Angular distribution of shower particles produced in the collisions of $30-400-\mathrm{GeV}$ protons with emulsion nuclei

C. O. Kim
Department of Physics, Korea University, Seoul 132, Korea
(Received 19 July 1984)

For 3987 accelerator-produced jets of $30-400-\mathrm{GeV}$ protons in nuclear emulsion, $\langle\eta(\theta)\rangle$'s are individually calculated for each jet, where $\eta(\theta)$ is a kinematic parameter introduced by us in 1967 in order to approximate the rapidity $\eta=\operatorname{arctanh}(\beta \cos \theta)$. Then by taking further averages by dividing the samples into groupings of the laboratory-system (LS) energy E_{p} of the primary proton ($=m_{p} \cosh \eta_{p}$), the number N_{h} of heavy prongs with LS velocity $\beta<0.7$, and the number n_{s} of charged shower particles with LS velocity $\beta \gtrsim 0.7$, the averages $\langle\langle\eta(\theta)\rangle\rangle$ are obtained. By use of the Koba-Nielsen-Olesen scaling variable $\widetilde{\xi}=n_{s} /\left\langle n_{s}\right\rangle$, we find good fits of the form $\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2=A^{\prime}+B^{\prime} / \xi$, where A^{\prime} and B^{\prime} do not have any dependence on η_{p} (i.e., on E_{p}). The significance of our findings is discussed.

I. INTRODUCTION

For a jet, let β denote the velocity and θ the emission angle of a secondary in the laboratory system (LS), where the emission angle is measured with respect to the direction of the incident primary. In 1967, we introduced the parameter $\eta(\theta)$ which depends only on θ but which is usually consistent with the definition of the LS rapidity ${ }^{1-4}$

$$
\begin{aligned}
\eta & =\operatorname{arctanh}(\beta \cos \theta) \\
& =\operatorname{arctanh}\left(p_{L} / E\right) \\
& =\frac{1}{2} \ln \left[\left(E+p_{L}\right) /\left(E-p_{L}\right)\right]
\end{aligned}
$$

In the present paper, we would like again to recommend wide acceptance of the approximation ${ }^{3}$

$$
\begin{equation*}
\eta \cong \eta(\theta) \tag{1}
\end{equation*}
$$

instead of the currently prevailing practice of the approximation

$$
\begin{equation*}
\eta \cong r \tag{2}
\end{equation*}
$$

where the pseudorapidity ${ }^{5}$

$$
r=\operatorname{arctanh}(\cos \theta)=-\ln \tan (\theta / 2)
$$

Thus, Eq. (2) corresponds to the adoption of the spectrum-independent approximation of $\beta=1$, as easily seen.

Our introduction of $\eta(\theta)$ in Ref. 3 was essentially motivated in order to correct for the spectrumindependent approximation for the pion secondaries, which constitute $80-90 \%$ of those produced in highenergy jets and which are usually produced with $\tan \theta \ll 1$ and $\beta>0.7$ in the LS, by noticing the relation

$$
\begin{equation*}
\eta \cong r-\ln \left[\left(1+x_{T}^{2}\right)^{1 / 2} / x_{T}\right], \tag{3}
\end{equation*}
$$

where $x_{T} \equiv p_{T} / m$, or ${ }^{6}$

$$
\eta \cong r-\ln \left(m_{T} / p_{T}\right)
$$

where $\left.m_{T} \equiv\left(m^{2}+p_{T}\right)^{2}\right)^{1 / 2}$. This relation comes from the exact relation

$$
\begin{align*}
\eta\left(x_{T}, \theta\right) & =(\pm) \operatorname{arctanh}\left[\left(1+v^{2}\right)^{-1 / 2}\right] \\
& =(\pm)\left\{-\ln v+\ln \left[1+\left(1+v^{2}\right)^{1 / 2}\right]\right\} \tag{4}
\end{align*}
$$

where

$$
v^{2}=\left[\left(1+x_{T}^{2}\right) / x_{T}^{2}\right] \tan ^{2} \theta, \quad v \geq 0
$$

The positive sign is used for $0^{\circ} \leq \theta<90^{\circ}$ and the negative sign for $90^{\circ}<\theta \leq 180^{\circ}$. When v is small compared with unity, which is observed to be the case in the LS with the majority of secondaries produced in high-energy jets, Eq. (3) results. ${ }^{3}$ In fact, by employing the pion p_{T} distribution $f\left(p_{T}\right)$ as

$$
\begin{equation*}
f\left(p_{T}\right)=\left(1 / p_{0}\right)^{2} p_{T} \exp \left(-p_{T} / p_{0}\right) \tag{5}
\end{equation*}
$$

with $p_{0}=\left\langle p_{T}\right\rangle / 2=0.17 \mathrm{GeV} / c$, for $\theta<90^{\circ}, \eta(\theta)$ was defined as

$$
\begin{equation*}
\eta(\theta) \equiv \int_{0}^{R} \eta\left(x_{T}, \theta\right) f\left(p_{T}\right) d p_{T} / \int_{0}^{R} f\left(p_{T}\right) d p_{T} \tag{6}
\end{equation*}
$$

where m is the mass of the pion and the upper limit of integration R is chosen to be $1 \mathrm{GeV} / c$ (Ref. 7). For $\theta>90^{\circ}$,

$$
\begin{equation*}
\eta(\theta)=-\eta\left(180^{\circ}-\theta\right) \tag{7}
\end{equation*}
$$

Fortunately, $\left\langle p_{T}\right\rangle=0.34 \mathrm{GeV} / c$ [that is, $\left\langle x_{T}\right\rangle=2.4$ for pions in Eq. (3)] has been found experimentally to have little dependence on p_{L} and very little variation throughout a wide range of the primary energy E_{p} (Refs. 3,8 , and 9). Therefore, the second term on the right-hand side of Eq. (3) for pion secondaries seems a minor correction of ~ 0.23 (Ref. 3). But, for rare secondaries with $\tan \theta \gtrsim 1$, it should be noted that the relation

$$
\begin{equation*}
\eta(\theta) \approx r \approx 0 \tag{8}
\end{equation*}
$$

holds.
The first immediate application of Eq. (1) in Ref. 3 was for us to establish the $E(\theta)$ method in order to estimate usually unknown primary energies of "cosmic-ray" jets by
means of angular measurements from the formula

$$
\begin{equation*}
\langle\eta(\theta)\rangle \approx\langle\eta\rangle \cong \eta_{p} / 2, \tag{9}
\end{equation*}
$$

where the "primary rapidity" of the incident proton

$$
\eta_{p} \equiv \operatorname{arccosh}\left(E_{p} / m_{p}\right)
$$

for the case of proton-proton collisions. The second equality of Eq. (9), $\langle\eta\rangle \cong \eta_{p} / 2$, is based on the fact that the initial system of the incident proton (with η_{p}) and the target proton (with $\eta_{t}=0$) has forward and backward symmetry in the center-of-mass system (c.m.s.) with

$$
\eta_{\text {c.m. }}=\operatorname{arctanh}\left(\beta_{\text {c.m. }}\right)=\eta_{p} / 2 .
$$

Here, the velocity of the c.m.s. is $\beta_{\mathrm{c} . \mathrm{m} .}$ in the LS. Thus, the same symmetry, especially for the c.m.s. rapidities, is expected to hold; i.e., the relation

$$
\begin{equation*}
\langle\langle\bar{\eta}\rangle\rangle=0 \tag{10}
\end{equation*}
$$

holds, where $\bar{\eta}=\operatorname{arctanh}(\bar{\beta} \cos \bar{\theta})$. As the number of produced charged secondaries grow large and as many observed samples of $p-p$ jets are statistically to get combined, Eq. (10) becomes true, even if individual jets frequently exhibit imperfect symmetry.

The $E(\theta)$ method of energy estimation, where a nominal energy $E(\theta)$ is calculated from Eq. (9) and the relation ${ }^{3}$

$$
\begin{equation*}
E(\theta) \equiv m_{p} \cosh [2\langle\eta(\theta)\rangle], \tag{11}
\end{equation*}
$$

only slightly improved the Castagnoli method of energy estimation, ${ }^{10}$ when applied to accelerator-produced jets of $30-\mathrm{GeV}$ protons ${ }^{11}$ and even of $20-\mathrm{GeV} / c$ pions. ${ }^{12}$ This is mainly due to the correction of the spectrum-independent approximation; nevertheless, it became obvious that the $E(\theta)$ method as well as the $E_{\text {Cast }}$ method seemed to fail partially for those jets with small n_{s} and with large N_{h},
where N_{h} is the number of heavy prongs with LS velocities $\beta \leqq 0.7$ in a jet, and n_{s} that of charged shower particles with $\beta \geq 0.7$. It was realized then by us that, instead of our dealing with $p-p$ collisions, this effect came from our dealing with proton-nucleus collisions, the target nuclei being $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Ag}$, and Br , the constituent nuclei of nuclear emulsion. Thus was born our first study of N_{h} and n_{s} dependence of $\langle\langle\eta(\theta)\rangle\rangle$, according to groupings of accelerator-produced jets of 30 GeV protons with almost the same N_{h} and n_{s}.
The present study is our continued effort to parametrize these trends of $\langle\langle\eta(\theta)\rangle\rangle$ as a function of E_{p}, N_{h}, and n_{s} by the extensive use of recently available data of accelerator-produced jets of high-energy protons with primary energy E_{p} up to 400 GeV .

