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Dissipative phenomena in quark-gluon plasmas
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Transport coefficients of small-chemical-potential quark-gluon plasmas are estimated and dissipa-
tive corrections to the scaling hydrodynamic equations for ultrarelativistic nuclear collisions are
studied. The absence of heat-conduction phenomena is clarified. Lower and upper bounds on the
shear-viscosity coefficient are derived. QCD phenomenology is used to estimate effects of color-
electric and -magnetic shielding, and nonperturbative antiscreening. Bulk viscosity associated with

the plasma-to-hadron transition is estimated within the relaxation-time approximation. Finally, ef-
fects of dissipative phenomena on the relation between initial energy density and final rapidity den-

sity are estimated.

I. INTRODUCTION

Ultrarelativistic collisions of heavy nuclei offer the pos-
sibility of creating a new state of matter —the quark-gluon
plasma. Current estimates' indicate that this plasma state
could be reached by increasing the energy density of ha-
dronic matter by an order of magnitude over that found
in nuclei (e„„,-0.15 GeV/fm ). Unfortunately, such high
energy densities are expected to be reached only for short
times, hr- few fm/c, due to the rapid longitudinal expan-
sion of the plasma. ' However, if the expansion proceeds
hydrodynamically, then information about the in-
teresting early stages of the collisions can be extracted
from the final rapidity density dN /dy of hadrons.
Specifically, the initial energy density eo can be related to
dN/dy via

1+c 2

ep cc (dN/dy)

where co is the speed of sound. The above relation is ob-
tained assuming the validity of scaling hydrodynam-
ics ' and the absence of dissipative effects.

In this paper we estimate the magnitude of the trans-
port coefficients of an ideal quark-gluon plasma with
SU(3) color and two flavors. We concentrate on the
midrapidity plasma where the baryon chemical potential
pz can be ignored in comparison to the temperature T.
Dimensional considerations dictate' ' that the viscosity
coefficient q must be found proportional to T . By im-
posing the physical constraints that the momentum-
degradation mean free path A, must be larger than both
the interparticle spacing and the thermal Compton wave-
length, we obtain an approximate lower bound, g & 2T .
We also derive a practical upper bound on

ri (er/4-3T (Tr)

that is necessary for the applicability of the Navier-Stokes
equation. We estimate g based on QCD phenomenology.
Effects due to color-electric and -magnetic shielding as
well as nonperturbative color-electric antiscreening are
considered. The absence of heat conduction sc in baryon-
free plasmas is emphasized, and we derive expressions for

tr for sm all-p~ /Tplasmas. A possible source of bulk
viscosity f is considered due to the finite relaxation time
of the plasma-to-hadron phase transition. Finally, we
solve the Navier-Stokes equation with the scaling boun-
dary condition to estimate the magnitude of entropy pro-
duction due to dissipative process in ultrarelativistic nu-
clear collisions. We find that dissipative effects could
reduce the estimated initial energy density by a few
GeV/fm relative to ideal hydrodynamics estimates.

B„T"=B„n"=0. (2.1)

In the Navier-Stokes approximation (first order in the
gradients) the energy momentum and baryon fluxes
decompose into ideal and dissipative parts as

T" =[(e+P)u "u Pg""]+r&—
n" =nu" +v", (2.3)

where e,P, n are the energy density, pressure, and baryon
density, and u" =(y, y v) is four-velocity field in terms of
the local fluid velocity v(x). The form of the dissipative
terms ~" and v& depends on the definition of what con-
stitutes the local rest frame of the fluid.

One natural definition of the rest frame, and hence u",
is the one in which the energy three-flux vanishes, i.e.,

II. HEAT CONDUCTION

In this section we derive an expression for heat conduc-
tion tr including both quark and gluon degrees of freedom.
The gluon contribution to a has been derived in Ref. (11).
However, we show that the quark contribution is singular
in the limit of zero baryon density. The singularity indi-
cates that the Landau-Lifshitz definition of hydrodynam-
ic frame is preferable over any other, for small-baryon-
number problems. With the Landau-Lifshitz choice of
the frame, the heat-conduction phenomena vanish' in the
limit of a symmetric matter. We note that there has been
some confusion in the literature ' ' " about the latter
point.

We recall' that relativistic hydrodynamics is based on
the local conservation laws
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u~H =0. This is the Landau-Lifshitz definition. ' With
this definition, the requirements that ~" and v" are of
first order in gradients and that entropy increases with
time (B&o."& 0, o=.ou pv—/T, with p chemical poten-
tial and T temperature) lead to'

H~=q)(V u~+V~u ,
'—b —~oui')+gh ~oui', (2.4)

2
nT V~ p

6+P T

fH f——(p„u"(x),p(x), T(x))

with u, p, T being functions of x&. While C(fH)=0,
p"B&f~&0, and thus fH cannot be a solution of the
Boltzmann equation. Clearly, there must be a correction
to fH that is first order in gradients of u, p, T. Writing
f=fH+5f, the Boltzmann equation implies that

p'"d„fH
p Q~

Note that we use the conventional metric

g"'= diag(1, —1, —1,—1),
which differs by a minus sign from that in Ref. 16. We
denote the local three-frame projector as Ap ——g~ —u u~,
and define V =6 ~Op. With Landau's definition, heat
conduction does not enter as energy flux T ' but rather as
a finite baryon current v'~ad'(p, /T) in the rest frame of
the fluid.

