much less dramatic.
Initially it falls, is then constant with everything else and
then there is some reheating at the time of collapse. How-
ever, as noted above, this reheating does not take the tem-
perature above the Planck scale. For the specific parame-
ter values illustrated in this figure the peak reheating tem-
perature, which occurs just as R reaches RKK, still is
bounded by 0.7 Mp~ (as we shall discuss more fully
below). Of considerably more immediate interest is the
fact that, for the choice of initial conditions chosen, equal
values of a and A, the scale r, which represents the early
evolution of our presently observable universe, does not
fall inside the causal horizon [indicated by the short-
dashed curve in' Fig. 1(b)] during the Kaluza-Klein epoch.
However, while one intuitively expects R and r to behave
similarly during the very early times, i.e., the universe is
in some sense symmetrical in all n dimensions, any de-
tailed equality of R and r is not appropriate. Note, in
particular, that, while the logarithmic derivatives of R
and r are appropriately equal [recall Eq. (12)], the actual
magnitudes of the two scales are defined in very different
fashions. The scale R is, within a factor v'D —1, the ra-
dius of a compact space while r describes the "size" of
that portion of a flat space which is presently observable.

The actual magnitudes, as noted above, are controlled by
the magnitude of the input entropy, the size of R KK, and
our choice of D=40 to guarantee approximately equal,
but relatively small excitation of the various degrees of
freedom at early times. In any case we find that, for ini-
tial conditions A ) 116RK& and [correspondingly from
Eq. (13)] a (72R~K, the scale r is indeed smaller than a
causal horizon at some time during this early epoch. This
is illustrated in Fig. 2 which corresponds to 3 =117.0
and a=69.95 with RKK ——1. The results for RKK ——10
and A =949.0(=117.0&&10' ~") are indicated by the
solid curves in Fig. 3. This figure exhibits the result not-
ed earlier that the "size" of the Kaluza-Klein epoch, i.e.,
the maximum magnitude of R and the time until collapse,
scales essentially linearly with RKK. Thus cosmological
considerations place no constraints on its value as long as
it is not too much larger than the Planck scale. The
long-term evolution of the universe is insensitive.

and

r( t)=at ~(1+a 't ), (19b)

where A and a are related by Eq. (13). Note that the two

IV. ANALYTIC RESULTS

To achieve a more complete appreciation of the numeri-
cal results let us compare them to the approximate analyt-
ic expressions introduced in Ref. 1. The two-term ap-
proximations corresponding to Eq. (12) and useful for
small times, just after the big bang, can be written as

(19a)
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ct —P— — =0.045 46,1

n+1
(20a)

= 1.9091, (20b)

A' = —0.096 51
1

A
(20c)

and

a'=0.08641 1

A
(20d)

Note that A' is negative so that the feature that R(t)
has a maximum is already present in this simple approxi-
mation. Thus the time when the maximum is reached is

easily approximated by setting R =0 in Eq. (19a) to find
' (n +1)/2(n —1)

1

nA'
0 4745A 1.0476 (21a)

for d =3 and D =40. The corresponding value of R is

R =At ' 'n+" 1 ——=09442A'1

n
(21b)

terms in each expression correspond to approximately
solving Einstein's equations including the effects of both
the energy density and the curvature. In the discussion
that follows we shall present the various coefficients and
exponents in terms of simple expressions when such ex-

pressions exist and, since they generally do not exist, in
terms of explicit numerical constants. Since these con-
stants are often raised to large powers or appear as ex-
ponents of large numbers in subsequent calculations, we
shall carry along the requisite high level of numerical pre-
cision. This will guarantee that the reader can easily
reproduce our subsequent results. For D=3 and d =40
the various exponents and coefficients in Eq. (19) are
found' to be

Further algebra' yields the first subleading terms 8' and
b' in terms of the ratios (A/B) and (a lb). For d =3 and
D =40 these relationships are

' D ' d (n+1)/n
8' = —0.018 36

A a
8 b

(24a)

and

b' =0.5669
D ' d (n+1)/n

A a
(24b)

Note the interesting (if misleading) feature that B is neg-
ative (similarly to A') even though this two-teim approxi-
mation corresponds to a leading term which includes nei-
ther the energy-density or curvature contributions and a
second term which includes the influence of only the
energy-density contribution. Thus the approximate solu-
tion again exhibits a maximum for R even though an ex-
act solution of the equations without the curvature contri-
bution would not have such a maximum. Ignoring this
detail we can obtain an approximate analytic solution for
all t in this earlier epoch by simply matching" the two
approximate expressions above at their respective maxima
for R as suggested in Ref. l. After some algebra, again
for d =3 and D =40, we find

8= 1.0681A

b =0.2087aA 0

495 ~ 1028A —12.734R 13.03

and for the square brackets in Eq. (24),
D d

a
8 b

(25a)

(25b)

(25c)

8=109.66RKK ' (26a)

Note, for example, that in the symmetric limit A =a of
Eq. (14) the corresponding values are

The corresponding expressions valid for times near the
singular collapse time to are written in terms of the vari-
able r =(to t ). The explicit ex—pressions are b =399.42RKK ' (26b)

R ( t)=BE(1+B'r')

r( t)=b &(1+b 'r') .