In Sec. II, details about the data of 3987 proton jets, used in our present analysis, are presented. In Sec. III, $\left[\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ are parameterized in terms of E_{p}, N_{h}, and n_{s}, and eventually in terms of the Koba-NielsonOlesen (KNO) scaling variable ${ }^{13} \xi=n_{s} /\left\langle n_{s}\right\rangle$. In Sec. IV, the implication of our findings is discussed.

II. EXPERIMENTAL DATA USED IN OUR PRESENT ANALYSIS

The details about the data on the 3987 jets produced in nuclear emulsion (Ilford G-5, or K-5) by acceleratorproduced protons of $E_{p}=30 \mathrm{GeV}$ (Ref. 11), 200 GeV (Ref. 14), 300 GeV (Ref. 15), and 400 GeV (Refs. $16-20,6$) are tabulated in Table I. Most of the jets (more than 80%) of $E_{p} \geq 200 \mathrm{GeV}$ were from horizontally exposed (H) plates, for which the primary-beam direction was parallel to the plane of emulsion. For H plates, the on-the-track scanning method ${ }^{11}$ was employed for finding the events. The method of area scanning was employed for the events found in the vertically exposed (V) plates, for which primary protons' incident direction was vertical to the plane of emulsion. This difference in the modes poses little problem of bias, since our analyses eventually subdivide the samples of jets into the groupings of N_{h} and n_{s}.

TABLE I. Data on the jets.

$E_{p}(\mathrm{GeV})$	30	200	300	400
Reference	11	14	15	16-20,6
Type of emulsion (Ilford)	G-5	K-5	K-5	K-5
Mode and size of plate (cm^{2})	$H: 30 \times 10$	$\begin{gathered} H: 20 \times 5 \\ V: 5 \times 5 \end{gathered}$	$\begin{gathered} H: 15 \times 5 \\ V: 5 \times 5 \end{gathered}$	$\begin{gathered} H: 15 \times 5 \\ V: 5 \times 5 \end{gathered}$
Thickness $600 \mu \mathrm{~m}$ Total number of jets found	1354	> 1000	1937	1696
Number of jets analyzed by angle measurement	1271	$607^{\text {a }}$	1176	934
Selection bias for the jets with $N_{h}=$ 0 and 1 for angle measurement	None	Yes, some	Yes, some	None

[^0]For H plates in analysis of jets of $E_{p} \geq 200 \mathrm{GeV}$, it was customary that the recoil track with track length $\leq 5 \mu \mathrm{~m}$ per jet was eliminated from the number of N_{h}. And, in order to be limited to jets with good geometry in the procedure of measuring θ for the jets of $E_{p} \geq 200 \mathrm{GeV}$, the origins of jets to be measured for θ were located more than $50 \mu \mathrm{~m}$ away, either from the air surface or from the glass surface inside processed emulsion plates of $\sim 300 \mu \mathrm{~m}$. (This indicates the so-called "shrinkage factor" of about 2.)

As indicated in Table I, especially for the jets of $E_{p}=200$ and 300 GeV , those jets with $N_{h}=0$ and 1 were fairly favored for angle measurements in the course of work; ${ }^{19}$ this bias is also not very serious, since our samples were to be subdivided according to the groupings of almost the same N_{h} and n_{s}.

Some of the coherent-multiple-production events (mainly among the jets with $N_{h}=0$ and $n_{s}=3,5$, and 7) were identified by the use of a new method developed by us, ${ }^{19}$ but they were not excluded from our sample in the present analysis.

From our experience of applying the reference-track method 21 to measure emission angles θ of about two hundred jets of $E_{p}=400 \mathrm{GeV}$ (Refs. 16-20, and 6), there was no secondaries of $<0.5 \mathrm{mrad}$ among those of the 400 GeV jets. So, for those rare shower tracks whose emission angles were measured with the goniometer method of angle measurements and recorded as $\theta=0$, because of the limitation imposed by its accuracy, we took the liberty to replace them with the values of $\theta=0.5 \mathrm{mrad}$.

III. THE TRENDS OF $\langle\langle\boldsymbol{\eta}(\theta)\rangle\rangle$

A. Dependence of $\left[\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ on E_{p}, n_{s}, and N_{h}

As stated in the Introduction, in the case that Eq. (1) holds, we expect that $\langle\langle\eta(\theta)\rangle\rangle$ should be equal to $\eta_{p} / 2$ in proton-proton collisions. The values of η_{p} $=\operatorname{arccosh}\left(E_{p} / m_{p}\right)$ are 4.158, 6.055, 6.461, and 6.748, respectively, for $E_{p}=30,200,300$, and 400 GeV . The averages of $\langle\eta(\theta)\rangle$ of individual jets, $\langle\langle\eta(\theta)\rangle\rangle$ have been taken according to the groupings of $n_{s}=1,2,3, \ldots$, $9,10-14,15-19,20-24, \ldots$, and of $N_{h}=0,1,2-4$, $5-8,9-15,16-22, \geq 23$ for each primary energy $E_{p}=30,200,300$, and 400 GeV . The obtained results are tabulated in Tables $\mathrm{II}(\mathrm{a})-(\mathrm{g})$ in terms of $[\langle\langle\eta(\theta)\rangle\rangle$ $\left.-\eta_{p} / 2\right]$. The numbers of jets for each grouping is also shown inside the brackets. They are illustrated also in Figs. 1(a)-(g), as a function of E_{p}, N_{h}, and n_{s}. The errors quoted are estimated from the residuals and are only statistical.

For the jets with small n_{s}, the possible failure of the approximation embodied in Eq. (1) could be understood in terms of Eq. (3) or Eq. (3'). Since the average p_{T} behavior of pion secondaries has been already incorporated in our introduction of $\eta(\theta)$, the p_{T} behavior of the secondaries other than pions should come into play, or unusually-small- p_{T} behavior of such pions or heavier secondaries as are produced in coherent-multiple-production events must be taken into account. In those cases $x_{T} \ll 1$, the correc-
tion term for Eq. (1) ensues as that proportional to $1 / n_{s}$ as was pointed out already by us in Ref. 3 and subsequently as well by Dar et al. ${ }^{6}$

When used both as detectors and as targets, nuclear emulsion has a wide spectrum of target masses ($\mathrm{H}, \mathrm{C}, \mathrm{N}$, O, Ag, and Br nuclei). If $N_{h} \geq 8$, we can be certain that the target nucleus is one of the heaviest nuclei (Ar, Br). Thus, we expect that the complicated features of protonnucleus collisions are to come into play for jets with large N_{h}. The average multiplicity of shower particles, produced in collisions of high-energy protons with emulsion nuclei, has been known to be about 80% higher than that in proton-proton collisions. ${ }^{22}$ Since the "excess" particle are produced in the c.m.s. backward cone, the effect of the proton-nucleus collisions was shown to be negative values of $\left.[\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$, and their dependence on N_{h}.

The data of $\left[\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ in Table II(a)-(g) have been well fitted to the formula

$$
\begin{equation*}
\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2=A+B / n_{s}, \tag{12}
\end{equation*}
$$

whose results are shown in the solid curves in Figs. $1(\mathrm{a})-(\mathrm{g})$. The values of A and B (in parentheses) as well as those of $\chi^{2} /$ degree of freedom (in square brackets) are tabulated in Table III. In these procedures of leastsquares fits, the data of those groupings which had less than three jets were excluded. As noted in Ref. 3, the effect due to unobserved target neutrons seems apparent for the jets of the odd number of $n_{s}=1,3,5,7$, and 9 ; those jets of the odd n_{s} were not included in the fits.

The values of A seem to be dependent only on N_{h} and nearly independent of E_{p}, as stressed by Gibbs et al. ${ }^{23}$ In fact, the averages of $A,\langle A\rangle$, for each grouping of N_{h}, which are listed also in Table III, can be treated and are reasonably well in agreement with the "scaling" law in Ref. 23.

Nevertheless, the values of B still have some dependence both on N_{h} and E_{p}, whose scaling will be shown most convincingly in the following by the introduction of the KNO scaling variable $\xi \equiv n_{s} /\left\langle n_{s}\right\rangle$ (Ref. 13).

B. Scaling of $\left[\langle\langle\boldsymbol{\eta}(\theta)\rangle\rangle-\boldsymbol{\eta}_{p} / 2\right]$

The scaling law concerning [$\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2$] has been shown most conveniently by the modified form of Eq. (12):

$$
\begin{equation*}
\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2=A^{\prime}+B^{\prime} / \xi \tag{12'}
\end{equation*}
$$

where the KNO scaling variable ${ }^{13} \xi \equiv n_{s} /\left\langle n_{s}\right\rangle$ embodies the sole dependence on E_{p}. The values of $\left\langle n_{s}\right\rangle$ adopted in the present fits are 6.32 (Ref. 11), 13.2 (Ref. 16), 15.1 (Ref. 16), and 16.8 (Ref. 16), respectively, for the jets of $E_{p}=30,200,300$, and 400 GeV in nuclear emulsion. Figures $2(\mathrm{a})-(\mathrm{g})$ show the values of $\left[\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ as a function of ξ according to the groupings of N_{h}. The curves shown in the figures are those obtained by the best fits to Eq. (12'), whose results, A^{\prime} and B^{\prime} with the $\chi^{2} / \mathrm{de}-$ gree of freedom are listed in Table IV. The fits are all excellent as seen by the values of the $\chi^{2} /$ degree of freedom listed in Table IV.