Another natural definition of the fluid rest frame, pro-
posed by Eckart, ' is the frame where the baryon three-
current (b, ~n p) rather than the energy three-flux
(u~T b p&) vanishes. The boost velocity UE from the
Landau frame where n"=(n, v) to the Eckart frame
where n"=(nE, O) is clearly v~ ——v/n The fo.rm of r
with the Eckart definition is then obtained by Lorentz
transforming T"' given by (2.2) and (2.4) with vz. In
particular, the form of the energy three-Aux in the Eckart
frame to first order in gradients is given by

"=f (5f —5f-)
(27r)' po

(2.9)

To evaluate (2.8) and (2.9) consider the frame where

u & = (1,0 ). Since we assume that u & satisfies ideal hydro-
dynamics,

i3 u'= —(d; P)l(E+P),

f f p"d„I [p "u,(x)+p(x)] /T(x) I, (2.7)
p Q~ /

where the relaxation time is defined via (pu)/r,—= —5C/5f evaluated at f=f~. In (2.7) f=1+f for bo-
sons and fermions, and +p is for quarks and antiquarks
only. In terms of 5f, the dissipative corrections to Ti'"
and n" are given by

d 3 JM 'V

r""=f 3 (5fq+5f +5' ), -(2.8)

TF = —(6+P)Us =K nT
e+P ' T

(2.6)

in the frame where u'=0. For heat conduction we are in-
terested in r ' and v'. The only nonvanishing contribution
from p"B„(p u /T) in (2.7) to these integrals comes from

To calcu1ate ~ we turn to a microscopic transport
theory. The Boltzmann equation, p"B„f,=C, (f), de-
scribes the evolution of the Wigner densities f, (x,p) of
particles of type a in terms of collision integrals C, .
Those integrals are constructed so that C, (f)=0 for
equilibrium distributions f (po, p, , T), of Bose-Einstein or
Fermi-Dirac forms. However, ideal (Euler) hydrodynam-
ics assumes local equilibrium

BpQ +p pB. =p p OP+8
T ' T T(e+P) ' ' T

o i

(@+P) ' T
(2.10)

where in the last line, we used the Gibbs-Duheim thermo-
dynamic relation. Therefore, we obtain in this frame

d3
&oi g & f dp

( i)2
(2')'

n 1
&qfqfq+e+P pp &+P pp E+P (2.11)

d3p
( i)2

(2m )

n 1

p
— &qfqfq +

&+ po
(2.12)

Since both ~ ' and v' do not vanish, this frame corre-
sponds neither to the Landau nor to the Eckart frame.
The boost velocity to the Eckart frame is vE ——v/n.
Therefore, to first order in gradients

To; (~+P) ~ o;
n

(2.13)

In (2.11) and (2.12) integrals of the form f dp p "ff can be
evaluated noting that df Idp = ff /T. Therefore, —

p p p=k+2T p
+'

~n~ 214
(2~)

with (p"), being the average moments over the Fermi or
Bose distributions for particle type a, and n the density
of those particles. Combining (2.11) and (2.12) in (2.13),
evaluating moments with (2.14), and comparing to (2.6)
leads finally to the following expression for the heat con-
ductivity:
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~ nqq. q 2(p)2
q

3(e+P) @+P 1

n —n
q q q.n —n p

6+P 1 +2n rg (p )
n —n pq q q

(2.15)

%Sf Pgv'= — ~TV;
81

(2.17)

with p~ ——3pq being the baryon chemical potential, and it
vanishes in the symmetric-matter limit. '

Had we adopted the Eckart definition of fluid velocity,
the respective correction to the energy flux via (2.6) would
then diverge as 1/n o: I/p in the p/T~O limit. The
divergence is physically obvious, and is due to the ill-
defined boost velocity to the Eckart frame. In general, for
small-baryon density problems, it is obviously more sensi-
ble to use the Landau-Lifschitz definition, where heat
conduction enters as a correction to the baryon flux. Un-
less one were specifically interested in the evolution of the
baryon density, one could simply discard heat-conduction
phenomena in p/T « 1 systems.

III. VISCOSITY COEFFICIENTS

A. Bounds on shear viscosity

Familiar kinetic-theory arguments' lead to the follow-
ing estimate of the shear-viscosity coefficient:

—,
' g(n(p)A, );, (3.1)

l

where n; is the local density of quanta i transporting an
average momentum (p); over a momentum-degradation
mean free path A,;. More detailed kinetic theory deriva-
tions' ' replace —, by —„ in the ultrarelativistic (T»m)
domain and —,

'
by 0,21 in the nonrelativistic domain. '

Furthermore, A,; can be related to the differential cross
sections der'J/dQ via

~ ~

IJ
I/A, ;= gnj. f dQ sin 8. (3.2)

Qnly the last term in (2.15) was derived in Ref. 11. How-
ever, in the limit

~ nq n—
q ~

&&(nq+nq) the quark-
antiquark contributions to ~ dominate. For p && T,

(1/p)qnq-N, NfT /12, n =nq n =—N,-NfT p/3

and thus ~ diverges as
'2 2

4 e+P 1 16 &ss TK~
9 NN3T n p q 9 iV,&f p

(2.16)

where

+sB [(Nc —1 ) + 7N, Nf lg ]m'/ 15

is the Stefan-Boltzmann constant for N, colors and Nf
flavors. In this limit, AT o:(a, 1na, ) as we show in
Sec. IV.

In spite of the divergence of a, the correction to the
baryon current, v', in (2.5) is finite:

T

The sin 0 weight in Eq. (3.2) arises because large-angle
scatterings are most effective in momentum degradation.

The above relations are valid only in gases where (1) the
mean free paths are small compared to the size of the sys-
tem A,; «L and (2) correlations among the particles can
be neglected. For A,; &L„one body dissipation dominates
and A.; are replaced' by L In fl. uids or crystals, involving
strong correlations, particles are confined in local field
minima and momentum transport is enhanced by mean
field phenomena. For a quark-gluon plasma, the gas
description should apply at very high energy densities be-
cause of asymptotic freedom. In contrast, a hadronic
medium can be considered a gas at low energy densities
because of the short-range nature of the forces. Current
bag-model and QCD lattice calculations' suggest that the
gas approximation should hold for e&eH -0.5 GeV/fm
and e&e~-2 GeV/fm . In the transition region, the
properties of matter are very uncertain. We will simply
interpolate linearly between gH =g(eH-) and g& -—g(E'g) as
a function of e, as would be appropriate for a first-order
transition.

