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The interaction potentials for two static sources of isovector scalar meson field are calculated us-

ing methods that treat the asymptotic region correctly. The variational calculations for both the sin-

gle source and the two interacting sources use coherent meson-pair states that give good results for
all coupling strengths. Both the T =0 and T =1 potentials are shown to be attractive at small
enough source separation. The dependence of the potentials on the form factor of the Yukawa in-
teraction is exhibited.

I. INTRODUCTION

The calculation of the interaction potential energy be-
tween static sources of meson field has recently become an
interesting field because of several developments. First, it
seems likely that the form factor for the pion-nucleon Yu-
kawa interaction is related to the quark-gluon structure of
the nucleon core, ' so that any measurable quantity that is
sensitive to this form factor may eventually give informa-
tion about the nucleon core. It is shown in the following
that the static meson potential is sensitive to the structure
of the Yukawa interaction in the case of isovector-scalar-
meson interaction. If this also holds, as seems likely, for
pion interaction, the nucleon-nucleon potential may pro-
vide information about the n.NX vertex. Second, the
development of meson field theories of nuclear binding
and structure has so far not been extended to the two-
nucleon problem, so that the constraint of fitting the
two-nucleon data has not yet been applied to the parame-
ters of the meson theories. The static meson potential
provides a way of computing two-nucleon properties from
meson theory that is valid for the strong eouplings that
are currently fashionable. Third, recent work has shown
that the one-pion-exchange (OPE) potential describes
several features of the two-nucleon system. quite well; it is
therefore important to know the extent to which the actu-
al nucleon-nucleon potential due to pion exchange is
represented by the OPE potential, and a quantitative
answer to this question can be provided by the static pion
potential.

An earlier paper on static meson potentials developed
the basic ideas needed to treat two interacting static
sources of meson field. That paper gave the first correct
treatment of the static potential due to isoscalar-vector-
meson exchange. In the ease of non-Abelian source-
current operators, the use of just two modes of the meson
field was shown to be adequate for the calculation of the
static meson potential, and a coherent-state method valid
for all coupling strengths was used to treat both the single
source and the two interacting sources. The asymptotic
behavior of the potential was not handled correctly in Ref.
4; suitable methods for handling the asymptotic region
were described in a subsequent paper and shown to give a
new distorted-field approximation (DFA) scheme for

computing the potential.
The present work applies the best techniques now avail-

able, not to the case of m-meson exchange, but to the
simpler case of the isovector scalar meson field. The aim
here is to describe and test some improved methods and to
try to obtain an understanding of the general behavior of
the static meson potentials in a relatively simple case be-
fore applying the same methods to the algebraically very
difficult m-meson case. At large source separations, a
DFA method is used to guarantee the correct asymptotic
behavior of the potentials. At lesser separations, both the
DFA and a new approximation constructed specifically to
treat short-range correlations are computed; since the
methods used are variational, the lower of the two approx-
imate potentials is an upper bound to the actual potential,
and it is used as the approximate potential. In all cases,
improved all-coupling methods based on the use of
coherent meson-pair states are applied.

In contrast to the case of isovector-vector-meson in-
teraction, the isovector-scalar case requires a form factor
to make all quantities finite. The computations show that
the static meson potentials depend on the form factor,
and, therefore, that there are cases in which the deter-
mination of the static meson potential can be used to gain
information about the mesonic form factor of the indivi-
dual sources.

Section II gives the formulation of the problem of in-
teracting sources of meson field. Section III discusses the
best way to attack the problem of a single static source of
isovector scalar meson field and shows that the coherent-
meson-pair methods of Ref. 6 are accurate and easy to ap-
ply. Section IV gives the general methods for two sources
of meson field and describes the DFA and an extended
DFA, while Sec. V shows how the coherent-meson-pair
methods can be applied to generate state vectors that are
appropriate for small separations of the two sources. The
computational results are given in Sec. VI.