TABLE II. The values of $\left[\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ and numbers of jets (inside parentheses) for the groupings of $N_{h}=0,1,2-4,5-8,9-15,16-22$, and ≥ 23.

n_{s}	(a) $N_{h}=0$			
	$\begin{gathered} 30 \mathrm{GeV} \\ (190) \end{gathered}$	$\underset{(224)}{200 \mathrm{GeV}}$	$\begin{gathered} 300 \mathrm{GeV} \\ (267) \end{gathered}$	$\begin{gathered} 400 \mathrm{GeV} \\ (161) \end{gathered}$
1			$\begin{array}{r} -0.43 \\ (1) \end{array}$	$\begin{aligned} & 1.22 \\ & (1) \end{aligned}$
2	$\begin{gathered} 0.75 \pm 0.18 \\ (20) \end{gathered}$	1.34 ± 0.33 (8)	2.36 ± 0.28 (6)	
3	$\begin{gathered} 1.03 \pm 0.15 \\ (34) \end{gathered}$	$\begin{gathered} 1.30 \pm 0.17 \\ (25) \end{gathered}$	$\begin{gathered} 2.27 \pm 0.14 \\ (39) \end{gathered}$	$\begin{aligned} & 2.00 \pm 0.20 \\ & (21) \end{aligned}$
4	$\begin{aligned} & 0.22 \pm 0.10 \\ & (34) \end{aligned}$	$\begin{aligned} & 0.75 \pm 0.27 \\ & (11) \end{aligned}$	$\begin{gathered} 0.46 \pm 0.23 \\ (10) \end{gathered}$	$\underset{(7)}{0.80 \pm 0.22}$
5	$\begin{gathered} 0.25 \pm 0.11 \\ (30) \end{gathered}$	$\begin{gathered} 0.69 \pm 0.16 \\ (26) \end{gathered}$	$\begin{gathered} 1.04 \pm 0.18 \\ (26) \end{gathered}$	1.19 ± 0.22 (17)
6	$\begin{gathered} 0.12 \pm 0.08 \\ (23) \end{gathered}$	$\begin{aligned} & 0.19 \pm 0.15 \\ & (20) \end{aligned}$	$\begin{gathered} 0.45 \pm 0.16 \\ (17) \end{gathered}$	$\begin{aligned} & 0.28 \pm 0.24 \\ & \text { (6) } \end{aligned}$
7	$\begin{gathered} 0.01 \pm 0.10 \\ (15) \end{gathered}$	$\begin{aligned} & 0.40 \pm 0.15 \\ & (18) \end{aligned}$	$\begin{gathered} 0.53 \pm 0.17 \\ (20) \end{gathered}$	$\begin{gathered} 0.59 \pm 0.16 \\ (12) \end{gathered}$
8	$\begin{gathered} 0.20 \pm 0.08 \\ (15) \end{gathered}$	$\begin{aligned} & 0.19 \pm 0.08 \\ & (25) \end{aligned}$	$\begin{gathered} 0.10 \pm 0.15 \\ (14) \end{gathered}$	0.29 ± 0.34 (7)
9	$\begin{gathered} 0.00 \pm 0.08 \\ (11) \end{gathered}$	$\begin{aligned} & 0.25 \pm 0.12 \\ & (19) \end{aligned}$	$\begin{gathered} 0.37 \pm 0.10 \\ (19) \end{gathered}$	$\begin{aligned} & 0.39 \pm 0.24 \\ & (14) \end{aligned}$
10-14	-0.05 ± 0.13 (7)	$\begin{gathered} 0.06 \pm 0.06 \\ (50) \end{gathered}$	$\begin{gathered} 0.06 \pm 0.05 \\ (68) \end{gathered}$	$\begin{gathered} 0.09 \pm 0.06 \\ (50) \end{gathered}$
15-19	$\begin{array}{r} -0.34 \\ (1) \end{array}$	$\begin{gathered} -0.16 \pm 0.08 \\ (18) \end{gathered}$	$\begin{gathered} 0.06 \pm 0.07 \\ (33) \end{gathered}$	$\begin{gathered} -0.14 \pm 0.07 \\ (19) \end{gathered}$
20-24		-0.21 ± 0.22 (4)	$\begin{gathered} -0.14 \pm 0.09 \\ (11) \end{gathered}$	$\underset{(6)}{-0.18 \pm 0.24}$
25-29			$\underset{(3)}{-0.11 \pm 0.07}$	0.14 (1)

n_{s}	(b) $N_{h}=1$			
	$\begin{gathered} 30 \mathrm{GeV} \\ (154) \end{gathered}$	$\begin{gathered} 200 \mathrm{GeV} \\ (143) \end{gathered}$	$\begin{gathered} 300 \mathrm{GeV} \\ (158) \end{gathered}$	$\begin{gathered} 400 \mathrm{GeV} \\ (89) \end{gathered}$
1	$\begin{gathered} 2.50 \pm 0.15 \\ \text { (31) } \end{gathered}$	2.05 ± 0.38 (19)	$\begin{gathered} 3.21 \pm 0.69 \\ (12) \end{gathered}$	1.34 ± 1.73 (4)
2	$\begin{gathered} 0.64 \pm 0.28 \\ (17) \end{gathered}$	$\begin{gathered} -0.39 \\ (1) \end{gathered}$		$\begin{aligned} & 1.42 \\ & (1) \end{aligned}$
3	$\begin{aligned} & 0.77 \pm 0.11 \\ & (28) \end{aligned}$	$\begin{gathered} 1.04 \pm 0.27 \\ (10) \end{gathered}$	$\begin{aligned} & 1.41 \pm 0.42 \\ & (6) \end{aligned}$	1.21 ± 0.49 (7)
4	0.34 ± 0.16 (7)	$\begin{aligned} & 0.45 \pm 0.21 \\ & (11) \end{aligned}$	1.06 ± 0.32 (8)	-0.29 ± 0.80 (3)
5	$\begin{gathered} 0.42 \pm 0.12 \\ (17) \end{gathered}$	0.82 ± 0.35 (8)	$\begin{gathered} 0.62 \pm 0.17 \\ (14) \end{gathered}$	0.66 ± 0.30 (7)
6	$\begin{gathered} 0.00 \pm 0.12 \\ (16) \end{gathered}$	0.03 ± 0.16 (8)	0.56 ± 0.32 (8)	0.39 ± 0.34 (2)
7	$\underset{(12)}{-0.01 \pm 0.11}$	$\begin{gathered} 0.51 \pm 0.18 \\ (12) \end{gathered}$	$\begin{gathered} 0.51 \pm 0.20 \\ (11) \end{gathered}$	0.67 ± 0.31 (8)
8	-0.08 ± 0.21 (4)	$\underset{(5)}{0.18 \pm 0.13}$	$\begin{gathered} -0.17 \pm 0.14^{\mathrm{a}} \\ (10) \end{gathered}$	-0.14 ± 0.35 (4)
9	$\frac{-0.38 \pm 0.15}{(8)}$	$\begin{aligned} & 0.12 \pm 0.20 \\ & (12) \end{aligned}$	$\begin{gathered} 0.18 \pm 0.15 \\ (15) \end{gathered}$	$\begin{gathered} 0.33 \pm 0.20 \\ (6) \end{gathered}$
10-14	$\begin{gathered} -0.16 \pm 0.07 \\ (13) \end{gathered}$	$\begin{gathered} 0.00 \pm 0.09 \\ (38) \end{gathered}$	$\begin{gathered} 0.02 \pm 0.08 \\ (47) \end{gathered}$	$\begin{gathered} 0.21 \pm 0.14 \\ (24) \end{gathered}$
15-19	$\begin{array}{r} -0.87 \\ (1) \end{array}$	$\begin{gathered} -0.23 \pm 0.08 \\ (14) \end{gathered}$	$\underset{(17)}{-0.01 \pm 0.08}$	$\underset{(15)}{-0.19 \pm 0.09}$
20-24		$\begin{gathered} -0.17 \pm 0.15 \\ (5) \end{gathered}$	$\underset{(4)}{-0.37 \pm 0.08}$	$\underset{(6)}{-0.08 \pm 0.09}$
25-29			$\underset{\text { (3) }}{-0.56 \pm 0.27}$	$\underset{(2)}{-0.58 \pm 0.71}$

TABLE II (Continued).