Before estimating A,; via Eq. (3.2) we note several physi-
cal constraints on A,;. First, the uncertainty principle im-
plies that quanta transporting typical momenta (p ) can-
not be localized to distances smaller than (p ) '. Hence,
it is meaningless to speak about mean free paths smaller
than (p) '. Requiring A,; & (p); ' leads to the lower
bound

g) —,n, (3.3)

v) & —,
'

(p )n'~' . (3.4)

A violation of (3.4) would mean that it is possible to
maintain local equilibrium on distance scales involving
only one particle. This is only possible in fluids and crys-
tals, where, however, gas kinetic estimates for g tend to
grossly underestimate q in any case. Note that for a fixed
energy density e=(p )n, the two lower bounds are equal if

. Consequently, we can combine them to obtain

g) —,
' e'~4 . (3.5)

For p =0 quark-gluon plasrnas, e= 12.2T",
ng

——1.95T, nq ——2.2T, n =4.15T . In this case Eqs.
(3.3)—(3.5) given q & 1.4T, 2.6T, 2.2T, respectively.
Clearly, Eq. (3.4) imposes the most severe constraint be-

where n =gn; is the total density of quanta. What
seems amazing about (3.3) is that it is independent of
dynamical details. There is a finite viscosity regardless of
how large is the free-space cross section between the quan-
ta. See Refs. 21 and 22 for examples illustrating how the
thermalization rate of many-body systems is limited by
the uncertainty principle.

Second, in a gas A, ; must exceed the interparticle dis-
tance, A,; )n ' . This leads to another lower bound
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0

cause the average distance between quanta,
n ' -0.6/T, exceeds the thermal Compton wavelength,
1/(p) -0.3/T. In summary, a reasonable lower bound
on the shear viscosity coefficients for p « T quark-gluon
plasmas is

g&2T (3.6)

A,
I
a inc/a~

I
& 1 . (3.7)

Therefore, in order to apply the Navier-Stokes theory we
must have

&& —,&/I ain~/a~I

For Lorentz-invariant initial conditions ' '" and zero
chemical potential the hydrodynamic equations (2.1)
reduce to

+—(e+p) =(—', g+g)/+ . (3 9)

Finite chemical potentials would tend to raise g due to
Pauli blocking effects.

In addition to the physical lower bound (3.6), there is a
practical upper bound on q necessary for the applicability
of the, Navier-Stokes equation. The derivation of the dis-
sipative corrections to T" and n" from transport theory
relies on the smallness of the mean free path in compar-
ison to gradients of field quantities. For the scaling hy-
drodynamic problem this requires

T
QH

O~

T (0.5 —1)
200 MeV fm3

(3.13)

In order to compare (3.13) to the lower bounds (3.3) and
(3.4), we must adopt a model of the hadronic phase. A
simple yet flexible model is that of a Shuryak resonance
gas, ' for which

2 (1+cH )/c~
pg =cH Eg, ep =EH(T/T )

and the density of hadrons is

1/c
n~ cr~/z(c—H—)=n, (T/T, ) (3.14)

0.2(T/T, ) fm, I,
UH&

0.4( T/T, ) fm, II .
(3.15)

where n, =oH/z(cH ) and z(cH )=2.2, 3.6, and 6.9 for
cH 2 3 and —,', respectively. For i1lustrati on two sets
of parameters were considered in Ref. 6 that cover a plau-
sible range of equations of state. The first set (I) corre-
sponds to a strong first-order transition at T, =200 MeV
with ~H, e& ——0.7, 3.3 GeV/fm, cH ———,, and n, =0.6
fm . The second set (II) corresponds to a weak first-
order transition at T, =140 MeV with t.H, e~ ——0.45, 0.67,
CH 3 and n, = 1 .2 fm . For these equations of state
(3.3) gives

'g( 4B (3.10)

To apply (3.9) to (3.8) we must neglect the right-hand side
since it is higher order in A, . This leads to e(~)
=op(vp/~) ~ and hence

Equation (3.4) gives, on the other hand,

07(T/T) fm, I,
X/H & ~

0.8(T/T, ) fm, II .
(3.16)

Inserting this upper bound into (3.9), we see that the plas-
ma cools more slowly than with q =0:

e(~) =op(~p/~) . (3.11)

This limit just corresponds to constant-energy rather than
isentropic expansion. It also coincides with the
maximum-entropy expansion considered in Ref. 6. The
rate of energy-density loss p/~ due to p d V work done on
expansion is exactly compensated for by viscous reheat-
ing, 4g/3H, in this limit. This reheating arises by the
conversion of longitudinal-flow energy into local excita-
tion energy.

In summary, the acceptable range of g for the applica-
tion of scaling Navier-Stokes theory to the expansion of
the plasma is given by

For T & T„gH given by (3.13) clearly satisfies (3.15) and
(3.16).

It is now interesting to compare (3.13) to the upper
bound (3.10), consistent with Navier-Stokes theory. For
the Shuryak equation of state the energy density decreases

1+c~ (1+1/cH 2 ias E'(r) =Ep(7 p/r) . Since e ~T, then
c 2

T(z) = T, (r, /r) . Expression r as a function of T, we
see that e~~ T. Thus (3.10) is satisfied as long as

o.„&3(1+cH )T, /e&~, . (3.17)

For ~, =1 fm, the right-hand side is. 10 and 18 mb for
, equations of state I and II, respectively. Consequently,
Navier-Stokes theory should apply to the expansion of the
hadronic phase at least during the scaling expansion
phase.

2T &q&3T (~T) . (3.12)
IV. QCD PHENOMENOLOGY

From the derivation, it is clear that there is on the order
of a factor of two uncertainty on both bounds. Neverthe-
less, it is surprising that the range of acceptable g is so
"narrow. " Only for high temperatures and/or late times,
wT » 1, does the acceptable range open up.