For d =3 and D =40 some arithmetic' yields
1/2

1+ (n —1)—d
D

=0.064 53,
' 1/2

1 — (n —1)—
d = —0.527 08,

=0.9767 .
n

(22a)

(22b)

(23a)

(23b)

(23c)

again indicating that for large D all quantities essentially
scale with RxK. This allows us to calculate r (when
R =0 as a function of r) in a similar way to t~. An ap-
proximation to the collapse time tp can now be obtained
by simply adding

tp —t~+w~ =0.8736A

Using these expressions with the specific values of A and
RKK used to create the solid curves in Figs. 1—3, as dis-
cussed above, yields the short-dashed curves for R and r
exhibited in Figs. 1—3. A careful comparison of the solid
and dashed curves indicates that the simple analytic
"matching" approximation to R is remarkably good. For
the scale r there is a small deviation in the region just
after t which is not surprising given the above proviso
concerning the ~-0 solution. Overall these approxima-
tions are quite reliable and offer a helpful tool for under-
standing the numerical results above. This is especially
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RKK

B
=Q. 3603R~ 15-497' —""7 (28a)

true near the singular points.
As an interesting example let us consider the relation-

ship between the collapse and decoupling times discussed
above. In this approximation the former is given by

1/r

t, —t =0.172
1 09 (n + 1 )/2

RK~

which is extremely small for appropriate values of A.
Thus we recover the result given in Sec. II, that the inter-
val [t„td ] scales essentially as R &K .

while from Eq. (17b) the latter is given by

Q 002 31R 22.025+ —23. 180

Thus the relevant ratio is

(28b)

0 00641R
C

(29)

Thus, as noted earlier, R reaches R KK before the extra di-
mensions decouple [as defined by Eq. (17)], rd/r, & 1, for
A & 0.532RKK . But, also as discussed earlier, the
interesting regime of parameters is a —A
—10 RKx ' (S/10 ) ' . Thus, if we require that
zd =z, in order to avoid any problems with thermal exci-
tation preventing the stabilization at RzK, we find that
we must require S/10 —10 R~K . Hence, with
this constraint, either S or R zz (or both ) must be Uery

small. For example, the requirement that both S=10
and ~, =zd yields the disastrous result that
RKK 10 Rpl, in agreement with the conclusion of
Ref. 6. However, the attitude of the present analysis is
that this is too restrictive. If instead we relax the con-
straint on ~, and ~d, we can proceed as above and simply
evaluate the "amount of thermal excitation" indicated by
the quantity RT at the stabilization time ~„we find

R T =0.149R
C

(30)

So for /1 —10 RKK we find RT(r, )-0.7 which is
clearly larger than the corresponding decoupling value in
Eq. (17a), RT(rd)-0. 12, but certainly does not corre-
spond to a large excitation. Recall that for the specified
entropy we have at the time of the maximum R value that
RT(t )-10 . Perhaps the most important consideration
is that R and r are varying so rapidly in this time interval
(that is why the above constraint is so restrictive) that
classical considerations cannot be valid in detail. Howev-
er, as discussed below we do not expect quantum effects
to change the general classical structure presented above.

We can also consider the interval between t, and td us-
ing the expressions of this section and of Sec. III. From
Eq. (18) we know the behavior of r in this interval and
may use this to deduce that

V. CONCLUSIONS

Let us conclude by considering in more detail the issue
of the reliability of our results. Clearly the Uery rapid in-
flation of the ordinary universe near the collapse time sug-
gests' that equilibrium and purely classical behavior are
unlikely. What will change? If nonequilibrium condi-
tions lead to the production of entropy during this period,
this can be accounted for by simply reducing the excita-
tion (for example, the temperature) during the early epoch
and/or the number of extra dimensions (i.e., D &40).
Perhaps more interesting, and certainly less well under-
stood, is the potential role of quantum gravity effects.
One reasonable effect is the slowing down of the rapid
variation in r via an effective "viscosity" term in the
equations coupling R and r. The essential point is that,
for the present purposes, we need not understand any such
effect in detail. Unless it participates in such a dramatic
way as to exclude the basic Kaluza-Klein scenario, where-
by some dimensions compactify while others do not (a
disaster for all cosmological Kaluza-Klein ideas except
for a static R =R &~ scenario), such an effect can only de-
lay somewhat the onset of the inevitable Robertson-
Walker epoch. This general attitude is illustrated pictori-
ally in Fig. 4. At early times, when the classical analysis
is presumed to be appropriate, the figure is identical to the
earlier figures. Note, in particular, that the issue of
whether the scale factor r is within a causal horizon at
early times is answered (in the affirmative) during this
presumably classical regime. However, during the short

h„T=
D&d) I/n

T

2(d —1)n

d(n+1) f„ r) —2/(n+1)

Now at td, T=0.121/RKK and so we find that

td —t=16.85R ' +"
In a similar fashion we may find

(31)

(32)

KK

10
log t

20

FIG. 4. Idealized view of the evolution of the scale factors as
in the previous figures, but with the "black box" of ignorance
clearly indicated. Note the short relative duration of this re-
gime.
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time interval surrounding the collapse quantum effects are
essential, but poorly understood. Thus this region is iridi-
cated by a "black box." The important point is that, un-
less the collapse is completely stopped by the quantum
levers and gears in the "black box, " the universe as it
emerges from the box must evolve as indicated. In this
case the only issue is the value of t. While the specific
va1ue of t may be in considerable doubt due to our ig-
norance of the interior of the "box," the overall evolution
of the universe will be unchanged. Such details are simply
lost on the logarithmic time scale on which the subse-
quent cosmological events occur. Thus we conclude, as in
Ref. 1, that Kaluza-Klein scenarios with -40 extra di-

mensions offer an explanation of the usual entropy, infla-
tion, and fine-tuning problems. The more detailed issues
of the matter spectrum, the return to equilibrium after in-
flation, and the role of Auctuations require considerable
further study.
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