	(b) $N_{h}=1$ 30 GeV (154)	200 GeV (143)	300 GeV (158)

(c) $N_{h}=2-4$

n_{s}	$\begin{gathered} 30 \mathrm{GeV} \\ (289) \end{gathered}$	$\begin{gathered} 200 \mathrm{GeV} \\ (138) \end{gathered}$	$\begin{gathered} 300 \mathrm{GeV} \\ (245) \end{gathered}$	$\begin{gathered} 400 \mathrm{GeV} \\ (219) \end{gathered}$
1	$\begin{gathered} 1.73 \pm 0.19 \\ (36) \end{gathered}$	2.08 ± 0.51 (6)	2.27 ± 0.47 (4)	$\begin{gathered} 2.48 \pm 0.83 \\ (5) \end{gathered}$
2	$\begin{aligned} & 0.49 \pm 0.19 \\ & (25) \end{aligned}$	0.91 ± 0.83 (4)	1.22 ± 0.44 (4)	$\underset{(3)}{-1.23 \pm 0.52}$
3	$\begin{gathered} 0.42 \pm 0.15 \\ (36) \end{gathered}$	$\underset{(5)}{-0.09 \pm 0.53}$	0.43 ± 0.40 (9)	$\begin{gathered} -0.07 \pm 0.74 \\ (5) \end{gathered}$
4	$\begin{gathered} 0.10 \pm 0.12 \\ (31) \end{gathered}$	$\begin{gathered} -0.42 \pm 0.46 \\ (6) \end{gathered}$	$\begin{gathered} 0.52 \pm 0.28 \\ (5) \end{gathered}$	0.61 ± 0.58 (7)
5	$\begin{gathered} 0.17 \pm 0.13 \\ (30) \end{gathered}$	0.05 ± 0.28 (6)	0.28 ± 0.27 (9)	$\begin{gathered} 0.08 \pm 0.32 \\ (12) \end{gathered}$
6	$\frac{-0.06 \pm 0.10}{(23)}$	$\underset{(7)}{-0.25 \pm 0.41}$	$\begin{gathered} 0.44 \pm 0.24 \\ (13) \end{gathered}$	$\begin{gathered} -0.02 \pm 0.28 \\ (10) \end{gathered}$
7	$\underset{(26)}{-0.19 \pm 0.10}$	$\begin{aligned} & 0.37 \pm 0.23 \\ & (13) \end{aligned}$	$\begin{gathered} 0.33 \pm 0.17 \\ (12) \end{gathered}$	$\underset{(13)}{-0.15 \pm 0.23}$
8	$\begin{gathered} -0.09 \pm 0.06 \\ (24) \end{gathered}$	$\begin{aligned} & 0.40 \pm 0.28 \\ & (9) \end{aligned}$	$\begin{gathered} -0.02 \pm 0.16 \\ (18) \end{gathered}$	$\begin{gathered} 0.04 \pm 0.24 \\ (11) \end{gathered}$
9	$\underset{(19)}{-0.18 \pm 0.10}$	$\begin{gathered} -0.23 \pm 0.27 \\ (8) \end{gathered}$	$\begin{gathered} 0.36 \pm 0.16 \\ (15) \end{gathered}$	-0.24 ± 0.57 (4)
10-14	$\begin{gathered} -0.28 \pm 0.05 \\ (36) \end{gathered}$	$\begin{gathered} -0.12 \pm 0.08 \\ (34) \end{gathered}$	$\begin{gathered} -0.18 \pm 0.06 \\ (70) \end{gathered}$	$\begin{gathered} -0.03 \pm 0.06 \\ (58) \end{gathered}$
15-19	$\begin{gathered} -0.33 \pm 0.05 \\ \text { (3) } \end{gathered}$	$-\underset{(22)}{-0.30 \pm 0.11}$	$\underset{(43)}{-0.23 \pm 0.05}$	$\begin{gathered} -0.38 \pm 0.08 \\ (51) \end{gathered}$
20-24		$\begin{gathered} -0.41 \pm 0.11 \\ (13) \end{gathered}$	$\frac{-0.34 \pm 0.06}{(24)}$	$\begin{gathered} -0.47 \pm 0.11 \\ (20) \end{gathered}$
25-29		$\underset{\text { (3) }}{-0.35 \pm 0.45}$	$\begin{gathered} -0.62 \pm 0.09 \\ (11) \end{gathered}$	$\begin{gathered} -0.23 \pm 0.13 \\ (8) \end{gathered}$
30-34		$\begin{array}{r} -0.74 \\ (1) \end{array}$	$\begin{gathered} -0.62 \pm 0.10 \\ (6) \end{gathered}$	$\underset{(8)}{-0.39 \pm 0.18}$
35-39		$\begin{array}{r} -0.88 \\ (1) \end{array}$	$\begin{array}{r} -0.49 \\ (1) \end{array}$	-0.69 ± 0.23 (3)
40-44			$\begin{array}{r} -0.64 \\ (1) \end{array}$	$\begin{array}{r} -0.45 \\ (1) \end{array}$

n_{s}	(d) $N_{h}=5-8$			
	$\begin{gathered} 30 \mathrm{GeV} \\ (231) . \end{gathered}$	$\begin{gathered} 200 \mathrm{GeV} \\ (34) \end{gathered}$	$\begin{gathered} 300 \mathrm{GeV} \\ (156) \end{gathered}$	$\begin{gathered} 400 \mathrm{GeV} \\ (147) \end{gathered}$
1	1.40 ± 0.42 (10)			
2	$\begin{gathered} 0.55 \pm 0.38 \\ (8) \end{gathered}$	$\begin{aligned} & 0.52 \\ & (1) \end{aligned}$	$\begin{gathered} 0.09 \\ (1) \end{gathered}$	$\begin{aligned} & 0.53 \pm 0.21 \\ & (5) \end{aligned}$
3	$\underset{(20)}{0.15 \pm 0.20}$	0.43 ± 1.00 (3)	0.91 ± 1.01 (3)	$\begin{aligned} & 0.10 \\ & (1) \end{aligned}$
4	$\begin{gathered} 0.34 \pm 0.18 \\ (20) \end{gathered}$	1.29 ± 0.07 (2)	-0.55 ± 0.33 (4)	$\begin{aligned} & 0.53 \pm 0.47 \\ & \text { (3) } \end{aligned}$
5	$\underset{(37)}{-0.17 \pm 0.10}$	$\begin{array}{r} -0.28 \\ (1) \end{array}$	$\begin{gathered} -0.34 \pm 0.28 \\ (5) \end{gathered}$	0.64 ± 0.41 (3)
6	$\begin{gathered} 0.05 \pm 0.18 \\ (23) \end{gathered}$	$\begin{array}{r} -0.33 \\ (1) \end{array}$	0.71 ± 0.10 (3)	0.41 ± 0.46 (4)

TABLE II (Continued).

n_{s}	(d) $N_{h}=5-8$			
	$\begin{gathered} 30 \mathrm{GeV} \\ (231) \end{gathered}$	$\begin{gathered} 200 \mathrm{GeV} \\ (34) \end{gathered}$	$\begin{gathered} 300 \mathrm{GeV} \\ (156) \end{gathered}$	$\begin{gathered} 400 \mathrm{GeV} \\ (147) \end{gathered}$
7	$\begin{gathered} -0.21 \pm 0.09 \\ (31) \end{gathered}$	-1.27 ± 0.54 (2)	$\begin{gathered} -0.07 \pm 0.40 \\ (5) \end{gathered}$	$\begin{aligned} & 0.81 \pm 0.24 \\ & \text { (5) } \end{aligned}$
8	$\begin{gathered} -0.13 \pm 0.09 \\ (21) \end{gathered}$	0.08 ± 0.36 (3)	-0.19 ± 0.24 (9)	$\begin{gathered} -0.75 \pm 0.36 \\ (5) \end{gathered}$
9	$\begin{gathered} -0.22 \pm 0.11 \\ (16) \end{gathered}$	$\frac{-0.09 \pm 0.20}{(6)}$	0.38 ± 0.24 (7)	-0.10 ± 0.24 (8)
10-14	$\begin{gathered} -0.49 \pm 0.05 \\ (41) \end{gathered}$	$\begin{gathered} -0.39 \pm 0.13 \\ (11) \end{gathered}$	$\frac{-0.15 \pm 0.07}{(46)}$	$\begin{gathered} -0.27 \pm 0.08 \\ (41) \end{gathered}$
15-19	-0.44 ± 0.02 (3)	$\begin{array}{r} -0.69 \\ (1) \end{array}$	$\begin{gathered} -0.37 \pm 0.07 \\ (39) \end{gathered}$	-0.43 ± 0.08
20-24	$\begin{array}{r} -0.47 \\ (1) \end{array}$	-0.99 ± 0.29 (3)	$\begin{gathered} -0.46 \pm 0.07 \\ (22) \end{gathered}$	$\begin{gathered} -0.42 \pm 0.09 \\ (16) \end{gathered}$
25-29			$\begin{gathered} -0.57 \pm 0.15 \\ (5) \end{gathered}$	-0.62 ± 0.14 (7)
30-44			$\begin{gathered} -0.81 \pm 0.09 \\ (5) \end{gathered}$	-0.70 ± 0.12 (6)
35-39			$\underset{(2)}{-0.20 \pm 0.13}$	$\underset{\text { (3) }}{-0.93 \pm 0.05}$
40-44			-1.07	