II. FORMULATION OF THE PROBLEM

Consider the general case of N sources of isovector field
that can be either scalar, the VS case, or vector, the VV.
case. The Hamiltonians for the VS and VV cases are tak-
en to be of the Yukawa form, as in Refs. 4, 5, and 7,
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Hvs Km+HI +HI

H~ ——H +HI+Hl+K2,
H=Hg+H i+Hi+Hi,
H~ ——W„[A .A —Gv"(A +A)],

(3.4)
H„=f co(k)a i (k)ai (k)dk,

Hq ———g g r~z f i,&&ai(k)e ~dk,
[16 3 (k)]1j2

p~(r)p~(r')
H, =y y &p. rq f ' ', drdr,

p&q=1 r r

(2.1)

p~(k)e ~= f e ' 'p~(r)dr . (2.2)

where Rz and pz(r) are the position and density of the
pth source; it is assumed that all sources have the same—ik R
form factor p (k ), where p (k ) e ~ is the Fourier
transform of pz(r),

H„z ——f co(k)aj (k) ai (k)dk,

H, =(A' G—r) f [~(k)y, (k)]iai(k)dk,

where W (single source infinitely far removed from oth-
er sources) is given by

8' =fco(k)
i t'ai(k) i

dk. (3.5)

It has been shown that the ground-state energy of the
internal Hamiltonian Kz is a good approximation to the
ground-state energy of H.

The interesting part of Hz is the single-parameter
Hamiltonian h:

Both y and g are coupling constants, related by h =A A —Gr (A +A) . (3.6)

g 2

4~
(2.3)

The term H2 in the Hamiltonian is present only in the VV
case, not in the VS case (Ref. 4 has a more detailed dis-
cussion of the origin and function of this term). The iso-
spin index A. is subject to the usual summation convention.

As in Refs. 4, 5, and 7, a single-source normalized
meson mode function q&(k) is defined by

=Gco(k)(p(k),
[16m co(k)]'i

(2.4)

where the' normalization constant and dimensionless cou-
pling constant G is given by

2f
16' co (k)

(2.5)

The absence of any extra energy parameter in the defini-
tion of y follows from arguments given in Refs. 8 and 9.

' With the definition of y of (2.4), HI takes the form

A A ~y)=y ~y) . (3.&)

As has been demonstrated in Ref. 6, the normalized state
~ y ) with the quantum numbers of the bare source is

given by

g3(yA t.A t)

( z)]ig2 ~ 2 & (3.9)

where
~

—,
' ) is the bare source state with isospin —,

' and the
function g„(x) is defined by

In previous work' on the case of isovector mesons, the
best approximation method applied to the treatment of
the Hamiltonian h involved the use of coherent states

~ y 1 ) that satisfied the coherence condition

(3.7)

More recently, Ref. 6 showed that a more convenient set
of coherent states is the set of "coherent-pair" states

~ y )
that satisfy the coherence condition

Hl ———G g r~ f co(k)p*(k)ai (k)e dk .
p

(2.6)
(2v+ 1)!!

X
2"n!(2v+ 2n + 1)!!

(3.10)

III. SINGLE SOURCE

When there is just one source, it is appropriate to define
the normalized meson mode function q&&(k) for the single
source, I y & (3.11)

For the next state there are several possibilities. One is to
use the state h ~y) as the next step in a Lanczos or mo-
ment procedure. Two more possibilities are to use the
one-extra-meson state

y)(k) =y(k)e (3.1) or the one-fewer-meson state

which is then used to decompose the annihilation operator
ai (k) into internal and external parts:

w. A
~y) ~ (3.12)

ai.«) =Ai.V i«)+aii «), (3.2)

f tpi(k)ai„j (k)dk=0 .