So far we have considered g only in the plasma phase.
In the hadronic phase, typical transport cross sections are
crz 10—20 m-b. In this case (3.1) yields

It must be emphasized that the upper bound in (3.12) is
only a practical constraint. It is entirely possible that g in
QCD violates that bound near the critical temperature. In
that case, we must (1) abandon the scaling boundary con-
ditions that lead to the enormous velocity gradients
and/or (2) abandon the Navier-Stokes description of the
final-state expansion phase at high energy densities. This
possibility can be convincingly assessed only after reliable
lattice calculations of g using the Kubo formulas' be-
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Mab 4~& paapvI b
S P V (4.1)

where D" =g""/t is the gluon propagator and I"„' are ver-
tex functions for particles of type a. The gauge-
dependent parts of D" drop out as usual because
k"I'&——0 for on-shell vertices. In free space, vacuum po-
larization to lowest order modifies D" in a way which
can be absorbed by defining a running coupling constant

come available.
However, as an intermediate step it is instructive to

turn to QCD phenomenology to get an order-of-
magnitude estimate of rj. Consider the dominant t
channel gluon-exchange amplitudes

do- b

dt
( i

Mgb+MMb i')
16m.s

cab 2 2 [aE(r)popo aM(r)p p ]

If C(N, ) ~N, as suggested by perturbation theory and if
C is not drastically changed by dynamical fermions, then
the order-of-magnitude estimate for SU(3) QCD would be
C=26. In our estimate we will thus vary C between 10
and 30.

Now recall that in the limit t=O, the vertex functions
reduce to I „' &x:p&, where p& is the incident from momen-
tum of particle a. Averaging over spin and color degrees
of freedom, we obtain in the small t limit

a, (t) =4m [—,
' (11N, —2Nf )ln(1 t/A —)] (4 2)

~ob a T'g) 00+b PQf baE(t)
(4.3)

where the running electric coupling is given by

aE(r)/r =a, (r)/(r mE )—
in terms of the color-electric mass

Nf

mF -a, (t) 4m.(N, +Nf/2)T /3+(2/m) g IJ,ff=1

(4.4)

(4.5)

for a plasma at temperature T and flavor chemical poten-
tials pf. Equation (4.4) is an interpolation formula which
reduces to a, (t) at large momentum transfers and which
vanishes as t~O due to complete shielding of static
color-electric fields at large distances.

Similarly, we define a medium-modified magnetic
scattering amplitude as

for N, colors and Nf flavors. Strictly speaking, (4.2) only
holds for —t))A . However, nonperturbative analysis
suggests that a, has a simple pole at t =0. Hence, we
use 1 r/A as th—e argument of the logarithm.

With (4.1) and (4.2), the integrated transport cross sec-
tion (3.2) obviously diverges due to the singular small-
momentum-transfer limit. However, at finite tempera-
tures static color-electric fields are shielded by the quarks
and gluons in the plasma, and it is speculated that static
color magnetic fields are also shielded due to nonperturba-
tive effects. Color-electric shielding modifies the
@=v=0 component of D"". Therefore, the amplitude as-
sociated with color-eleetrie scattering (in the plasma rest
frame) is modified as

c b [aE(r)+aM(r)l' 2t2

where s =(p'+p ) . In the perturbative vacuum mE= mM ——0 and a@——aM ——a„and (4.9) reduces to the fam-
iliar expressions with c~b ——4, 1, and —', being the color
factors for ab =gg, qg, and qq scattering, respectively.
For finite T the medium defines a fixed frame and der'
depends on the orientation of the colliding quarks and
gluons. This is due to the difference between electric and
magnetic shielding lengths mE ' and m~ ' in the plas-
ma. Note that in ordinary nonrelativistic QED plasmas
this problem is not important because the spacial vertices
I; are suppressed relative to I 0 by U/c -p/m. Hence, we
need in practice only to consider electric (Debye) shielding
in that case. Furthermore, . in QED even for m~O the
self-energy II J(O, k)=O(akT) has the opposite sign in
the lowest order to that in QCD. Thus, the magnetic-
scattering contribution is finite even without a magnetic
mass. Recall that in QCD, the sign of II,J(O, k) is such
that D,J has a tachyon pole at k -0 (a, T) implying that
perturbation theory must break down for k (a, T.

The dependence of der on p 'p raises another compli-
cation. For scattering of noncollinear quarks and gluons
in the plasma rest frame, elastic scattering depends on
Il&„(q0,q) in the nonstatic q0&0 region. Since II&„is not
analytic about q0 ——q =0 it is possible that the effective
couplings aE and a~ also depend on p'p . We have
not succeeded in assessing the importance of this observa-
tion, and only point out the need for future investigations
on this problem.

For our estimates we consider only anticollinear scatter-
ings for which (4.9) reduces to

do'b
(4.10)

dt

in terms of an effective magnetic coupling

(4.6) This relation is the obvious generalization of the cross sec-
tions in the perturbative vacuum. With (3.1), (3.2), and
(4.10) we get the following estimate for g:

aM(r)/r =a, (r)/(r —mbr')

and magnetic mass

(4.7) ng7l=
4 ng +nq

Plq+ 4 7

9 nq +Jig
(4.1 1)

mM ——Ca, (t)T . (4.8) where the transport cross section is given by
T

In (4.8), C is necessarily a nonperturbative constant. Lat-
tice Monte Carlo estimates ' ' for the SU(2) Yang-Mills
theory gave

C = [4m(0.27+0.03)]

o.„=—I dt [a~(t)+a~(i)] —1+—24t t
2t 5 ' S

(4.12)

We use the average value of s =((p +pb) ) =17T in
our estimates. Note that for the interesting case of sym-
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metric 1Vf ——2 plasmas n~=ng=2T, the expression in
parentheses in (4.11) reduces to unity. In that case we also
note that the gluon contribution to g is only —,

" as large as
the quark contribution because of the smaller mean free
paths for gluons.