(e) $N_{h}=9-15$

n_{s}	$\begin{gathered} 30 \mathrm{GeV} \\ (204) \end{gathered}$	$\underset{(32)}{200 \mathrm{GeV}}$	$\begin{gathered} 300 \mathrm{GeV} \\ (192) \end{gathered}$	$\underset{(159)}{400 \mathrm{GeV}}$
1	1.20 ± 0.86 (3)		$\begin{array}{r} 1.00 \\ (1) \end{array}$	
2	$\begin{gathered} 0.36 \pm 0.32 \\ (8) \end{gathered}$		$\begin{array}{r} -1.48 \\ (1) \end{array}$	-0.29 ± 0.92 (3)
3	$\begin{gathered} -0.53 \pm 0.24 \\ (10) \end{gathered}$		$\underset{(2)}{-0.32 \pm 1.46}$	$\begin{array}{r} -1.31 \\ (1) \end{array}$
4	$\begin{gathered} -0.20 \pm 0.32 \\ (6) \end{gathered}$		$\begin{aligned} & 0.22 \\ & (1) \end{aligned}$	$\begin{array}{r} -1.27 \\ (1) \end{array}$
5	$\begin{gathered} 0.10 \pm 0.08 \\ (15) \end{gathered}$		$\frac{-0.58 \pm 0.47}{(6)}$	-0.51 ± 0.81 (2)
6	$\frac{-0.26 \pm 0.14}{(14)}$	$\begin{gathered} 0.05 \\ (1) \end{gathered}$	-0.13 ± 1.42 (2)	$\begin{array}{r} -1.03 \\ (1) \end{array}$
7	$\frac{-0.44 \pm 0.10}{(26)}$	$\begin{aligned} & 0.92 \\ & (1) \end{aligned}$	$\underset{(2)}{-1.40 \pm 0.59}$	
8	$\begin{gathered} -0.39 \pm 0.08 \\ (19) \end{gathered}$	$\begin{array}{r} -1.50 \\ (1) \end{array}$	0.04 ± 0.17 (6)	-0.28 ± 0.35 (2)
9	$\begin{gathered} -0.42 \pm 0.07 \\ (23) \end{gathered}$	$\begin{array}{r} -0.89 \\ (1) \end{array}$	$\underset{(7)}{-0.27 \pm 0.20}$	0.16 ± 0.26 (7)
10-14	$\begin{gathered} -0.67 \pm 0.05 \\ (65) \end{gathered}$	$\begin{gathered} -0.42 \pm 0.35 \\ \text { (6) } \end{gathered}$	$\underset{(41)}{-0.20 \pm 0.09}$	$\underset{(22)}{-0.35 \pm 0.11}$
15-19	$\begin{gathered} -0.73 \pm 0.10 \\ (11) \end{gathered}$	$\underset{(7)}{-0.39 \pm 0.27}$	$\underset{(39)}{-0.51 \pm 0.08}$	$\begin{gathered} -0.36 \pm 0.08 \\ (29) \end{gathered}$
20-24	-0.75 ± 0.38 (4)	$\underset{(8)}{-0.54 \pm 0.14}$	$\begin{gathered} -0.59 \pm 0.05 \\ (37) \end{gathered}$	$\begin{gathered} -0.60 \pm 0.07 \\ (38) \end{gathered}$
25-29		$\begin{gathered} -0.83 \pm 0.26 \\ (3) \end{gathered}$	$\begin{gathered} -0.66 \pm 0.07 \\ (20) \end{gathered}$	$\underset{(24)}{-0.58 \pm 0.07}$
30-34		$\underset{\text { (2) }}{-1.00 \pm 0.25}$	$\begin{gathered} -0.88 \pm 0.06 \\ (15) \end{gathered}$	$\begin{gathered} -0.73 \pm 0.06 \\ (16) \end{gathered}$
35-39		$\begin{array}{r} -1.37 \\ (1) \end{array}$	$\underset{(7)}{-0.86 \pm 0.17}$	-0.79 ± 0.11 (9)
40-44		$\begin{array}{r} -1.11 \\ (1) \end{array}$	-0.86 ± 0.13 (4)	$\begin{array}{r} -0.61 \\ (1) \end{array}$

TABLE II (Continued).

TABLE II. (Continued).

n_{s}	(g) $N_{h} \geq 23$			
	$\begin{aligned} & 30 \mathrm{GeV} \\ & (55) \end{aligned}$	$\begin{aligned} & 200 \mathrm{GeV} \\ & \text { (13) } \end{aligned}$	$\underset{(52)}{300 \mathrm{GeV}}$	$\underset{\text { (50) }}{400 \mathrm{GeV}}$
6	-0.81 ± 0.18 (3)		$\begin{array}{r} -2.21 \\ (1) \end{array}$	
7			$\begin{array}{r} -1.38 \\ (1) \end{array}$	
8	-0.65 ± 0.11 (4)		$\begin{array}{r} -0.42 \\ (1) \end{array}$	
9	-0.59 ± 0.12 (4)		$\begin{array}{r} -2.37 \\ (1) \end{array}$	
10-14	$\begin{gathered} -0.77 \pm 0.06 \\ (25) \end{gathered}$	$\begin{array}{r} -0.63 \\ (1) \end{array}$	-0.53 ± 0.32 (4)	
15-19	$\begin{gathered} -0.97 \pm 0.05 \\ (13) \end{gathered}$		$\underset{\text { (3) }}{-1.02 \pm 0.56}$	$\underset{\text { (3) }}{-1.12 \pm 0.18}$
20-24	$\underset{\text { (3) }}{-1.04 \pm 0.09}$	$\underset{(5)}{-0.92 \pm 0.18}$	$\begin{gathered} -0.88 \pm 0.10 \\ (10) \end{gathered}$	$\underset{(8)}{-0.55 \pm 0.18}$
25-29	$\begin{array}{r} -1.44 \\ (1) \end{array}$	-0.96 ± 0.36 (4)	$\begin{gathered} -0.88 \pm 0.13 \\ (10) \end{gathered}$	$\begin{gathered} -0.87 \pm 0.10 \\ (11) \end{gathered}$
30-34		$\begin{array}{r} -1.13 \\ (1) \end{array}$	$\begin{gathered} -0.91 \pm 0.16 \\ (6) \end{gathered}$	-0.94 ± 0.10 (9)
35-39		$\begin{array}{r} -0.89 \\ (1) \end{array}$	-0.85 ± 0.17 (4)	$\underset{(5)}{-1.04 \pm 0.08}$
40-44			$\begin{gathered} -1.14 \pm 0.10 \\ (6) \end{gathered}$	$\begin{gathered} -1.14 \pm 0.05 \\ (10) \end{gathered}$
45-49		$\begin{array}{r} -1.16 \\ (1) \end{array}$	-0.88 ± 0.18 (4)	$\begin{array}{r} -1.56 \\ (1) \end{array}$
50-54				$\frac{-1.37 \pm 0.20}{\text { (2) }}$
55-59				$\begin{array}{r} -1.06 \\ (1) \end{array}$

${ }^{2} \mathrm{~A}$ jet of $(1+8)$ omitted $[\langle\eta(\theta)\rangle=1.13]$.
TABLE III. The values of A and B (in parentheses), obtained by least-squares fits of $\left[\left(\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]\right.$ to Eq. (12). In square brackets are the values of χ^{2} / DF.

N_{h}	30 GeV	200 GeV	300 GeV	400 GeV	The average $\langle A\rangle$
0	$\begin{gathered} -0.06 \pm 0.09 \\ (1.4 \pm 0.5) \\ {[1.1]} \end{gathered}$	$\begin{gathered} -0.26 \pm 0.07 \\ (3.3 \pm 0.6) \\ {[0.7]} \end{gathered}$	$\begin{gathered} -0.29 \pm 0.05 \\ (4.3 \pm 0.5) \\ {[1.4]} \end{gathered}$	$\begin{gathered} -0.32 \pm 0.10 \\ (4.3 \pm 1.1) \\ {[0.6]} \end{gathered}$	-0.252 ± 0.035
1	$\begin{gathered} -0.33 \pm 0.10 \\ (2.2 \pm 0.6) \\ {[0.3]} \end{gathered}$	$\begin{gathered} -0.15 \pm 0.10 \\ (2.1 \pm 0.9) \\ {[2.1]} \end{gathered}$	$\begin{gathered} -0.39 \pm 0.10 \\ (4.2 \pm 1.2) \\ {[3.4]} \end{gathered}$	$\begin{gathered} -0.19 \pm 0.17 \\ (1.8 \pm 2.6) \\ {[1.9]} \end{gathered}$	-0.280 ± 0.055
2-4	$\begin{gathered} -0.43 \pm 0.05 \\ (2.1 \pm 0.4) \\ {[0.7]} \end{gathered}$	$\begin{gathered} -0.42 \pm 0.11 \\ (2.7 \pm 1.3) \\ {[1.3]} \end{gathered}$	$\begin{gathered} -0.59 \pm 0.05 \\ (4.7 \pm 0.7) \\ {[2.0]} \end{gathered}$	$\begin{gathered} -0.60 \pm 0.09 \\ (5.7 \pm 1.3) \\ {[1.5]} \end{gathered}$	-0.76 ± 0.03
5-8	$\begin{gathered} -0.64 \pm 0.04 \\ (3.2 \pm 0.6) \\ {[2.6]} \end{gathered}$	$\begin{gathered} -1.56 \pm 0.58 \\ (13.7 \pm 5.8) \\ {[1.1]} \end{gathered}$	$\begin{gathered} -0.98 \pm 0.07 \\ (9.9 \pm 0.8)^{\mathrm{a}} \\ {[1.4]} \end{gathered}$	$\begin{gathered} -0.80 \pm 0.04 \\ (3.4 \pm 0.44) \\ {[5.9]} \end{gathered}$	-0.96 ± 0.04
9-15	$\begin{gathered} -0.89 \pm 0.05 \\ (3.1 \pm 0.5) \\ {[0.8]} \end{gathered}$	$\begin{gathered} -0.92 \pm 0.43 \\ (7.4 \pm 8.3) \\ {[0.4]} \end{gathered}$	$\begin{gathered} -1.11 \pm 0.07 \\ (10.5 \pm 1.4) \\ {[0.9]} \end{gathered}$	$\begin{gathered} -0.96 \pm 0.10 \\ (8.6 \pm 2.1) \\ {[1.0]} \end{gathered}$	-0.963 ± 0.038
16-22	$\begin{gathered} -0.99 \pm 0.10 \\ (3.1 \pm 1.2) \\ {[0.2]} \end{gathered}$	$\begin{gathered} -1.14 \pm 0.19 \\ (6.9 \pm 4.6) \\ {[1.2]} \end{gathered}$	$\begin{gathered} -1.27 \pm 0.11 \\ (11.3 \pm 2.6)^{\mathrm{a}} \\ {[3.0]} \end{gathered}$	$\begin{gathered} -1.02 \pm 0.09 \\ (5.4 \pm 2.5) \\ {[1.3]} \end{gathered}$	-1.083 ± 0.055
≥ 23	$\begin{gathered} -1.16 \pm 0.09 \\ (3.7 \pm 1.2) \\ {[1.8]} \end{gathered}$	$\begin{gathered} -1.14 \pm 2.11 \\ (4.8 \pm 48.0) \\ {[0]} \end{gathered}$	$\begin{gathered} -1.20 \pm 0.15 \\ (7.5 \pm 4.2) \\ {[0.6]} \end{gathered}$	$\begin{gathered} -1.34 \pm 0.13 \\ (10.0 \pm 4.3) \\ {[2.5]} \end{gathered}$	-1.225 ± 0.066

${ }^{\text {a }}$ The data for the jets with $n_{s}=4$ are omitted in the fits.