Then the single-source Hamiltonian becomes

(3.3)

where the l subscript is used to indicate orthogonality to
'the internal mode function y&(k):

and a fourth is to use the normalized coherent-pair odd-
meson state

~

z ),
g5(zA .A ) r.A t

[ ( 2)]I /2

(3.13)

A.A ~z&=z ~z) .
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[It is relatively easy to see that adding the state of (3.12)
to the. vector space under consideration is equivalent to
adding the state of (3.13) with z set equal to y.] In all
four cases the Hamiltonian matrix is quite straightfor-
ward. In the first three cases the coherent-pair parameter
y is varied to minimize the lowest eigenvalue of h; in the
fourth case the minimization is over both y and z. The
results for the lowest eigenvalue for the value G =1 for
the dimensionless coupling constant are —1.322, —1.652,
—1.653, and —1.661, respectively. The Lanczos or mo-
ment procedure is clearly inferior and will not be con-
sidered further.

A further test is provided by the fact that the exact
ground state of h must satisfy the relation

IV. TWO SOURCES

As in Refs. 4, 5, and 7, the two-source normalized
meson mode functions y+(k) are defined by

y, (k) = (e '+se '),y(k ) —ik.R| i—k Rg

nq 2
(4.1)

where s takes the values + and —.The mode normaliza-
tion constants n+ are given by

n, (R)=1+sc(R),
(4.2)

c(R)=f i
y(k)

i
cosk.Rdk,

and R is the source-separation vector

(A) =G(r) =Gr(G)r, (3.14) R=Rg —R2 . (4.3)

r~ ——0.4203, r =0.4375,

r& ——0.4202, r, =0.4375, (3.15)

the first part of which follows from the commutator of A
with h, while the second part is just the definition of the
coupling-constant renormalization r ( G). This relation
means that the coupling-constant renormalization r(G)
can be computed in two ways, one from the expectation
value of the operator A and one from the expectation
value of the operator r. The results for the cases of (3.11),
(3.12), and (3.13) are

In terms of the orthonormal mode functions y, (k), the
two-source interaction Hamiltonian Hz is

Hs ———G g nsrx, f co(k)q),*(k)ag(k)dk,
S

where the operators r~, are (note that they are defined as
in Refs. 5 and 7, not as in Ref. 4)

1 2—(r~+sr~) .
&2

(4.5)

The decomposition of the field operator a~(k) in terms of
the mode functions y, (k) gives

rg ——0.4209, r =0.4235, ak«) =/ARAN(k)+alai. (") (4.6)

(A —Gr) =0, (3.16)

respectively. It seems that the use of a coherent-pair
odd-meson state does give an improvement over the use of
a single coherent-pair parameter.

The inclusion of an excited-pair state in the basis gives
an improvement in the lowest eigenvalue of 0.00007, and
the two renormalization constants become 0.4210 and
0.4233. Hence, it is reasonable to use just the two-state
basis of (3.9) and (3.12). Actual calculations show that
the best choice for the next states to be included in the
calculation is the two states (d/dy) iy) and (d/dz) ~z),
rather than the excited-pair states.

It is also possible to constrain the ground-state trial vec-
tors to satisfy the condition that the expectation value of
3 —6~ vanish,

where ai„i (k) is now orthogonal to both of the mode func-
tions y, (k),

f y,*(k)a~i (k)dk =0, s = +,—. (4 7)

In the case of two sources, the subscript I will be used
generally to indicate orthogonality to the two mode func-
tions y+. Substitution of (4.6) into the Hamiltonian gives

Hyg ——Hg +H~g +H) +H],
Hvp ——Hg +H~g+H)+H] +H2,
Hq ——g W, (R)[A, .A, Gn, (R)w, (—A, +A, )], (4.8)

S

H„i =f cu(k)a i (k).ai (k)dk,

H~ ——+[A~, —Gn, (R)ri„,]f [co(k)y, (k)]i a~i (k)dk,

that follows from the commutator of A with the Hamil-
tonian. Computations that minimize the expectation
value of H over the subspace of states that satisfy (3.16)
show that the constraint changes the lowest eigenvalue by
very little, the second by rather more.

