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Proton-nucleus inclusive reactions and momentum degradation of quarks
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The inclusive hadronic reactions p+A~h+X, where h =p and m, are studied in detail at the
constituent level. The effect of the nucleus on the projectile quarks is treated in a way that depends
on one parameter, which is related to the degradation length of quark momentum in nuclear matter.
The quark momentum distribution jn the initial proton is treated in the valon model for low-pT ha-
dronic reactions. Hadronization of the quarks after the collision is treated in the recombination
model. The advantage of using nuclear targets over proton targets is discussed. Two unknown pa-
rameters in the phenomenological theory are determined by fitting the x and A dependences of the
inclusive distributions of p+-A ~p+X. The theory is then applied to the p+A ~++X reaction
without any free parameters. When the resonance contribution to the pion spectrum is carefully
taken into account, the predicted inclusive distributions of the pions are in excellent agreement with
the data in both the x and A dependences. The momentum-degradation length of the quarks turns
out to be 160 fm. The implications of this work are that (1) there exists a unified approach to
hadron-nucleus reactions formulated in the quark basis, and (2) quarks are not slowed down signifi-
cantly in the fragmentation regions of relativistic heavy-ion collisions.

I. INTRODUCTION

In recent years several approaches have been suggested
to describe soft hadronic processes at high energies. ' De-
finitive identification of the most successful description
has been stymied partly due to the lack of more discrim-
inating data on the one hand, and partly due to the
theoretical difficulty of establishing rigorous contact with
the basic theory of quantum chromodynamics (QCD) on
the other. Yet the need to better understand multiparticle
productions in nucleon-nucleon collisions as well as in
nucleon-nucleus collisions, even at the phenomenological
level, is becoming progressively more acute as hadron
physicists join hands with nuclear physicists in their con-
certed effort to explore the physics of the quark-gluon
plasma that is envisioned in ultrarelativistic heavy-ion col-
lisions. The recent surge of interest in describing the
inclusive cross sections of p+A~p+X for various nu-
clei further accentuates the need for a theory that is
workable and reliable, even if not fundamental.

Having just made a case for the study of p +A ~p +X
inclusive reactions, we now argue against an overemphasis
of that process to the exclusion of other equally important
reactions. In Refs. 3—7, the p~@ process has been inves-
tigated with inferred results on the stopping power or
momentum-degradation length of a proton going through
a nucleus. Stopping power and degradation length have
meaning only in reference to a process in which the
detected outgoing particle is the same as the initial one.
Such quantities are not defined for inclusive reactions
such as p+A~m+X, which is far more dominant to
multiparticle production processes. The fragmentation of
a hadron can be fully understood only if all of its frag-

ments can be accounted for in a unified way. In our view,
that is possible only if the subject is treated at the quark
level. In fact, even in limiting oneself to the p~p pro-
cesses only, the disagreement on the inferred degradation
lengths ' lends support to the recognition (already ex-
pressed in Ref. 3) that hadron propagation through nu-
clear matter is ill defined at very high energy. It is
reasonable to suspect that the more a derivation of the de-
gradation length Az depends on the details of how the
proton propagates through the nucleus, the more unreli-
able are the implications of the result.

In the constituent picture, as soon as the incident-
proton bag is broken by its contact with the first nucleon
in the target nucleus, it is a stream of quarks and gluons
that propagates through the nucleus. Since the identity of
the incident proton is lost, and hadronization in the beam
fragmentation region does not occur until the quarks are
far downstream, long after they have passed the target nu-
cleus, multiple-scattering theory that is useful at low ener-
gies in treating successive SS scatterings in a pA col-
lision is invalid in the present problem at high energies.
In that sense the notion of stopping power for a proton go-
ing through a nucleus is misleading. A more meaningful
concept is to refers the stopping power to a quark travers-
ing a nucleus, since in QCD a valence-quark line is "con-
nected" from the incident proton to a hadron in the final
state. Obviously, the momentum degradation of a quark
is intimately related to the A dependence of the hadrons
detected in the inclusive reactions. Approaching the prob-
lem in the quark picture in this way puts the detected pro-
tons and pions on equal footing where the only major
difference is a matter of hadronigation outside the nu-
cleus.