FIG. 1. The values of [$\left.\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ versus n_{s} for (a) $N_{h}=0$, (b) $N_{h}=1$, (c) $N_{h}=2-4$, (d) $N_{h}=5-8$, (e) $N_{h}=9-15$, (f) $N_{h}=16-22$, and (g) $N_{h} \geq 23$.

C. Parametrization of \boldsymbol{A}^{\prime} and \boldsymbol{B}^{\prime}

As first noted essentially in Ref. 23, the N_{h} dependence of A^{\prime}, listed in Table IV, can be fitted well by the regression function

$$
\begin{equation*}
A^{\prime}=\alpha\left(1+\gamma N_{h}\right) /\left(1+\delta N_{h}\right) \tag{13}
\end{equation*}
$$

where the results of the least-squares fits are $\alpha=-0.229 \pm 0.005, \quad \gamma=0.500 \pm 0.012, \quad$ and $\delta=0.065$ ± 0.018 with $\chi^{2} / \mathrm{DF}=0.4$. As can be easily shown, our value of δ and that of Ref. 23 (0.062 ± 0.016), seems in good accord. Even if the needed factor of $(-\ln 10)$ is multiplied into the value of α in Ref. 23, the values of α and γ do not seem to match well between our values and

(Number of Shower Particles)

FIG. 1. (Continued.)
those of Ref. 23, where the data of $30-\mathrm{GeV}$ jets are commonly shared in both analyses. This difference comes from our use of $\eta(\theta)$ in place of r. The significance of Eq. (13) is fully discussed in Sec. IV C.
The separate procedure of least-squares fits gave

$$
\begin{equation*}
B^{\prime}=(0.229 \pm 0.016)+(0.0148 \pm 0.0028) N_{h} \tag{14}
\end{equation*}
$$

with $\chi^{2} / \mathrm{DF}=0.98$.
Thus, our numerical analyses can be summerized with the scaling formula

FIG. 2. The values of $\left[\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2\right]$ versus $\xi=n_{s} /\left\langle n_{s}\right\rangle$ for (a) $N_{h}=0$, (b) $N_{h}=1$, (c) $N_{h}=2-4$, (d) $N_{h}=5-8$, (e) $N_{h}=9-15$, (f) $N_{h}=16-22$, and (g) $N_{h} \geq 23$.

$$
\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2=(-0.229 \pm 0.005) \frac{\left[1-(0.500 \pm 0.012) N_{h}\right]}{\left[1+(0.065 \pm 0.018) N_{h}\right]}+\left[(0.229 \pm 0.016)+(0.0148 \pm 0.0028) N_{h}\right] / \xi
$$

of which the right-hand side can be termed into three, as the first, N_{h}-dependent term, the second, the constant term, and the third, ξ-dependent term, as

$$
\begin{align*}
\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2= & (-0.229 \pm 0.005) \frac{[(0.500+0.065) \pm 0.022]}{\left[1+(0.065 \pm 0.018) N_{h}\right]} N_{h}+(0.229 \pm 0.005) \\
& +\left[(0.229 \pm 0.016)+(0.0148 \pm 0.0028) N_{h}\right] / \xi . \tag{15}
\end{align*}
$$

FIG. 3. The average differential rapidity spectrum of $p-\mathrm{Em}$ collisions and $p-p$ collisions. (Do not take heed of the detailed shapes.) (a) p-Em collisions. (b) The ($n_{s}-n_{0}$) "excess" shower particles. (See the details in the text.)

IV. DISCUSSION

The empirical formula, Eq. (15), has a practical use as the correction formula for the $E(\theta)$ method 3 of energy estimation for high-energy primary proton cosmic rays. First, from the measured emission angles of a jet, the estimate of $E(\theta)$ is to be obtained for the jets in order to find the value of $\xi=n_{s} /\left\langle n_{s}\right\rangle$, where the value of $\left\langle n_{s}\right\rangle$ may be interpolated or extrapolated from the empirically known multiplicities of accelerator-produced jets in nuclear emulsion. Thus a "refined" estimate of $E(\theta)$ can be secured through η_{p} of Eq. (15).

We find that typical jets with $N_{h}=0$ and $\xi=1, E(\theta)$ is equal to E_{p} as shown in Refs. 3 and 12, as seen from Eq. (15).

The small constant term in Eq. (15) may have a simple explanation: The assumption of

$$
\left\langle\ln \left[\left(1+x^{2}\right)^{1 / 2} / x\right]\right\rangle \cong 0.233
$$

in order to correct for the effect of pion secondaries in introducing $\eta(\theta)$ was not large enough, possibly due to the presence of kaons and protons, besides the majority of pion secondaries. So we should double the correction term $\left\langle\ln \left(\left(1+x^{2}\right)^{1 / 2} / x\right)\right\rangle$ to be ~ 0.46 (Ref. 6).

TABLE IV. The values of A^{\prime}, B^{\prime}, and χ^{2} / DF, obtained by least-squares fits of $\langle\langle\eta(\theta)\rangle\rangle-\eta_{p} / 2$ to Eq. (12').

N_{h}	A^{\prime}	B^{\prime}	χ^{2} / DF
0	-0.22 ± 0.03	0.22 ± 0.02	$39 / 24$
1	-0.36 ± 0.05	0.27 ± 0.04	$31 / 23$
$2-4$	-0.48 ± 0.03	0.27 ± 0.03	$56 / 30$
$5-8$	-0.66 ± 0.05	0.34 ± 0.06	$41 / 28$
$9-15$	-0.91 ± 0.03	0.45 ± 0.05	$41 / 28$
$16-22$	-1.05 ± 0.05	0.45 ± 0.09	$52 / 26$
≥ 23	-1.22 ± 0.07	0.55 ± 0.13	$34 / 26$

A. The effective target mass and the asymmetry parameter

The physics behind Eq. (15) might be well organized through the use of the asymmetry parameter which is expected from the quark model and tested to be scaling by Tavernier, ${ }^{24,25}$

$$
\begin{equation*}
R=\frac{m_{t} \sinh \left(\langle\eta\rangle-\eta_{t}\right)}{m_{b} \sinh \left(\eta_{b}-\langle\eta\rangle\right)} \tag{16}
\end{equation*}
$$

where $m_{t}, m_{b}, \eta_{t}, \eta_{b}$ are masses and "initial" rapidities of beam and target, respectively. As easily seen in Eq. (16), this asymmetry parameter R is interpreted as the ratio of the momenta of the incoming particles in the "symmetric system,"3 where centrally produced secondaries exhibit forward-backward symmetry. Thus, in the frame of reference for which $\langle\eta\rangle=0$,

$$
R=-m_{t} \sinh \eta_{t} / m_{b} \sinh \eta_{b}
$$

For application of Eq. (16) for the present analysis, because of the invariance of $\langle\eta\rangle-\eta_{t}$ and $\eta_{b}-\langle\eta\rangle$ in any frame of reference which moves with respect to the LS in the direction of the primary, let us take them to be the quantities in the LS, where $\eta_{t}=0$. Then we obtain the relation

$$
\langle\eta\rangle=\frac{1}{2} \ln \frac{1+\left(R m_{b} / m_{t}\right) e^{\eta_{b}}}{1+\left(R m_{b} / m_{t}\right) e^{-\eta_{b}}}
$$

which, for large values of η_{b}, reduces to

$$
\langle\eta\rangle-\frac{\eta_{b}}{2} \cong \frac{1}{2} \ln R+\frac{1}{2} \ln \frac{m_{b}}{m_{t}}
$$

Equation (16") can be compared with Eq. (15), with $m_{t}=v m_{p}, m_{b}=m_{p}$, and $\langle\langle\eta(\theta)\rangle\rangle=\langle\eta\rangle$, as

$$
\begin{equation*}
-\frac{1}{2} \ln v \cong-0.229 \frac{\left(\frac{1}{2}+0.065\right) N_{h}}{\left(1+0.065 N_{h}\right)} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \ln R \cong 0.229\left(1+0.065 N_{h}\right) / \xi \tag{18}
\end{equation*}
$$

as will be discussed in detail in the following.
For $30-\mathrm{GeV}$ jets, ${ }^{11} v$ was already obtained to be $1 \sim 3.2$, as shown in Table VIII of Ref. 3 to be a function only of N_{h}. This value of v has been interpreted as being related to the same number of collisions in intranuclear cascading processes, ${ }^{26}$ implying that only a few nucleons inside the target nucleus are actually responsible in producing charged shower particles. We have also pointed out in Ref. 3 that the term represented in Eq. (18) should be due to the inadequacy of the approximation of Eq. (1), when n_{s} becomes very small $(\xi \ll 1)$. The prominent role played by incident hadrons which survive after the interactions with small p_{T} [$x_{T} \ll 1$ in Eq. (3)], possibly with large p_{L} in the c.m.s., was attributed by us.