To summarize this section, calculations show that it is
reasonable to use either the'two-state basis of (3.9) and
(3.12) or the two-state basis of (3.9) and (3.13) in calcula-
tions of the ground-state energy of the Hamiltonian of
(3.6); this conclusion is also valid for the analogous two-
state bases with isospins greater than —,'. In the following,
when reference is made to calculations involving h, it is to
calculations with the two-state basis of (3.9) and (3.12).

where W, (R) is given by

W (R)— f~(k)
~
y(k)

~

~(1+s cosk.R)dk1

ns

W +sw(R)
1+sc(R)

w(R) =fm(k)
i q (k)

~

'cosk Rdl,
c(R)=f iq(k) i'«sk Rdk,

8 is the same as in the single-source case,

(4.9a)

(4.9b)
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and

[w(k)p, (k)]j ——[co(k)—W, (R)]qr, (k) . (4.10)

The term H2 is given in (2.1).
The term Hz in H is the "internal" part of the Hamil-

tonian, involving just the internal modes y, . The term
H„i gives the noninteracting energy of the external modes
created by az, and Hi describes the interaction between
the internal and external modes. For many purposes, the
ground-state energy of Hz gives a useful approximation
to the ground-state energy of the total Hamiltonian; in
this paper, some approximations to the ground-state ener-

gy of H~ are computed. It has been suggested" that the
external modes be treated by diagonalizing the total Ham-

iltonian successively in. spaces with 0,1,2, . . . external
mesons.

As was shown in Ref. 5, in the asymptotic region it is
useful to introduce the distorted-mode functions
p= 1,2, that go over into the single-source mode functions
as R ~ ac and the corresponding mode-annihilation
operators Az,' these modes and operators are given by

p, (k) = [pi(k)+sy2(k)],
1

2
(4.11)

1
A~ —— (Agi+sAgp) .

2

In terms of these modes, H~ takes the form

Hg ——g Hg~(R)+Hgi(R),
P

Hg~(R)= —,
' [W+(R)+ W (R)][Aq.Aq G(R)r—~.(Ap+Ap)],

Hgl(R)= —,[W+(R) W(R—)](A1 A2+A2 Al)

——,
' G[n+(R) W+(R) n(R) W —(R)][7' (Aq+A )2+ r(A i +A i )],

n+(R) W+(R)+n (R) W (R)
G(R)=G

W+(R)+ W (R)

(4.12)

EDF(R)=2Ei(R)+ U(R)ri r2, (4.14)

where E&(R) is the ground-state energy of Hz(R) and
U(R) is given by

U(R) =r (G(R) }[G (R)( W+ —W )

2GG(R)(—n+ W+ nW —)] . (4.15)

As in the previous section, r(G(R) } is given by

(gl I
rl

I gl & =r««)}r . (4.16)

In the DFA, the potential energy of the two sources is

VDF(R) =2Ei(R) —2Ei( co )+ U(R)ri rp . (4.17)

Instead of the single-state basis of (4.13), it is possible
and relatively easy to use the basis

The distorted-field approximation (DFA) uses the
ground state

(4.13)

of H~ + H~ as an approximate ground state of the two-
source system; the expectation value of Hz(R) in this ap-
proximate ground state is

I

where t and B are single-source matrices that depend only
on G(R); it follows that in this case the matrix elements
of Hzl can be worked out easily; they all are proportional
'to 'ri r2. When the states

i
a & and

i P& have other iso-
spins, the matrix elements of H&I are somewhat more
complicated, but again they can be worked out. The ma-
trix of H~ can then be diagonalized over the larger sub-
space corresponding to the selected sets of states

i
a& and

i p&, and its lowest eigenvalue gives [after subtracting
2E&( 00 )] a better approximation to the source-source po-
tential. This may be called an extended DFA. The nu-
merical computations shown later were performed in the
extended DFA using states with T =Tp. For T = —,

'

the same two isospin- —,
' states for each source that were

described in the preceding section, namely, the two states
of (3.9) and (3.12), were used; for T~= —, the analogous
pair of states was used.