It is the purpose of this paper to formulate the theoreti-
c
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cal basis of this problem at the quark level. The basic
idea involved is not new. It is contained in the valon
model, suggested originally as a phenomenological way to
describe the structure of hadrons as well as to calculate
the inclusive distribution of hadrons produced at low p~
in high-energy pp collisions. ' We now recognize that
without extensive modification the model is actually more
suitable for hadron-nucleus than for hadron-hadron col-
lisions. The reasons will be explained in the next section.
During the past several years the valon model has been
applied to various problems, e.g., form factors, structure
functions, Regge intercept, charm production, etc." In
this paper we shall extend it in three important directions:
(a) momentum degradation of quarks in nuclei, (b) proton
recombination, and (c) resonance production and decay in
pion inclusive distribution. '

In treating the p+A —+h+X reactions in the valon
model, we use the h =p reaction as input, determining
two parameters by the x (momentum fraction) and
dependences of the inclusive distributions. After that, the
phenomenological theory is completely fixed, and can
therefore be applied to the h =~ reaction without further
uncertainties. With resonance production and decay tak-
en into account, we obtain very good agreement between
our predictions and the data on p+ 3~m. +X (Ref. 8).
What lends credibility to this approach to low-pz- in-
clusive reactions is its ability to yield naturally a rather
flat der/dx for p~p but a steeply falling distribution for
p ~n.. The mechanism that is responsible for such
features is the quark dynamics in the collision processes.
Roughly speaking, each quark goes through the interac-
tion region with a falling x distribution; a proton in the
fragmentation region involves the recombination of three
valence quarks, resulting in a flat distribution, while the
hadronization of a pion involves only one valence quark,
thus giving rise to an x distribution that is essentially the
same as that of the valence quark. ' A by-product of this
study is the determination of the momentum-degradation
length of quarks traversing nuclear matter.

II. THE ADVANTAGES OF NUCLEAR TARGETS

In the past, single-particle inclusive reactions at low pz
have been studied most exhaustively in hadron-hadron
collisions, such as a +p —+c+X, where a and c are m+—,
E+, p, or p (Refs. 14 an—d 15). It has generally been ac-
cepted that nuclear targets would present additional corn-
plications which a theoretical investigation would want to
avoid before the basic hadronic processes are clearly un-
derstood. We now wish to present arguments for the op-
posite view.

In hadron-hadron collisions, since the initial particles
are of comparable size, most events occur with only par-
tial overlap of the transverse coordinates. That is, exactly
head-on collisions are rare. Thus in the constituent pic-
ture of quarks an overwhelming majority of the processes
takes place in a way that involves spectator quarks not in-
teracting directly with the quarks and gluons in the other
hadron. In the extreme case of peripheral collisions most
of the quarks and gluons (when we consider the sea as
well) are spectators; they all contribute to the hadroniza-

tion in the large-x (triple-Regge) region. To account for
both the peripheral and central collisions in the quark pic-
ture is complicated. A reliable model that is general
enough to encompass both situations and has sufficient
predictive power to yield the x distributions for all x has
not yet been developed. ' In the valon model' it is the
average event that has been treated; however, since it ig-
nores the complication associated with the recombination
of spectator valons, it makes no claim to any validity in
the large-x region. Nevertheless, the question remains as
to its accuracy in the medium-x region. Thus, the relia-
bility of the parameters that have been determined speci-
fying the quark distributions in a valon, but using the
low-pz reactions as inputs, ' ' is subject to question. Be-
sides, the valon model has so far been applied without
directly confronting the effects of resonance production
and decay in detail, although an average x-independent ef-
fect has always been included in previous calculations. '

In hadron-nucleus collisions, the major difference from
the above situation is that, since the target is much larger,
peripheral collisions are relatively unimportant compared
to those in which the whole incident hadron overlaps with
the target nucleus in the transverse coordinates. In other
words, there are essentially no spectator quarks in the in-
cident hadron; one may consider every quark to go
through the target and participate in the interactions. Al-
though one has to deal with the added complication of the
nuclear effects, one gains in not having to treat two
categories of constituents: participants and spectators, at
least in the approximation of neglecting peripheral col-
lisions. Since the model has not yet been developed to in-
clude the recombination of spectator valons (a direction
that should be pursued), it is best suited at present to
treating the hadron-nucleus problem.