Concerning Eqs. (17) and (18), let us give heed to the scaling relation, which was first noticed by Friedländer: ${ }^{27}$

$$
\begin{equation*}
\zeta\left(N_{h}\right)=\frac{\left\langle n_{s}\left(E_{p}, N_{h}\right)\right\rangle}{\left\langle n_{p}\left(E_{p}\right)\right\rangle} \cong\left(1+b N_{h}\right), \tag{19}
\end{equation*}
$$

where $n_{s}\left(E_{p}, N_{h}\right)$ is the total number of charged shower
particles of a jet with N_{h}, produced by a primary proton of the primary energy E_{p} in nuclear emulsion, and $\left\langle n_{p}\left(E_{p}\right)\right.$ 〉 is the average multiplicity of charged shower particles produced in $p-p$ collisions at E_{p}. The constant b is independent of E_{p} and equal to ~ 0.078, as read by us from Fig. 1 of Ref. 27. It is stressed by us here that the term ($1+0.065 N_{h}$) appearing both in Eqs. (17) and (18) may coincide very closely with $\xi\left(N_{h}\right)$ in Eq. (19). Thus we are led to the following relations, by comparing

$$
\begin{equation*}
\ln v \propto\left(\frac{1}{2}+b\right) N_{h} / \zeta\left(N_{h}\right) \tag{17'}
\end{equation*}
$$

and

$$
\ln R \propto \xi\left(N_{h}\right) / \xi=\frac{\left\langle n_{s}\right\rangle^{2}}{\left\langle n_{p}\right\rangle n_{s}} .
$$

B. The asymmetry parameter \boldsymbol{R}

When the number of produced particles in a jet becomes very small, i.e., in the case of $\xi \ll 1$, the role represented by Eq. (18) becomes dominant, compared with Eq. (17). Such dependence on n_{s}, essentially in the form of $1 / n_{s}$, has been already expounded by us in Ref. 3, and is due to the role of surviving baryons with $x_{T} \ll 1$, for which the second term on the right-hand side of Eq. (3), $\left\langle\ln \left[\left(1+x_{p}{ }^{2}\right)^{1 / 2} / x_{p}\right]\right\rangle$, is not as small as that for the average pion. So, for the surviving protons, instead of Eq. (1), their rapidities should be approximated as

$$
\begin{equation*}
\eta \cong \eta(\theta)-\left\{\left\langle\ln \left[\left(1+x_{p}^{2}\right)^{1 / 2} / x_{p}\right]\right\rangle-0.233\right\} \tag{20}
\end{equation*}
$$

where, for pions,

$$
\begin{equation*}
\left\langle\ln \left[\left(1+x^{2}\right)^{1 / 2} / x\right]\right\rangle \cong 0.233 \tag{21}
\end{equation*}
$$

is assumed. Then, let us assume, ignoring the contribution of neutral secondaries, that two are surviving protons and the rest pions among the n_{s} charged secondaries. Thus the relation
$\langle\eta\rangle=\langle\eta(\theta)\rangle+2\left\{\left\langle\ln \left[\left(1+x_{p}{ }^{2}\right)^{1 / 2} / x_{p}\right]\right\rangle-0.233\right\} / n_{s}$
results. When n_{s} becomes very small and the two surviving protons contribute dominantly, their true rapidities must be inferred very cautiously. Combining Eqs. (18') and (22), at least for the $1 / n_{s}$-dependent term, we hold the relation

$$
\begin{align*}
2\left\{\left\langle\ln \left[\left(1+x_{p}^{2}\right)^{1 / 2} / x_{p}\right]\right\rangle-\right. & 0.233\} \\
& \approx 0.229\left\langle n_{s}\right\rangle^{2} /\left(\left\langle n_{p}\right\rangle n_{s}\right) \tag{23}
\end{align*}
$$

where $\left\langle n_{s}\right\rangle /\left\langle n_{p}\right\rangle \cong 1.8$ for high-energy jets in nuclear emulsion, ${ }^{22}$ and $\left\langle n_{s}\right\rangle$ essentially increases as a function of $\ln E_{p}$ or $E_{p}^{1 / 4}$. Thus we can infer a slight decrease of $\left\langle x_{p}\right\rangle$ as E_{p} increases, which may be very hard to be verified experimentally. Judging from the results of applying the $E_{\text {ch }}$ method of energy estimation, ${ }^{28,29,6,30} p_{T}$ of the overall secondaries seems to slightly increase as E_{p} increases. So, if we believe in the validity of our interpretation embodied in Eq. (23), the decrease of the surviving protons for the jets with a definite $n_{s}\left(\ll\left\langle n_{s}\right\rangle\right)$ must
come from the increased proportion of the events with surviving protons and hadrons with extremely low p_{T}, as E_{p} increases. The surviving hadrons which possess such qualification can be those produced in the coherent-multiple-production events. Indeed, our analysis for finding the coherent-multiple-production events among the jets of $(0+3)(0+5)$, and $(0+7)$ (i.e., with $N_{h}=0$ and $\dot{n}_{s}=3,5$, and 7) shows the increase of the coherent-multiple-production cross section, essentially proportional to $\ln E_{p}$ between $E_{p}=30$ and 400 GeV .

In conclusion, our contention is that the scaling contribution, represented by Eq. (18), should be due to the inadequacy of the approximation of Eq. (1) in protonnucleus collisions, especially for those jets with $n_{s} \ll\left\langle n_{s}\right\rangle$.

C. The scaling of the true rapidity distribution

Thus, when expressed in the true rapidity distribution, $\langle\langle\eta\rangle\rangle$, instead of $\langle\langle\eta(\theta)\rangle\rangle$, Eq. (15) may be expressed as

$$
\langle\langle\eta\rangle\rangle-\eta_{p} / 2=-0.229\left(\frac{1}{2}+b\right) N_{h} / \xi\left(N_{h}\right),
$$

as argued in the above. The formula in the form of Eq. (13) was first introduced by Gibbs et al. ${ }^{23}$ and also refined by us ${ }^{31}$ and Gibbs et al. ${ }^{26}$
As explained in Fig. 3(a), let us suppose that n_{s} charged secondaries in a typical jet may be subdivided into two classes as

$$
\begin{equation*}
n_{s}=n_{0}+\left(n_{s}-n_{0}\right) \tag{24}
\end{equation*}
$$

with $\left\langle n_{0}\right\rangle=\left\langle n_{p}\right\rangle$, when many samples of jets of the same N_{h} and E_{p} are averaged over. (We must ignore the detailed shapes of each portion of the average differential rapidity spectrum, $d n / d \eta$.) The center of the rapidity distribution of n_{0} charged shower particles, $\left\langle\left\langle\eta_{0}\right\rangle\right\rangle$, can be almost the same, on the average, as that of proton-proton collisions, $\eta_{p} / 2$. On the other hand, the center of the differential rapidity spectrum of the $\left(n_{s}-n_{0}\right)$ "excess" charged shower particles, $\left\langle\left\langle\eta_{\text {ex }}\right\rangle\right\rangle$, is related, on the average, to the center of the rapidity distribution of n_{s} charged shower particles, $\left\langle\left\langle\eta_{p \mathrm{Em}}\right\rangle\right\rangle$, as

$$
\begin{align*}
\left\langle\left\langle\eta_{p \mathrm{Em}}\right\rangle-\frac{\eta_{p}}{2}\right. & =-\frac{1-\zeta\left(N_{h}\right)}{\zeta\left(N_{h}\right)}\left[\frac{\eta_{p}}{2}-\left\langle\left\langle\eta_{\mathrm{ex}}\right\rangle\right\rangle\right] \\
& =\frac{b N_{h}}{\zeta\left(N_{h}\right)}\left[\frac{\eta_{p}}{2}-\left\langle\left\langle\eta_{\mathrm{ex}}\right\rangle\right\rangle\right) \tag{25}
\end{align*}
$$

where $\zeta\left(N_{h}\right)=\left\langle n_{s}\right\rangle /\left\langle n_{p}\right\rangle \cong 1+b N_{h}$.
When we compare Eq. (25) with Eq. (15') with the value of $b=0.065$, the relation

$$
\begin{equation*}
\left\langle\left\langle\eta_{\mathrm{ex}}\right\rangle\right\rangle \cong \eta_{p} / 2+C \tag{26}
\end{equation*}
$$

emerges with the constant, $C=-2.0 \pm 0.6$, which concurs with the result of Gibbs et al., ${ }^{26}-1.8 \pm 0.11$.