A simple expression can be derived from (4.12) noting
in (4.4) and (4.7) that a, (t) is slowly varying as a function
of t. For large T/A, lnxs/A =lns/A and thus we can
approximate in the integrand

100

~W ~ 4&~

aE(t)+aM(t) =ar 2+
t —mE t —mM

(4.13)

0.1 10
I I I I f I II

100
where az. ——a, (t = —17T ) is the effective thermal run-

ning constant (ar ——0.45 and 0.17 for T/A= 1 and 10,
respectively) and a, is replaced by ar in (4.5) and (4.8).
With (4.13), (4.12) can be evaluated analytically with the
result

crq ——az. [l(xE&xE)+2I(xE&x~)+I(x~&x~)] &

=2~ 2
~
—

17T2

(4.14)

in terms of

FIG. 1. Estimates of the shear viscosity g as a function of
T/A via (4.14). Upper and middle dashed-dot curves corre-
spond to magnetic mass parameter C =30 and 10, respectively.
Lower solid curve is for C =10 and inclusion of antiscreening
(Ref. 32) to order g . To the right of the shaded boundaries
scaling Navier-Stokes theory applies for ~A = 1 and 4. For large
T/A and/or late times ~A, Wavier-Stokes theory applies. For
rA- T/A-1 nonperturbative effects are crucial for its applica-
tion.

I(x,y) = (x +x)ln 1+—2 I

—(y +y)ln 1+— (4.15)

only for later times rA &4, when the gradients are suffi-
ciently small. This would imply that for initial energy
densities

eo ——e(r=A ') (4e& —10 GeV/fm3,

I(x,x) =(2x +1)ln 1+——2,I
(4.16)

2xE =mE /s az"

xM=mM /s=Co'z- /17 .
(4.17)

In the asymptotic limit T/A » 1, 1 »xE »xM,
I(xE,xE)=in(1/az), I(xM, x~)=2I(xE,xE), and I(xE,
x~ ) =I (xE,xE). Consequently,

oz ~ az ln(1/az. ),IOm.

+/+ —+ ao 17T
(4.18)

which shows the characteristic Inane factor. It is comfort-
ing to note that the large T/A limit is insensitive to the
nonperturbative parameter C. This limiting form of o„ is
about three times smaller than estimated in Ref. 11 for a
pure gluon plasma. The reason for this large difference is
that we include the quark contribution (oqg-os/2) and
we do not use the approximation involving 90-c.m. cross
sections as in Ref. 11.

With (4.11) and (4.14) we calculated rl/T as shown in
Fig. 1. The upper dashed-dot curve is for C =30 and the
middle dashed-dot curve is for C = 10. For both values of
C, rj/T &10 for T/A&1. On the other hand, scaling
Navier-Stokes theory is only applicable to the right-hand
side of the shaded boundaries, as given by Eq. (3.10). For
rA=I, we see from Fig. 1 that for large temperatures,
T/A & 10, Navier-Stokes theory almost certainly applies.
However, for T/A& 1 Navier-Stokes theory would apply

most of the expansion in the plasma phase could not be
described via Navier-Stokes theory. We emphasize
though that these estimates are least reliable in just that
interesting region of temperatures. There exists the possi-
bility that nonperturbative phenomena near the. critical
temperature T-A would lead to larger transport cross
sections than estimated via (4.14).

One indication that higher-order effects may become
important is that the Debye length rD ——1/mE becomes
smaller than the interparticle spacing n ' =0.6T
when a, &0.15, i.e., for T/A(10. Physically, however,
we expect screening only on distance scales, r~ &n
This corresponds to nrD ~1, as usual in plasmas. In
terms of xE, nrD &1 requires that xE &n /s=0. 15,
and thus xE should not continue to grow like az as given
by Eq. (4.17) for T-A. Support for the above can be
found from the self-consistent calculation for the electric
mass in Ref. 32. Using the Schwinger-Dyson equations to
sum higher-order (loops within loops) corrections it was
found that the correction to order g was large and nega-
tive. This correction reduced mE to mE (1—kyar)
with y-1. This physically appealing result indicates that
for a~ 1 antiscreening and presumably confinement
could set in. With this reduction factor, not only does
nrD & 1 remain satisfied but in fact nrD increases rapid-
ly near the transition temperature. Taken at face value
mE would be three times as small for T/A-I than
given by (4.5). Using this reduced form for mE and
C =10 leads to the solid curve in Fig. 1. While at high
temperatures this modification leads to small effects, we
see that in the interesting temperature range g/T is
drastically reduced. We conclude that higher-order ef-
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fects are plausibly large enough to reduce rl to lie within
the Navier-Stokes domain for r&A ' and T&A. How-
ever, the problem of higher-order corrections is subtle and
clearly needs much mope study before more quantitative
conclusions can be reached.

squared in the plasma. For e~e~, c~ —+cH —
6 3

4 2 2

where cH is the speed of sound in hadronic matter.
To estimate M, in (5.4) we use the relaxation-time ap-

proximation

V. BULK VISCOSITY IN THE MIXED PHASE
„(A,—A,,q),d'7

(5.7)

It is known that bulk viscosity, g, vanishes both in the
non-relativistic and ultrarelativistic limits for a gas with a
conserved number of particles. " However, for processes
occurring with a finite relaxation time r' the variation of
the sound velocity gives rise to finite bulk viscosity. ' We
consider here a possible source of bulk viscosity due to the
finite relaxation time involved in the quark-gluon plasma
to hadronic matter transition. For illustration, we consid-
er the first-order transition within the context of the bag
model. ' For the hadronic phase we take eh,pt„o~ for a
Shuryak gas ' as in (3.14). For the quark phase, we take

eq
——(e& B) —+B, pq = —,

'
(eq 4B)—, (5.1)

T
'

Tc

where e~ eq(T, ) ——and the condition that pq =ph ——p, at
T, gives 4B =@@—3c~ e~. The latent heat in the transi-
tion is be=e& —e~ -4B. In chemical equilibrium for en-

ergy densities e between eH (e(e&, the system would be
in a mixed phase with a fraction