The problem would be untractable if the nuclear effects
cannot be handled. Fortunately, data now exist for a wide
range of nuclear targets. The A dependence of the in-
clusive cross sections puts a constraint on the degree of
momentum degradation that the quarks suffer as they
pass through the nuclei. What we shall do is to fit the 3
dependence by one parameter, which is then used to infer
a degradation length for the quark momentum. This part
of the work is similar in spirit to Ref. 3, except that now
we focus on the quarks traversing the nucleus in much the
same way that one considers a fast electron traversing
condensed matter. We do not claim that the soft interac-
tion of a fast quark with nuclear matter has been or can
be precisely calculated in QCD. What we have obtained is
a phenomenological implication of the strength of that in-
teraction.

III. MOMENTUM DEGRADATION
OF QUARKS THROUGH NUCLEI

The valon model for soft hadronic processes will be
described in the next section. For now we only need to
recognize it as a means of specifying the momentum dis-
tribution of quarks in the incident hadron that is about to
undergo a soft-pz reaction, and of supplementing the
recombination model in its description of the hadroniza-
tion process. Our immediate concern here is the question:
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' dx'
D (x,N + 1)=f, D (x',N)P (x Ix'),

X
(3.1)

given a quark with a specified momentum, what is the
distribution of its momentum, after it traverses a nucleus
A?

We shall assume that the incident momentum is high
enough so that the final-momentum distribution scales;
consequently, we need only consider the momentum-
fraction variable x. Before getting involved in the details,
it is useful to remark on the qualitative features to be ex-
pected. In multiparticle production processes in hadronic
collisions, it is well known that the produced particles are
short-ranged correlated in rapidity space. In the quark
picture it means that the quarks before hadronization are
also short-ranged correlated. Thus, the physical picture
we get without the application of detailed QCD dynamics
(which has so far not been shown to produce short-range
correlations) is that two quarks that are far apart in rapi-
dity (hy) 2) do not interact effectively. The same is
presumably true with gluons also. It is a picture that pro-
vides an understanding of the leading-particle characteris-
tics and the factorization of the Pomeron. They are both
consequences of the fact that valence quarks in an in-
cident hadron are far separated in rapidity from any par-
ton in the other initial hadron, so they would go through
the interaction region essentially undisturbed; hence, had-
rons in the beam and target fragmentation regions are fac-
torizable. In the valon-recombination model, this feature
has been used in hadron-hadron collisions to justify not
treating the perturbation of the fast quarks before hadron-
ization. Now, we want to make it quantitative. For if
factorization were exactly true, then there should be no A
dependence at all in the data for p +A ~h +X. But there
is, so the quark momenta must be degraded, though only
slightly. The effect becomes observable in large 3, but to-
tally unimportant in pp collisions (hence factorization).

Since our focus is on the quark momentum, it is sensi-
ble to regard the basic unit of interaction to be between a
fast quark and a valon, which is a cluster of partons con-
sisting of a valence quark and its associated sea quarks
and gluons. Although the size of a valon is not important
in the following consideration, it is useful for forming a
physical picture to think of it as having a size character-
ized by the mass of p (Ref. 19). Since a nucleon has three
valons, a nucleus has 3A of them. Let D (x,N) denote the
invariant distribution of the quark momentum as a frac-
tion x of its incident momentum after it has passed
through N valons. %'e assume that the basic quark-valon
interaction is such that D (x,N + 1) can be related to
D(x,N) by a convolution equation

Thus we demand

(3.2)

However, the quark can lose momentum. I.et us write
P(z) as

P (z) =5(z —1)+zB(z), (3 3)

where 8(z) would be zero in the absence of quark-valon
interaction. Under the influence of the valon, the quark
can undergo gluon bremsstrahlung in much the same way
as in electron-atom collision. Provisionally, we therefore
ascribe a (gluon energy) ' tail to 8(z) in the form

