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Ground-state pseudoscalar nonet and the generalized MIT bag model
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Some properties, such as masses and charge radii, of the (m, E,q, g') mesons are analyzed in the frame-

work of a generalized MIT bag model. A suggestion is made about. the q' problem.

In a previous work' (hereafter referred to as I), we have
generalized the MIT bag action by introducing the surface
term

ters
n(u) n(d) n(s)

1+P(u) 1+P(d) ' 1+P(s) (2)

dtr[aliIlll + Tplptr~ T3lp ( ttl tlat tqtt~) ]

where n and p are two dimensionless parameters such that
a2+P2= +1 and

2

The two fermion fields $1 and p2 are linked through charge
conjugation. The parameter

g = n/(1+ p) = a/[1+ (1—n')'/']

If g~ A g„, the surface term in the bag action breaks the
SU(3) flavor symmetry. In this case, one of the two non-
linear boundary conditions of the model requires that the
mass m, of the s quark must be finite. As will be shown,
the value of g~ fixes unambiguously the mass m, .

Let us consider first the ~ meson. We make use of the
results in I for static spherical bags and neglect here any
type of possible corrections (center-of-mass fluctuations,
recoil effects, . . . ). From I we expect that g must be
small. We have, to first order in g,

~ 1/4

M„= T(4 2rB)'/(6g ) /4, R

has an important role. We have shown that, for small g and
massless ferrnions, the' generalized model describes a physi-
cal situation very close to the Nambu-Goldstone chiral-
symmetry realization.

The aim of this paper is to add to the theoretical results
of I a quantitative analysis of some properties of the lightest
mesons (2r, EC, q, q'), in order to give phenomenological
content to our model. We will fix our attention on the fla-
vors u, d, and s. On the basis of I, we assume that the con-
fined quarks u, d, and s are described through two spin-T
fermion fields:

u1(x) 'd1 (x)' s2(x)
u(x)= „( ), d(x)= d( ), s(x)= ( )

Furthermore, we assume that the u and d quarks are
massless (as in I) and their surface parameters are equal:
a(u) = a(d), p(u) =p(d). Then we introduce the parame-

I

where R is the bag radius of the m meson. Furthermore,
from the wave functions in I, we can calculate the mean-
square charge radius (r 2) of the charged 2r mesons.

To the first order in g„, we have

(» 2) 1/2 ( 3 )1/2g (4)

Therefore

M (r„2)'/2=6. 2g

From M„=0.14 GeV and (r~ )' =0.62+0.03 fm (Ref.
2), we obtain g„=0.07 and B' "=0.11 GeV. This value of
8 is close to that considered in previous works on the MIT
model. The smallness of g„confirms the theoretical pre-
dictions of I: on the one hand, g„ is proportional to M; on
the other, g controls the amount of violation of the axial-
vector-current conservation.

It is useful to consider the wave function P of a quark in-
side a meson. We can write

ij a(ter) U

—jt(ror) a ttU

I/2

, (1+—,
' g„2+ )

4mR 3

1 —3g 2 + U~

g R
+ o. ~ iU

exp —i t
1

p'(t, r )p(t, r )=, , [I+0(g ')]
Tm R~3

On the basis of the previous small value of g, we see that a charged m meson at rest can be described, with a very good ac-
curacy, as a sphere with a uniform charge density. Furthermore, the lower component of the Dirac spinor p(t, r ) is small
compared to the upper component: in other words, P(t, r ) appears as a nearly nonrelativistic object. However, the rela-
tivistic formalism has a very important role. The lower component in the Dirac spinor is crucial, even if small, in order to
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have the m meson in the spectrum. For these results we
see that there is an interesting connection between approxi-
mate chiral symmetry and the nonrelativistic approximation
in the quark model. This kind of connection has been dis-
cussed with more details in a recent paper, 4 in the frame-
work of effective Lagrangians.

Now let us consider the charged K mesons. %e fix our
attention on the K . The s)(x) field takes part in this case.
At first sight, in order to keep approximate chiral symmetry,
we could break the flavor symmetry only through gK A g .
However, as will be clear, this is not possible. So, let us as-
sume that the mass m, of the s quark is finite. By generaliz-
ing the results of I, we are led to consider the fields

1 1

s)„1 (t, r)=W (1)
' 1/2

Xn, —1 P . (1) 2 2 1(2 I'

(1) J1 (xn—1 , p ) o ' neinX„1+@,

.&n, —1
(1)

exp —i ' t
K

(6)

where p, = m, RK and RK is the bag radius. The linear boun-
dary condition (3.2) in I gives

l

alent, we can calculate RK through the minimum (with
respect to RK) of the quantity

(x (1) 2 p2) 1/2

tan(x"'1' —p, ')' '=
1 —gK(x.", -'1+P )

(7) 4 (R )3~
K K

For the K, we select the solution x1(')
1 (gK, p, ) of Eq. (7).

For small values of gK, we have

x1, —1(gKPP) P+3gK TpgK + (175 P' 5 )gK

which gives the K rest mass.
The other nonlinear boundary condition gives the con-

straint

The bag radius RK of the K meson is fixed by one of
the two nonlinear boundary conditions. Since it is equiv-

l

n 1~(/1 (s( X'st+ u2 X'u2) -0 ( r = RK)

which, as in I, leads to the condition

(10)

1

[RK p x(gK p)] Jo([x(gK p) p ] ) Jl ([x(gK p) px(gK, P )+P
= %2[RK, G,x(g, 0) ] [jo'(x(g„,0) ) —j1'(x(g, 0) )], (11)

where x(g, p, ) =x1' 1(g, p, ). If we calculate the normalization factors PP and make use of the linear boundary condition,
we can write Eq. (11) in the form

with

A(gK, p)=A(g, 0)