A.,q(e) = E—6~

Eg —6H
(5.2)

p=p, (e)=p(e, &, (e))=p, . (5.3)

of the volume occupied by the plasma.
In a dynamically evolving system where e(r) varies as

in (3.9), the concentration A,(r) may differ from X,q(e(r))
because it takes a finite time to convert the plasma into
hadrons. In that case the pressure p(e, A, ) in (3.9) is a
function of both e and A, . In equilibrium with eH (e(e~
the pressure is constant

where r*-A ' —1 fm/c is the expected order of magni-
tude of the transition or nucleation time. Solving for
A, =A,,q

—r*d A, /dr, we find to lowest order that

d A,eq
5A, = —z*

d7
(e+p)V' v,dE

be dr be
(5.8)

where we used B&T" =0 in the local rest frame. Substi-
tuting into (5.4), the pressure is reduced relative to its
equilibrium value as

p=p, r*cg—(e+p)P' v .

Comparing with (2.5), cf. (3.9), we identify

g=r*c~ (e+p, ) .

Near the top of the transition e=e~, c~ = 1/3, and

g=r*4(e~ B)/9-1—GeV/fm -5T,

(5.9)

(5.10)

rpth & 3'9+k ~ (5.1 1)

In order for (5.11) to be satisfied at the time r=(eo/eg)ro
when the plasma has cooled to e~, the initial energy densi-
ty must exceed

4
e0 3 'g+g 4h 4+
EQ 7QPtII KTg TQ 3 TQ

(5.12)

Note that g is comparable to rl near the transition tem-
perature. In order that Navier-Stokes theory applies, the
dissipative corrections to the thermal part of the pressure,
p,h ——pq+B, should be small. From (3.9) this requirement
is

Therefore, for small deviations
X=A,,q+M, ,

p (e, A, ) =p, +M, Bp

from equilibrium,

(5.4)

where we used q=bT, and

p,h ——KT, /3=(e~+p, )/4 .

Bp Bp B~eq+
B6 g=& BA, Bc

(5.5)

(5.2) and (5.5) yield

Bp 2

BA,
= —Cg (5.6)

where c~ (e)=(Bp/Be)& is the speed of sound squared in

the system when the plasma fraction is held fixed. For
e & e~, c~ =c~ ———,', where c~ is the speed of sound

with the right-hand side evaluated at At Areq Noting that
the speed of sound in the mixed phase is zero

Bp(e,z„(e))
CQ

BE'

e=leq(T)+(1 —A. )ei, (T),

p =Apq(T)+(1 —A, )pq(T) .
(5.13)

Using Bp;/BT=a. ; and Bp;/Be;=c; for i =q or h we
find that

Starting with lower-energy densities can lead to supercool-
ing and violent phenomena such as deflagrations or de-
tonations.

To calculate the dependence of c~ on e we need to fur-
ther specify a relation between the temperatures Tq, Th of
the quarks and hadrons in the mixture. Since thermal
equilibrium usually has the shortest relaxation time we
will consider Tq =TI, T. When A,&k.,q——(e), then T&T,
either. The temperature and pressure are determined by
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Acr&+ ( I —A, )cr~
CA

——
2 2Acr,

& /cg + ( 1 —A )cry /cH

Thus c~ smoothly interpolates between c~ at e=e~ and
cH at e=e~. If we would relax the assumption that
T~=T~, then the interpolation formula changes. With

p~ =p~, c~ is given by (5.14) with cr~, cr~ replaced by uni-
ty. In practice, our numerical results were found to be in-
sensitive to the precise form of c~. In the numerical ex-
amples in the next section we will use (5.14).

Finally, we comment on the bulk viscosity in the ha-
dronic phase. As noted in Ref. 11, it is difficult to main-
tain chemical equilibrium in the hadronic phase because
of the smallness of HH —+HHH, inelastic rate at tempera-
tures T &200 MeV. The inability of the system to main-
tain chemical equilibrium brings about a change of the
speed of sound and hence leads to bulk viscosity. As
shown in Ref. 11, the magnitude of g is then likely to be
comparable with g in the hadronic phase. Only in the
quark-gluon plasma is bulk viscosity likely to be negligi-
ble.

(5.14)

VI. RESULTS AND SUMMARY

We now apply the previous estimates to the problem of
relating final observed rapidity densities to initial energy
densities. ' For that purpose we recall that in the scaling
regime

dX
dy

, A g r/o (rg—), (6.1)

where cr(r)=(e+p)/T is the entropy density, r/ is the
breakup time and Aq =mrp 2 ~ (rp=1. 18 fm) is the
transverse area of the beam. Since de= Tdo, from (3.9),
the entropy evolves according to

d (nr)
d7

(6.2)

vo
&(r)=(&p+&&p)

io—5TQ (6.3)

with

5Tp —— 1
(6.4)

2&p ET

with K=(e& B)T, =12. If w—e ignore possible entropy
production in the transition region, then the rapidity den-
sity becomes for ~f ))'Tp

3
1 d& ) ) &To

Tf0 (1f ) g 'rpcr(rp) 1 +
Az dy TQ

(6.5)

In the absence of dissipative effects vcr is a constant of
motion, we can replace: rycr(r/) by

co /(1+co )
7 pcr('rp) ~ ep

and obtain via (5.1) the relation

1+@ 2

ep cc (dN/dy)

However, for nonvanishing g, g, we must solve (6.2). For
the plasma phase we use (5.1) and g=bT, b &2, and

0. In that case (6.2) is easily solved"' giving
' 1/3

Therefore, dissipative effects enhance the rapidity density
by a fa'ctor (I+5Tp/Tp) . If g is close to the minimum
value 2T, then that enhancement factor is 1.3. For
g=4T it becomes 1.6. In the extreme case, when dissi-
pative effects are as large as they could get, e~ is approxi-
mately constant and crr=crprp(7/Tp)' increases with 'p.