8(z)= K

1 —z
(3,4)

This is no doubt an oversimplification of the uncalculable
effects of the QCD dynamics; however, it is also the most
reasonable and simplest formula that uses one parameter
to capture the essence of what is likely to happen to a fast
quark as it propagates through a cluster of partons. Since
it diverges at z=1, the expression needs to be regularized
in order to satisfy the constraint that follows from (3.2)
and (3.3), i.e.,

1f 8 (z)dz =0 . (3.5)

FoIlowing Altarelli and Parisi we regularize as

8(z) =
(1—z)+

where

1 1 ' dx—6(z —1) f(1—z)+ 1 —z o 1 —x

(3.6)

(3.7)

Evidently, (3.6) satisfies (3.5).
Substituting (3.3) into (3.1), we obtain in the large-N

approximation

D(x,N)=x f „D(x',N)B
d ' dx' , x

(3.8)

Although this equation is derived from (3.1), we regard it
as being more basic. Treating the number of valons N
that a quark traverses as an integer tends to exaggerate the
discreteness of quark-valon scattering. We proceed with
(3.8) as our basic equation, supplemented by (3.6) as our
provisional, phenomenological expression for the degrada-
tion kernel. The equation is solved by taking the mo-
ments

where P(z) is the probability in the invariant phase space
that a quark has momentum fraction z after a quark-
valon scattering. The transverse-momentum variables in
each of the distribution functions in (3.1) have been in-
tegrated over. Here as well as in the following sections,
we shall consider only the longitudinal-momentum
behavior.

Since the quark interacts with the valon through the ex-
change of gluons which have no flavor, the quark flux is
not attenuated, if we tag only its flavor and not its color.

1

D(n, N)= f dxx" D(x,N),

8(n)= f dzz" '8(z),
0

so that (3.8) becomes

d%
D(n, N) =D(n, N)8(n)

to which the solution is

D(n, N) =exp[8(n)N]

(3.10)

(3.11)

(3.12)
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corresponding to the boundary condition D (x,0)
=5(x —1). It follows from (3.6) and (3.10) that

R = 123 '~ fm, (3.21)

momentum. Using the usua1 formula for nucleus radius,

n —J 1B(n)= —a g —= a[—f(n)+yF J,
J. =) J

(3.13) we obtain

where 1(j(n) is the digamma function and yE the Euler's
constant, 0.5722. Hence, we have

D(n, A)=exp[ —kA '~ [g(n)+@~]J,
where we have made the replacement

~N =kA '~

(3.14)

(3.15)

as an alternative definition of A. Comparing (3.16) and
(3.18) yields

kw '~'
q L,

(3.19)

where the subscript q emphasizes that the degradation
length refers to a fast (current) quark.

Equation (3.19) directly relates A~ to k. The propor-
tionality factor depends primarily on the geometry of the
nuclear target. The path length of a quark in a nucleus of
radius Rz, after averaging over all impact parameters, is

4
L, = —,Rg, (3.20)

assuming straight line tr-ajectory for the quark at high

This may be regarded as the definition of k, which is a
constant parameter in the theory for any nuclear target,
since the number of valons N that a fast quark interacts
with must be proportional to the linear dimension of the
nucleus, i.e., to A'~ . We note that the moments of the
degradation function D(n, A), as shown in (3.14), are now
a function of A which is experimentally controllable, in-
stead of N which is theoretically convenient for the intro-
duction of the convolution equation (3.1). Whereas N has
not been precisely defined (owing to our incomplete
knowledge about quark-valon interaction), there is no am-
biguity about the nucleon number A. It is by virtue of the
fact that a and N appear as a product in (3.12) that the re-
sult for D(n, A) can be expressed as in (3.14). Clearly, k
(rather than ~) will play the more important phenomeno-
logical role in the analysis to follow. By the same token
(3.14) has the more direct phenomenological significance
than either (3.1) or (3.8).