Note that all the states of (4.18) are not needed; for
a&p only the symmetric combinations are required be-
cause of the exchange symmetry of the Hamiltonian.
Also, it is not necessary to use eigenstates of the single-
source Hamiltonian; it suffices to use states that span the
desired single-source space.

a = a (4.18) V. TREATMENT OF THE SHORT-RANGE
HAMILTONIAN

where
i
a& &

are any states in the subspace of states acted
on by Hz and

i p&2 are corresponding states in the space
of Hz. The isospins T~ and T~ of the states

i
a& and

i p& are coupled to give the total isospin. If the states
i
a & and

i p& both have isospin —,', it is easy to see that

(4.19)

The short-range form of the Hamiltonian Hz is given
in (4.8):

H„=g W, [A, A, Gn, r, (A, +—A, )], . (5.1)
S

where r+ are given by (4.5). The quantity of interest is
the ground-state energy of Hz as a function of the four
parameters 8 + and Gn+. Again the coherent-pair
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methods of Ref. 6 will be used. A basic (no-pair) state
I
m+m ) is defined to satisfy

At. A, Im+m )=m, Im+m ),
A, .A,

I m+m )=0.
(5.2)

Then the coherent-pair state
I m+y+ m y ) is given by

I m+y+m y & =g,+,„(y+A+ A+ )

&(g+, (y A A ) Im+m

(5.3)
t

where the functions g~(x) are given by (3.10); the states
I m+y+ m y ) satisfy the equations

As'As
I m+y+m y & =ys I m+y+m y

(5.4)

(1+x+1 x
I m+y+m y )

=g3+&m+ (x+y+)g3+zm (x —y —)(1+1
I m+m ) .

The te:hniques of Ref. 6 can be used to reduce coherent-
pair-state matrix elements to combinations of basic-state
matrix elements. The necessary matrix elements are

(1+x+1 x
I
A, A,

I m+y+m y ) =

(1+x+1 x Ir A Im+y+m y )

&s3's

3+2ms g5+2m (xsys)+msg3+zm (xsys) &1+1—
I
m+m —&

S S

(5.5)

Ps
~ 'g3+2i (x+y+ )g3+21 (x-y- ) & 1+1-

I r. A.
I
m+m - &+ & 1+1-

I r. .A.
I
m+m - &+ 1 l s s

Thus, it is only necessary to evaluate matrix elements
involving basic states. There are two bare source states of
the two sources, Qp with t=0 and Q~ with t =1, where t
will be used for the source isospin (total isospin of the two
sources). The states Qp and Qi are clearly both basic
states. The states Qp and Q& are odd and even, respective-
ly, under interchange of the isospins of the two sources.
It follows immediately that

v+Qp ——0,
~+Q) ~ Q),

Qp~Q),

Q) o. Qp.

(5.6)

~+ ~+ ——3+v) w2 ——4t,
=3—v)-w2 ——6—4t,
=0,

(5.7)

so that the normalized basic connected one-meson states
are

I01—)= r .A Qp,~6
I
1,1+ ) = 2m+. A+ Q, , — (5 g)

I
1, 1 —)= r .A Qi.v'2

These relations will be called the t rules. The total isospin
is composed of source isospin and meson isospin. The
one-meson (in the rest of this section, "meson" will mean
internal meson) states with isospin t are r, .AsQ, . The
ones connected by Hz to the bare source state Q, are
~, .A, Q„and, since only basic states with up to two
mesons will be constructed here, these are the only ones
that will be needed. It is easy to see that

I02+ —)= r+ A+a A Qp,
24

I
0,2 ——) cc [(r A ) —2A .A ]Qp —0,

(5.9)

where the vanishing of
I
0,2 ——) can be demonstrated in

various ways; it follows most simply by noting that
7"iQp= —72Qp The norm. alization of