In that limit the rest energy per unit rapidity is approxi-
mately constant and we recover Bjorken's estimate
ep ~ dX/dy.

In Fig. 2 we show the evolution of the energy density,
entropy, and entropy-production rates for the case
e= 12.2T, cr = 16.3T . Curve 1 corresponds to ideal non-
viscous expansion. Curves 2, 3, and 4 have g/T =2, 6,
and 14, respectively. Observe that for extreme g the ener-

gy density could even rise initially. As noted before, for
such large g Navier-Stokes theory does not apply.
Nevertheless, curves 3 and 4 illustrate an interesting point.
There is a very large energy reservoir stored in the form of
kinetic energy of the nuclear fragments. In the central re-

gion considered here only e —10 of the total energy
available remains after the two nuclei pass through one
another. It is that 1% residue of the collision whose sub-
sequent final-state expansion we are considering here. If
the dynamics is simply parton-parton scattering and radi-
ation, then that reservoir of energy cannot be tapped, and
e(r) must be a monotonically decreasing function. How-
ever, it is not ruled out that the confinement mechanism
produces color fields or strings that connect the partons in
the central region to the high-rapidity partons. In terms
of kinetic theory such effects would have to be included in
Vlasov terms. Those color fields or strings could ac-
celerate the quarks and gluons and even lead to an in-
creasing internal energy e(r) as shown mimicked by curve
4. However, this type of behavior would be quite exotic.
Our expectation is that the energy density will decrease
with ~ in the region bounded by curve 1 corresponding to
isentropic expansion and the dotted line corresponding to
isoergic expansion. From Fig. 2 we also see that most of
entropy produced is in the first few fm/c. The reason
again is that velocity gradients become small at later
times. The asymptotic value of ro(6.5) is th. us ap-
proached rather quickly.

Next we solve (6.2) for an assumed first-order transition
within the bag model (3.14) and (5.1). To cover a broad
range of possibilities we employ the two sets of parame-
ters discussed above (3.15). In Fig. 3, part (a) is for a
strong first-order transition at T, =200 MeV, and part (b)
is for a weak transition at T, =140 MeV. In both parts
the curve g=0 corresponds to isentropic expansion as
computed in Ref. 6. The dashed curve in each is ap-
propriate for the isoergic [d(e~)/dr=0] expansion con-
sidered in Refs. 5 and 6. The curve g;„was calculated
using g =2T for e & eg and (3.16) for e & eH. For
eH &e&e~ we linearly interpolate, g=Ag~+(1 —A, )g&,
with k given by (5.2). For these curves g'=0. The curves
labeled g still include not only g;„but also bulk viscosity
(5.10) and (5.14) in the transition region eH (e (eg. '

For both sets of parameters, the inclusion of minimal
shear viscosity lowers the initial energy density by —1

GeV/fm . For large shear viscosity g=3g;„ the curves
(not shown) fall below the isoergic line. For the range of
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FIG. 2. Evolution of the quark-gluon plasma in the proper

time v: (a) energy density e, (b) transverse entropy density o.~,
(c) entropy production. Curve 1 corresponds to the ideal non-
viscous dynamics and curves 2, 3, and 4 correspond to q/T =2,
6, and 14, respectively. The dotted line corresponds to isoergic
expansion (Refs. 5 and 6).

energy densities and rapidity densities considered, the
shear viscosity must therefore be less than 3g;„ in order
for Navier-Stokes theory to apply. While in the hadronic
phase this condition appears to be satisfied, we recall from
Sec. IV that there is considerable uncertainty on the value
of q in the plasma phase. The inclusion of bulk viscosity
associated with the transition obviously has greater effect
in part (a) for the strong transition. If the latent heat is
several Gev/fm, then a large amount of time is spent in
the transition region, and considerable entropy is pro-
duced. In the extreme case (a) inclusion of g reduced eo
by another GeV/fm for fixed dX/dy. In case (b) g has
negligible effect because of the smallness of the latent
heat.

We conclude from this study that finite mean free paths
and relaxation times are likely to lead to a dynamical path
intermediate between the idealized isentropic and isoer-
gic ones. In terms of entropy production at least 20%
and up to 100%%uo enhancement of the entropy were found.
While we were not able to rule out anomalously large dis-
sipative effects in the plasma near the transition tempera-
ture, the qualitative arguments pointed to values of g
satisfying (3.12). Antiscreening was identified as a poten-
tially important effect in keeping rj down.

Our results are in accord with previous estimates
with regard to the range of initial energy densities that
can be expected in ultrarelativistic nuclear collisions.
With rapidity densities as already observed in several

)
CD

2

0
0 IO 20

A ~I& dN

dp

30 40

FIG. 3. Initial energy density E'o at onset of the hydrodynam-
ic expansion v.o-1 fm/c versus pion rapidity density reduced by

for central A +A collisions. Parts (a) and (b) correspond
to two models of the equation of state [see above (3.15)]. The
isentropic and isoergic curves from Ref. 6 are included. Curves
labeled q;„ include minimal viscous effects as dictated by finite
interparticle spacing and the uncertainty principle. Curves, la-
beled g incorporate bulk viscosity (5.10) as well as g;„. For
reference the average reduced density in the Si + Ag JACEE
event (Ref. 34) is indicated.

cosmic-ray events, eo&few GeV/fm can be expected
for energies E&,»1 TeV/nucleon. The most important
consequences of dissipative effects are likely to be on the
signatures' of the plasma phase.