From the value of k it is possible to determine the de-
gradation length of quark momentum through nuclei.
The average momentum fraction of a quark after passing
through a nucleus A is

(z)= J dzD(z, A)=D(2, A)=exp( —kA'~ ) . (3.16)

The degradation length is defined by

1 8p (3.17)
p dL,

where p is the quark momentum and L the path length
through the nucleus. Regarding A as a constant
throughout the nucleus, we obtain from (3.17)

( ) —L/A

Aq ——1.6 k ' fm. (3.22)

IV. VALON MODEL FOR p +A —+p +X
We summarize here the main ideas of the valon model

for low-pT inclusive reactions. The reader interested in
the details are referred to the original paper' or two re-
view articles. " The reaction p —+p has not been investi-
gated before because the complication arising from the
diffractive component in pp collisions is important ' and
is difficult to treat at the quark level. But for nuclear tar-
gets, the diffractive component is unimportant and is re-
stricted to the extreme large-x region which we exclude
from our present consideration.

In the valon model a proton is considered to consist of
three valons, which in the static problem, may be regarded
as the constituent quarks, but in the dynamic problem of
high-energy scattering, they are treated as clusters of par-
tons (quarks and gluons) with definite momentum distri-
butions. It is assumed that the momentum of a proton is
carried entirely by the three valons ( UUD). There are two
types of momentum distributions: (a) GUUD(y~, yz,y3),
the probability of finding valon U; in a proton with
momentum fraction y;, i =1, 32and (b) E(z) and L (z),
the invariant distributions of quarks in a valon with
momentum fraction z, having the same and different fla-
vors, respectively, relative to the Aavor of the valon.
These distributions are normalized as

In deriving (3.22) we have tacitly assumed that the nu-
cleus has uniform density so that the path length L, as
given in (3.20), is only a matter of geometry. A more
thorough analysis that takes into account the nonuniform
distribution of the nuclear density is expected to lower the
value of L, and therefore of A~ accordingly. Since that
aspect of the problem is not the primary concern of this
paper, we shall regard (3.22) as a simple numerical repre-
sentation of (3.19), while admitting the possibility that the
coefficient in (3.22) may be somewhat lower, but definite-
ly of order one.

We stress, however, that (3.22) is derived independent
of any assumptions on the size of the quark or the magni-
tude of the quark-valon cross section. It is therefore not
subject to the uncertainties that surround the degradation
length Az for proton. Indeed, as we have discussed in
Sec. I, whereas the notion of a proton propagating
through nuclear matter is not very meaningful at high en-

ergy, that of a quark is rather clear and unambiguous.
The central question then is how the parameter k can be
determined in hadronic reactions without quark beams
and quark detectors. We shall show in this paper that in
the valon mode1 for hadronic reactions not only can k be
determined by the A dependence of the inclusive distribu-
tions of p +A ~p +X, but also for the same value of k
we can calculate correctly the distribution for
p+A~~+L
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l 1 —yi

0 dyi fo dy2 f,
'

dy3GUUD(yi 3 2 y3) —1
(4.1)

f 'K, (z)=1, (4.2)
0 z

f dz [K (z)+2fL (z)]= 1, (4 3)

where KNs(z) =K(z) L(—z), and f is the number of flavor
types of quarks, to be taken to be 3. Evidently,
GUUD(yi, yz, yi) is a (noninvariant) distribution defined in
the phase space dyidy2dy3, while K(z) and L (z) are (in-
variant) distributions defined in dz/z. Equation (4.1)
refers to the total prabability of finding the three valons
in a proton, while (4.2) refers to a valence quark in a
valon. Equation (4.3) is the sum rule on the total momen-
tum of all the quarks and antiquarks in a valon. For the
purpose of facilitating the recombination model for had-
ronization, we have converted all gluons into quark and
antiquark pairs, so that L (z) refers to the "saturated" sea;
i.e., L (z) is the sea-quark distribution of a particular fla-
vor, and 2f of them exhaust the momentum of the non-
valence sector of the partons.