Thus our picture about the "second" collision, besides the first collision of the primary energy E_{p}, inside the average nucleus of nuclear emulsion of the "energy" $E_{p}^{\prime}=m_{p} \cosh \left(\eta_{p}+2 C\right)$ emerges. The second collision produces about 80% of what the first " p-nucleon" collision produces. In the case that the $\left(n_{s}-n_{0}\right)$ excess shower
particles are created roughly symmetrically around the center, $\left\langle\left\langle\eta_{\text {ex }}\right\rangle\right\rangle$, we have the relation about the "critical rapidity,"

$$
\begin{equation*}
\eta_{C} \cong 2\left\langle\left\langle\eta_{\mathrm{ex}}\right\rangle\right\rangle \cong \eta_{p}+2 C, \tag{27}
\end{equation*}
$$

for which Babecki et al. ${ }^{32}$ reported the critical pseudorapidity, $r_{C} \cong \eta_{p}-2$. This gives the value of $C \cong-1.3$, when we take the conversion relation of $\eta_{C} \cong r_{C}+0.5$. Also Busza et al. ${ }^{33}$ show $r_{C} \cong 4.08$ for a wide range of
the target masses of proton-nucleus collisions of $E_{p}=200$ GeV , which also implies the value of $C \cong-1.3$. The energy-flux-cascade model ${ }^{34}$ predicts $r_{C} \cong \eta_{p} / 3$, which does not seem to comply with our result and others.

V. CONCLUSIONS

With the use of the data of angular measurements of 3987 accelerator-produced jets of $E_{p}=30-400 \mathrm{GeV}$, we have obtained the empirical formula

$$
\begin{align*}
\left\langle\langle\eta(\theta)\rangle-\eta_{p} / 2=\right. & -(0.229 \pm 0.005) \frac{[(0.500+0.065) \pm 0.022]}{\left[\left(1+(0.065 \pm 0.018) N_{h}\right]\right.} N_{h}-(0.229 \pm 0.005) \\
& +(0.229 \pm 0.016)+\left[(0.0148 \pm 0.0028) N_{h}\right] / \xi \tag{15}
\end{align*}
$$

where the second and the third terms on the right-hand side have been attributed by us to the inadequacy of the approximation, Eq. (1), on the basis of Eq. (3). The first term in the above gives a picture about the second collision of

$$
E_{p}^{\prime}=m_{p} \cosh \left(\eta_{p}+2 C\right)
$$

with $C \cong-2.0 \pm 0.6$, inside the average nucleus of nuclear emulsion, which produces about 80% of the excess
shower particles in addition to the $\left\langle n_{p}\right\rangle$ shower particles by the primary proton-nucleon collision. ${ }^{35}$

ACKNOWLEDGMENTS

The author appreciates the hospitality extended to him by Professor A. Astier, Laboratoire de Physique Nucléare et de Hautes Energies, Université Paris VI, Paris, France. He is also very grateful to the Batavia Collaboration. The present research is supported partly by the Korea Science and Engineering Foundation.
${ }^{1}$ G. A. Milekhin, Zh. Eksp. Teor. Fiz. 35, 1185 (1958) [Sov. Phys. JETP 8, 1829 (1959)].
${ }^{2}$ K. G. Wilson, Acta Phys. Austr. 17, 37 (1963).
${ }^{3}$ C. O. Kim, Phys. Rev. 158, 1261 (1967).
${ }^{4}$ R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).
${ }^{5}$ L. D. Landau, Izv. Acad. Nauk, SSSR Ser. Fiz. 17, 51 (1953).
${ }^{6}$ A. Dar, I. Otterlund, and E. Stenlund, Phys. Rev. D 20, 2349 (1979).
${ }^{7}$ Our choice of R as $1 \mathrm{GeV} / c$ is not critical, since, for the rare case of a secondary with $p_{T} \gg 1 \mathrm{GeV} / c$ (i.e., $x_{T} \gg 1$), the corresponding contribution from the correction term in Eq. (3), $-\ln \left[\left(1+x_{T}\right)^{1 / 2} / x_{T}\right]$, becomes neglible in "soft" physics. It is important for us to notice that the large p_{T} portion of 'hard' physics for the region of $x_{T} \gg 1$, does not concern us.
${ }^{8}$ W. Frazer et al., Rev. Mod. Phys. 44, 284 (1972).
${ }^{9}$ C. De Marzo et al., Phys. Rev. D 29, 363 (1984).
${ }^{10}$ C. Castagnoli et al., Nuovo Cimento 10, 1539 (1953).
${ }^{11}$ E. R. Goza, Ph.D. thesis, University of Washington, Seattle, Washington, 1962.
${ }^{12}$ E. R. Goza, S. Krzywdzinski, C. O. Kim, and J. N. Park, Phys. Rev. D 2, 1838 (1970).
${ }^{13}$ Z. Koba, H. B. Nielsen, and P. Olesen, Nucl. Phys. B40, 317 (1972).
${ }^{14}$ Barcelona-Batavia-Belgrade-Bucharest-Lund-Lyons-Montreal-Nancy-Ottawa-Paris-Rome-Strasbourg-Valencia Collaboration, Phys. Lett. 18B, 467 (1974).
15J. Hébert et al., Phys. Rev. D 15, 1867 (1977).
${ }^{16}$ Tsai-Chü, C. O. Kim, J. Lory, B. Willot, D. Schune, C. Meton, R. Kaiser, J. M. Bolta, M. A. Sanchis, O. Adamović, M. Jurić, G. Baumann, R. Devienne, I. Otterlund, R. Haglund, B. Anderson, R. Schmitt, L. Bravo, R. Niembro, A. Ruiz, and E. Villar, Lett. Nuovo Cimento 20, 257 (1977).
${ }^{17}$ I. Otterlund, E. Stenlund, B. Anderson, G. Nilsson, O. Adamović, M. Jurić, H. Areti, C. J. D. Hébert, G. Baumann, R. Devienne, J. M. Bota, M. A. Sanchis, L. Bravo, R. Nembro, A. Ruiz, E. Villar, C. O. Kim, J. Lory, C. Meton, D. Schune, Tsai-Chü, B. Willot, and R. Schmitt, Nucl. Phys. B142, 445 (1978).
${ }^{18}$ C. O. Kim et al., in Sixteenth International Cosmic Ray Conference, Kyoto, 1979, Conference Papers (Institute of Cosmic Ray Research, University of Tokyo, Tokyo, 1979), Vol. 6, p. 19.
${ }^{19}$ C. O. Kim, K. P. Hong, and J. N. Park, J. Korean Phys. Soc. 13, 90 (1980).
${ }^{20}$ C. O. Kim et al., J. Korean Phys. Soc. 13, 111 (1980).
${ }^{21}$ In our reference-track method of measuring emission angles θ of secondaries with respect to the incident direction of the primary hadron, the exact direction of the lost primary, after making a nuclear interaction, is well defined within the accuracy of $<0.1 \mathrm{mrad}$ by the use of another nearby primary beam track. At first, before the primary makes the interactions, the relative direction between the primary track and the nearby reference track is measured accurately in the course of about 1 cm with a step of 1 mm in order to project out the direction of the projectile with the aid of the reference track. Among 948 jets whose emission angles were measured by Batavia Collaboration of Refs. 16-20, and 6, about 200 jets were measured by us with the method.
${ }^{22}$ W. Busza, in High Energy Physics and Nuclear Structure1975, Proceedings of the Sixth International Conference, Santa Fe and Los Alamos, edited by D. E. Nagle and A. S. Goldhaber (AIP, New York, 1975), p. 211.
${ }^{23}$ E. Gibbs et al., Phys. Rev. D 10, 783 (1974).
${ }^{24}$ S. P. K. Tavernier, Nucl. Phys. B105, 241 (1976).
${ }^{25}$ S. P. K. Tavernier and M. Gijsen, Phys. Rev. D 16, 2818 (1977).
${ }^{26}$ E. Gibbs et al., Phys. Rev. D 24, 1112 (1981), and the references therein.
${ }^{27}$ E. M. Friedlander, Lett. Nuovo Cimento 9, 349 (1974).
${ }^{28}$ International Cooperative Emulsion Flight Collaboration, Nuovo Cimento Suppl. 1, 1039 (1963).
${ }^{29}$ C. O. Kim et al., J. Korean Phys. Soc. 7, 70 (1974).
${ }^{30}$ J. Y. Kim, Ph.D. thesis submitted to the Graduate School, Korea University, 1984.
${ }^{31}$ C. O. Kim, Report No. LPNHE-76-1, Université Paris VI,' 1976 (unpublished); talk given at the Vth European Cosmic Symposium, Leeds, England, 1976 (unpublished).

32J. Babecki et al., Phys. Lett. 52B, 247 (1974).
${ }^{33}$ W. Busza et al., in Proceedings of the XVIII International Conference on High Energy Physics, Tbilisi, U.S.R.R., 1976, edited by N. N. Bogolubov et al. (Joint Institute for Nuclear Research, Dubna, U.S.S.R., 1977); C. Halliwell et al., Phys. Rev. Lett. 39, 1499 (1977).
${ }^{34}$ K. Gottfried, Phys. Rev. Lett. 32, 957 (1974).
${ }^{35}$ Preliminary results of the present paper were presented in Proceedings of the 19th International Conference on High Energy Physics, Tokyo, 1978, edited by S. Homma, M. Kawaguchi, and H. Miyazawa (Physical Society of Japan, Tokyo, 1979), p. 1023, contribution No. 669.

[^0]: ${ }^{\text {a }}$ The number of jets whose data were available to us.