The energy density and temperature generally decrease
slower with the inclusion of dissipative effects. This
would lead to greater yields of direct probes such as pho-
tons and dileptons, which are sensitive to the thermal his-
tory of the reaction. On the other hand, larger transverse
momentum associated with hydrodynamic expansion
would be reduced as collective flow velocities are dissipat-
ed into heat. In general, dissipative effects would also
dampen fluctuations that could otherwise serve as signa-
tures of unusual phenomena. Also any rapid variations
of quantities such as the E or A multiplicity with increas-
ing A number marking the transition from nonequilibri-
um to equilibrium dynamics would be smeared out by dis-
sipative effects. Since most proposed' observables of
the plasma phase are sensitive to the full space-time histo-
ry of the reaction, dissipative phenomena must be taken
into account if quantitative predictions are to be made.
To that end, QCD lattice studies of T" correlation func-
tions and a better understanding of the reaction mecha-
nism in ultrarelativistic nuclear collisions are needed. The
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main theoretical challenge will be to understand how the
rapidly expanding plasma converts into hadrons in the fi-
nal state. We must keep in mind that the problem of con-
finement in a dynamical environment may lead to com-
pletely unexpected transport phenomena.

ACKNOWLEDGMENTS

We are grateful to A. Hosoya and K. Kajantie for mak-
ing their work known to us prior to publication. Useful

discussions on electric and magnetic screening with J.
Kapusta and R. Pisarski and on other topics with T.
Matsui, L. McLerran, and V. Ruuskannen are also grate-
fully acknowledged. We thank L. Csernai for critical re-
view of the manuscript. This work was supported by the
Director, Office of Energy Research, Division of Nuclear
Physics of the Office of High Energy and Nuclear Physics
of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098.

*On leave from the Institute of Theoretical Physics, Warsaw
University, Warsaw, Poland.

t Quark Matter Formation and Heavy Ion Collisions, proceedings

of the Bielefeld Workshop, 1982, edited by M. Jacob and H.
Satz (World Scientific, Singapore, 1982); Quark Matter '83,

proceedings of the Third International Conference on Ultrare-

lativistic Nucleus-Nucleus Collisions, Brookhaven National

Laboratory, 1983, edited by T. W. Ludlam and H. E. Wegner
[Nucl. Phys. A418, lc (1984)]; E. V. Shuryak, Phys. Rep. 61,
71 (1980).

S. Z. Belen'kii and L. D. Landau, Usp. Phys. Nauk 56, 309
(1955); Nuovo Cim. Suppl. 3, 15 (1956).

P. Carruthers, Ann. N.Y. Acad. Sci. 229, 91 (1974).
~F. Cooper, G. Frye, and E. Schonberg, Phys. Rev. D 11, 192

(1975).
5J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
M. Gyulassy and T. Matsui, Phys. Rev. D 29, 419 (1984).

7K. Kajantie and L. McLerran, Phys. Lett. 1198,203 (1982).
8K. Kajantie and R. Raitio, Phys. Lett. 121B,415 (1983).
K. Kajantie, R. Raitio, and P. V. Ruuskanen, Nucl. Phys.

B222, 152 (1983).
A. Hosoya, M. Sakagami, and M. Takao, Ann. Phys. (N.Y.)
154, 229 (1984).

A. Hosoya and K. Kajantie, University of Helsinki Report
No. HU-TFT-83-62, 1983 (unpublished).

i2E. L Feinberg. , Tr. FIAN SSSR 29, 155 (1965) [Proceedings of
the Lebedeu Physics Institute, edited by D. V. Skobel'tsyn
(Consultants Bureau, New York, 1967), Vol. 29, p. 151].

i3A. A. Emel'yanov, Tr. FIAN SSSR 29, 169 (1965) [Proceed
ings of the Lebedev Physics Institute (Ref. 12), Vol. 29, p.
163].

A. A. Emel'yanov and D. S. Chernavskii, Zh. Eksp. Teor. Fiz.
37, 1058 (1955) [Sov. Phys. JETP 10, 753 (1960)].

isl. L. Rozental', Usp. Fiz. Nauk 116, 271 (1976) [Sov. Phys.
Usp. 18, 430 (1976)].
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon

Press, London, 1959).
C. Eckart, Phys. Rev. 58, 919 (1940).
S. R. de Groot, W. A. van Leeuwen, and Ch. G. van Weert,
Relatioistic Kinetic Theory (North-Holland, Amsterdam,
1980).

i9F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965).

W. Israel and J. N. Vandalas, Lett. Nuovo Cim. 19, 887
(1970).
P. Danielewicz, Ann. Phys. (N.Y.) 152, 239, 305 (1984).

22C. Iso, K. Mori, and M. Namiki, in Proceedings of the Inter
national Conference on Cosmic Rays, I959 (Izd. Akad. Nauk
SSSR, Moscow, 1960), Vol. 1, p. 226.
J. E. Leader and E. Predazzi, An Introduction to Gauge
Theories and the "1Vew Physics" (Cambridge University Press,
Cambridge, 1982), Appendix A.
M. Baker, J. S. Ball, and F. Zachariasen, Nucl. Phys. B186,
531, 560 (1981).
T. Appelquist and R. D. Pisarski, Phys. Rev. D 23, 2305
(1981).

6J. Kapusta, Phys. Rev. D 20, 989 (1979).
27L. E. Gendenshtein, Yad. Fiz. 29, 1639 (1979) [Sov. J. Nucl.

Phys. 29, 841 (1979)].
V. Soni, Nucl. Phys. 8216, 244, 267 (1983).
S. Nadkarni, Phys. Rev. D 27, 917 (1983).

3oA. Billoire, Cs. Lazarides, and Q. Shafi, Phys. Lett. 103B, 450
(1981).
T. A. deGrand and D. Toussaint, Phys. Rev. D 25, 526,
(1982).
K. Kajantie and J. Kapusta, Phys. Lett. 1108, 299 (1982); re-
vised Report No. CERN-TH. 3284, 1984 (unpublished).

3M. Gyulassy, K. Kajantie, H. Kurki-Suonio, and L. McLer-
ran, Nucl. Phys. 8237, 477 (1984).

34T. H. Burnett et al. Phys. Rev. Lett. 50, 2062 (1983).
35M. Czyulassy, in Quark Matter '83 (Ref. 1) [Nucl. Phys. A418,

59c (1984)].