I
0,2+ —) is easily

found. For r = 1 the two-meson basic states are

I 1,2 —+ ) = r A r+.A+Qi,t
8

I 1,2++)=( ~ )' [(r+ A+) ——', A+ A ~]Qi,
I12——)=(~)' [(r A ) ——', A A ]Qi,

useful relations are

A (r .A )'Q, =(4+4r)r A Q, ,

r+.A+(r+ A+) Qi ——6r+ A+Qi .2

The nonvanishing matrix elements of r Aare.
Qp r .A I01—)=v 6,
Q+ir A

I
1, 1 —) =~2,

(1,1+
I
t .A

I
1,2 —+)=v2,

(1,1 —
I
t A

I
1,2 ——) =( —, )'~',

and the nonvanishing matrix elements of r+ A+ are

(0, 1 —
I
t+.A+ I

0,2+ —) =2,
Qi+r+. A+ I

1,1+)=2,
(1,1+ It+ A+ I1,2++)=.( 3

)'~'.

(5.10)

(5.11)

(5.12)

(5.13)

I

The state v.+ 3 + Qp vanishes by the t rules.
Two-meson basic states with t =0 allowed by the t

rules are



M. BOLSTERLI 31

1.2
1.0

this is v7p2

E
~ 0.6—

0 ~
5—

0.0

0.0
0.0 1.0

mR

2.0

The above matrix elements, together with the general
rules given in (5.5) suffice to work out the matrix of Hz
in the basis of coherent-pair states constructed on the
basic states with up to two mesons.

VI. CALCULATIONS

The form factor in the VS case is taken to have the
form suggested in Ref. 12,

Pis(k)= (1+@'/M') '/' (6.1)

where M is the mass of the source; the parameter M can
also be regarded simply as a cutoff parameter.

Figures 1 and 2 illustrate the various approximations
for the case that the renormalized coupling constant yR is
0.2 and the cutoff parameter M has the value 7m. For
T =0, Fig. 1 shows that the extended DFA (solid curve)
provides the variationally best approximation to the
ground-state energy of the two sources; this superiority of

FIG. 1. Potentials for y~ ——0.2 for the case T=O and
M=7m. The dotted curve is the OME potential, the long-
dashed curve is the DFA potential, the short-dashed curve is
the short-range approximation to the potential, and the solid
curve is the extended DFA potential. These same conventions
will be used in Figs. 1—10.

-0.5 I (

0.0 1.0
mR

FIG. 3. Combined potentials for y~ ——0.2 and M =7m.
Dashed and solid curves as in Fig. 1.

2.0

the extended DFA is a general feature of the T =0 poten-
tials. The dotted curve is the nonvariational one-meson-
exchange (OME) potential, including the source form fac-
tor of (6.10); since it is not variational, it is not a candi-
date for the actual potential and is shown for reference
only. Figure 2 shows that the T =1 case follows the ex-
pected pattern, in that the extended DFA is best for larger
source separations and the short-range treatment is best
for smaller source separations. Figure 3 shows the best
potential for both values of the isospin T. The cusp in the
curve for T =1 shows that the accuracy of the potentials
needs to be improved in the region near the cusp.

As was noted in Refs. 4 and 7, when the difference be-
tween the two potentials is greater than the meson mass
m, the upper potential is no longer valid; a component
that consists of the T =1 state vector plus one external
meson must be added to the T=0 state vector. If the
external meson is at infinity, the energy is clearly just the
energy of the T =1 state plus m, so that the true energy
of the lowest T =0 state is bounded by m plus the energy
of the lowest T =1 state. Figure 4 has the T =0 poten-
tial corrected by just this upper bound. Reference 7 sug-
gests that the cusp in the T =0 potential will be rounded

0.2

E
-0.2

-0.4—

-0.6
0.0

/
/

/ .'

/
~
' /

/
/

/
/

/

I
I
I

I
I
I
I

I
l
l t

1.0
mR

2.0

0.5—

0.0

-0.5
0.0

/
/

/
/

/
/

/
I

I
I

I

1.0
mR

2.0

FIG. 2. Potentials for y~ ——0.2 for the case T= 1 and
M=7m. The various curves have, the same significance as in
Fig. 1.