From G, K, and L (to be specified later), the quark dis-
tributions in a proton can be determined. For the pur-
poses of calculating the proton inclusive distributions, we
need to know the momentum distribution of uud quarks.
This is obtained by the convolution

F„„d(zi z2, z3)
1 1 —y 1

1 —y —y1 2= f.,
&» f„dy2 „dy3GUUD(yl, y233)

r r

Zl Z2 Z3XE E E
3'33'2

z

(4.4)

which accounts for one quark from each valon of the
same flavor. It is the dominant contribution. There is
also the possibility that both u quarks come from the
same U valon or that ud quarks come from anather
valon, and so on. All those contributions can be calculat-
ed in a systematic manner, but they are small for proton
rnornentum x & 0.2 because multiple sea quarks would be
involved. We shall neglect those contributions and con-
sider only (4.4).

It should also be remarked that owing to GUUD being
an exclusive distribution of the valons with momentum
conservation (g,.y; = 1) built in, the triple inclusive distri-
bution F„„q of the quarks automatically satisfy kinemati-
cal constraints. Furthermore, it should be understood
that the sum of the three quark momentum fractions z; is
not one. Herein lies the essence of the valon model: the
current quarks are different from the valons and have
momentum distributions that are computable. Apart
from the (small) effect due to the degradation of quark
momenta by the target nucleus, the three quarks would
recombine to form a proton with momentum fraction
x = g,. z;. Thus the x distribution af the detected proton
is primarily predetermined by the quark distributions in
the initial proton and very little affected by the nuclear
target (the extent of which is calculable by the method of

3 XiF(x, ,x,x„A)= f F(z„z,z ) Q D,A
i=1 Zi

(4.5)

where the subscripts uud on F have been omitted for
brevity. Because of time dilation these quarks with mo-
menta x; are far downstream outside the target nucleus
before they recombine, assuming that the hadronization
time is any reasonable finite duration in the proper frame,
e.g., —1 fm/c. As is usually assumed in the space-time
evolution picture of hadronic collisions, the hadronization
process occurs after the quarks from the projectile and
target have completed their mutual interactions so that

z,~K
zzP K~~~~~~ G zrwwwwwwm K1 ~hi~
Z3

Xg

X3

x
R vwwwmp

FIG. 1. Schematic diagram depicting the valon-
recombination model for the inclusive process p+A ~p+X.
The square box represents the effect of the nucleus on the
momentum degradation of the quarks.

Sec. III). This feature is in accord with the empirical fact
that the A dependence of the inclusive cross sections is
weak, and for hadron-hadron collisions, the characteris-
tics in beam and target fragmentation regions are factoriz-
able.

A schematic outline of the procedure for the determina-
tion of the proton inclusive distribution is shown in Fig.
1. In Feynman's parton model a hadron in the infinite-
momentum frame is viewed as a collection of free partons
even before any collision takes place. In that picture the
momentum distribution of the uud quarks in a proton is
given by (4.4), and is repre'sented by the first part of Fig. 1
before the quarks undergo momentum degradation as they
go through the nucleus represented by the square box.
Our focus is on the three quarks that eventually hadronize
into the detected proton. The fact that the figure shows
only the three quarks going through the square box does
not imply that the nucleus has no effect on the other
quarks; it merely means that we follow the trajectories of
only those three quarks. Actually, the wee partons being
much closer in rapidity to the target. partons interact
much more effectively with them. But that is irrelevant
to our consideration here because those partons are in the
central region where z;-0, while our interest is in those
quarks that contribute to a final hadron in the fragmenta-
tion region with momentum x&0.2. In the high-energy
scaling limit any quark that contributes a finite fraction
of the momentum z;/x to the final proton has high
momentum, and therefore qualifies for our method of Sec.
III to treat its momentum degradation by the nuclear tar-
get. Thus what happens in the square box in Fig. 1 has
already been described in Sec. III.