&(g, p) = (I —g') [x'(g, p ) —p ']
g'x(g, p) [x(g, p)+p] —2gx(g p)+x(g, p)[x(g p) —p]+pg

(12)

The function A (g, p, ) has the following properties: (i)
A (0, p, ) =3 (p, ~0); (ii) for every fixed p, ~0 A(jg, p, )
(0~ g ~ 1) is monotonic decreasing in g, with 2 (1,p, ) = 0;
(iii) for fixed g A 0 A (g, p, ) is monotonic decreasing in p,

with A (g, p, ) 0 as p, +~. Then, from Eq. (12), it fol-
lows that gK & g implies necessarily p, & 0. Furthermore,
for p, A 0, we must have

gK &g~ (13)

M =m, + + +7~(R )a .3gK 3g1P 4 3

K K

Therefore,

(14)

Then, due to the smallness of g„, we can write Eq. (9) in
the form

I

since, to first order in g [see Eq. (17)], the mean-square
charge radius of the charged K is given also by

(r 2)1/2 ( 3 )1/2R

As a consequence of Eq. (13), we obtain the inequality

(rK ) '/ & (r„)'/, in agreement with the experimental
data 2 s

From the previous results, we can predict a relation
between the masses and the charge radii, without fixing our
parameters. For small gK and g, Eq. (12) becomes

~s&KgK = 4g~ (17)

Then, from M„R„=Sg and Eqs. (15)—(17) we obtain
the relation

1/t'4

M =m+4g +g"
1

From Eqs. (3) and (4), it follows that
1

(»K') "' g.+ gK

(» 2) 1/2 2g

(15)

(16)

M„2(rK )' (r„) 2 —((r„)/(rK ) )

Equation (18) can be used, for example, to predict the
charge radius of the K +—

, starting from the knowledge of
M, MK, and (r 2)'/. By making use of MK/M~=3. 54,
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we obtain from Eq. (18)

(1 2) 1/2

(r 2) 1/2

Then, for (r„2)'/'=0. 62 fm, we have

(19)

It is useful to recall that, in our approach, the antiquark ql
is associated with the negative frequencies of the quark field
Q2

Of course, q„~ and q, have nothing to do with the physi-
cal q and q'. If the flavor symmetry were exact, q and g'
would correspond to the states"

(re )' '=0545 fm

in excellent agreement with the experimental value
(rtr ) / = Q.53+ Q, Q5 fm (Ref. 5).

From g =0.07 and Eqs. (16) and (19), we obtain the
value of g~'. g~=0.014. Furthermore we have

t

(20)
gm

which can be used to fix m, . We obtain m, = 399 MeV.
Now we consider the mean-square charge radius of the-

Ko meson. A very simple argument of the nonrelativistic
quark model, based on the mass asymmetry m, ) mq, shows
that the It.'a should have a positive core. Therefore (r a')
should be negative. The following experimental values have
been reported:

t

0.05 +0.13 fm2 (Ref. 8)
(r ) = 0.08 +0.05 fm2 (Ref. 9)

—0.054+0.026 fm' (Ref. 10)

1
't)8 = ~ I ttltt1+ itdt —2sts1)

1
2)1 = ~ I ttt t/1+ dtdt + S1S1)43

respectively. The breaking of SU(3) symmetry leads to a
mixing of the states q8 and ql, so that q has a small ql
component, while q' has a small qs component.

In any case, a linear combination of q„q and q, can ac-
count for the mass of the q meson, since M„ lies between
M„and M, . However, the g' meson is ruled out: we are
faced with the U(1) problem. "'2 Here we suggest a possi-
ble answer to this problem (recently, in the framework of
the standard MIT model, a calculation of the q and q'
masses, based on the mechanism proposed in Ref. 13, has
been reported'4) .

Let us consider the fields u2(x) and d2(x). Their first
positive eigenfrequency is given by [see Eq. (3.12) in I]
(2r —g„)/R, to first order in g„; 8 is the radius of the bag
where the fields are confined. Then the ground state of the
system u2u2 or d2d2 has a mass

The last negative value agrees quantitatively with the non-
relativistic quark model. In our approach, the charge densi-
ty p 11(r), inside the ICO, is zero to the first order in g .

If we go to the second order and make use of Eq. (17),
we find

M = T(4' B)'/4[2(2r —g„)]2/4= 1077 MeV

which is also the mass of the isoscalar

(24)

r

r

From this and the previous results we obtain

(r 82) = —0.3x10 2 fm2

(21)

(22)

7) = Iu2u2+ d2d2)-= 1

I

Due to their order of magnitude, M and M, [Eq. (23)] can
be considered as nearly degenerate. Therefore, if we as-
sume that the q' meson is a linear combination of q, and q,
it is natural to suppose that q, and q are maximally mixed:

Ms = 2m, + 7(4mB)'/4(6gtr)2/4= 840 MeV (23)

a negative but very small value. This result seems to agree
with the analysis made in Ref. 6, where it is shown that the
relativistic effects obscure the role of the mass asymmetry,
lowering then I (r a ) I.

We conclude with a discussion about the isoscalar mesons
(52)49 MeV) and q'(958 MeV). As was to be expected, we

have two isoscalars in our spectrum,

2)u, d I ttlttl+ dldl) r)~ =
I stst)= 1

2

the first degenerate with the m meson, the other with a
mass

t' 1 1

Jp 9s jg 0 (25)

From Eqs. (23)—(25) we obtain the mass of the
meson,

M /=958. 5 MeV

Furthermore, if q' is given by Eq. (25), there is no conflict
between the mass M r and the chiral-symmetry limit. We
have M, 0 as m, and g~ 0, but M 1096 MeV asg„0. However, as shown in I, the limit g 0 gives a
conserved axial-vector current.
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