FIG. 4. Final potentials for yz ——0.2 and M =7m, including
the bound due to one-external-meson states. The OME potential
is shown for reference.
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2.0 0.4

0.0

E
-2.0—

-4.0—

-6.0
0.0

T=O
r

/
/

..- /'
/

I
I

I
I

I
I

I
I

I
I

I I
I I
I I
I I
I I
I I

I I
I
I
I I
I I

I I I

1 ~ 0
mR

2.0

0.2—

0.0

-0.2
0.0

'
~ . X

T=Q

1.0
mR

2.0

~ ~ ~ ~ p+ ~

T-1

I ml I I I

FIG. 5. Final potentials for yR ——1.0 and M =7m, including
the bound due to one-external-meson states. The OME potential
is shown for reference.

FIG. 7. Final potentials for y~ ——0.2 and M=2m. The
OME potential is shown for reference.

if a computation that incorporates the one-external-meson
state is carried out. The OME potentials are also shown
in Fig. 4 for reference. Note that both the T=0 and
T =1 potentials are attractive at short distances; this at-
traction in all potentials at short distances is a general
feature of potentials due to non-Abelian interactions,
where the lowest potential is attractive and pulls the other
potentials along. This behavior invalidates the old argu-
ments about saturation based on the exchange nature of
the mesonic interaction.

Figure 5 shows the same curves as Fig. 4 for the case of
a stronger interaction with yz ——1 and cutoff unchanged
at 7m, while Fig. 6 shows the case of a weaker interaction
with y~ ——0.05 and cutoff again at 7m. The effect of
changing the cutoff parameter M from 7m to 2m is
shown in Figs. 7 and 8 for the cases yz ——0.2 and yz ——1,
respectively. Finally, Figs. 9 and 10 show the effects of
changing the cutoff for both values 0.2 and 1.0 of the cou-
pling constant y.

VIII. SUMMARY
The static model for a single source of meson field and

for two interacting sources of meson field has been treated

with the best available methods. The decomposition of
the meson field operator into internal and external parts
allows the Hamiltonian to be separated into an internal
part and parts that describe the external modes and their
interaction with the source and the internal modes. Diag-
onalization of the internal-mode Hamiltonian is simplified
by the use of coherent meson-pair (CMP) states. For the
single source, various procedures for going beyond the
simplest CMP trial vectors have been discussed and the
best one was found. In the case of two sources, it has
been shown that a method based on the use of orthogonal
meson modes for the two sources that go over to the
modes for separated sources as the separation goes to in-
finity gives the best results for source separations that are
large, while a strong-coupling method that utilizes sym-
metric and antisymmetric meson mode functions gives the
best results for small source separation.

For the repulsive T =0 potentials, it is important to
take into account the bound on the T =0 potential that
comes from the interaction with external meson modes.
Owing to this bound, it was shown that all the potentials
become attractive for small enough source separation, and
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0.2— T=O
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0. 1

2.0—

0.0 0.0
T=O .-

-0. 1
0.0

~ oJ
~ P

. r
, 'r'/

I

1.0
mR

2.0

FICi. 6. Final potentials for y~ ——0.05 and )If=7m. The
OME potential is shown for reference. In this case the short-
range approximation and the extended DFA give the same re-
sult and are shown by the dot-dashed curve.
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/-2..0 I I I I I I

0.0 1.0
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FIG. 8. Final potentials for y& ——1.0 and M =2m, including
the bound due to one-external-meson states. The OME potential
is shown for reference.
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FIG. 9. Potentials for y& ——0.2, showing the effect of the
form-factor cutoff parameter M.
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FIG. 10. Potentials for y& ——1.0, showing the effect of the
form-factor cutoff parameter M. The digits labeling the curves
are the respective values of M/m.

that many old arguments based on the exchange nature of
the meson-exchange potentials are invalid.

In the case of isovector scalar mesons, detailed calcula-
tions have been presented that show that the source-source
potential depends on the form factor of the mesonic Yu-
kawa interaction. This gives some hope that a detailed

study of intermediate-range nucleon-nucleon interaction
can give information about the re% form factor.
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