Recalling that the distribution function for mamentum
degradation in a nucleus A is D(x, A), where we have
used the label A instead of N by virtue of (3.15), we ob-
tain by independent convolution the distribution of the
three quarks after traversing A
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they are spatially well separated on the scale of hadronic
sizes. During the time interval when the emerging quarks
undergo hadronization, they can radiate soft gluons and
get "dressed, " becoming valons. The details of that pro-
cess are not important, since we need only to keep track of
the momenta which are additive and all of which contri-
bute to the final proton momentum, as depicted in Fig. l.
Thus, if R (x1,x2,x3,x) is the recombination function for
a proton, the inclusive distribution of the final proton is

are assuming that the proton distribution is essentially the
same as the resonance distribution, an approximation that
is reasonable on account of mz-7m . In'a later section
when we shall treat meson resonances, such an approxi-
mation will not be valid, and a careful consideration of
the decay distribution will be included.

In the valon model the recombination function is deter-
mined by the same wave function that specifies the valon
distribution. Thus we have

dXi
&(X,A)= f F( x„x„x3,A)R~( X1,x 2X3 x)

r=1~ X

(4.6)

X. Xl X2 X3
R~(X1,X2,X3,X)= ff GUUD

X X X X
(4.7)

where g,. x; =x is a constraint contained in R1'. Evident-
ly, (4.6) implies that we should follow only those quarks
which recombine into a proton; the intermediate step of
valon formation does not alter the momentum x of the
proton.

The question of color and spin factors has been ad-
dressed before. ' Because soft gluons can carry away
color and spin without changing the momentum of a
quark, such leakages effectively perform a summation of
those quantum numbers. There is therefore no extra fac-
tor associated with them. Summing over spin states im™
plies the inclusion of resonance production. By not treat-
ing explicitly the decay distribution of the resonance, we

The factor in front of G is due to the fact that R is de-
fined in the invariant phase space, while 6 is not.

We now have completed the description of the pro-
cedure for calculating the proton distribution. The pro-
cedure for the pion distribution is similar, and will be
given in Sec. VI. The underlying dynamics is the same,
and in that sense the valon model provides a unified ap-
proach at the quark level to hadron production at low pr.
What remain to be specified are the functional forms of
G, K, and I., which are details to be given below.

Since (4.4) and (4.5) are convolutions, the most con-
venient method of treating them is by means of their mo-
ments. If we define

1 &z n, —1

G(nI n2 n3) f d31 f d32 f d33 g3' GUUD(313233)
i=I

(4.8)

and

1 1 —x) 1 —x) —x~ n. —2
F(n1n2n3, A)=dx1dx2dx3+xjF(x1x2~X3A)

0 0 0
(4.9)

we obtain by virtue of the convolution theorem

3

F(n1, n2, n3, A) =G(n1, n2, n3) + [K(n )D(n' A)]',

(4.10)

where the subscripts UUD are clearly unnecessary in this
symmetric case. It is a nontrivial property of the valon
model for hadron structure that the momentum saturation
of the valons (as expressed by the 5 function) is compati-
ble with the deep-inelastic scattering data.

Substituting (4.12) into (4.7) yields
where D(n;, A) is given by (3.14), and IC(n; ) by

n,. —2
IC(n;)= f dz;z;' IC(z;) . (4.1 1)

Since (4.6) is not a convolution, to proceed further we
need the specific form of R and therefore of GUUD.

The valon distribution GUUD has been determined be-
fore using deep-inelastic scattering data on the one hand,
and the Q -evolution function in QCD on the other. By
considering both the proton and neutron data, a flavor-
dependent distribution for GUUD was obtained. Howev-
er, for the quality of the data that will be analyzed in the
next section, such precision is not warranted. Instead we
shall, for simplicity, use the flavor-independent distribu-
tion determined earlier'

G(3 1 3 2 3 3)
2

(y13 23 3) ~(3 1+3'2+73
105 1/2

(4.12)

R (X1,X2,X3,X)

105 x (x 1x2x3) 5(X1+x2+X3—x) .3/2
2%

Hr(n +—', ,A)

105
2~ +~' "~'" n !n !n !

n1 2 3
' 1. 2 3'

5 5 5XF(n1+ p n2+ 2 n3+ 2 A) (4.14)

Note that seven nontrivial integrations have been reduced

(4.13)

Defining the moments of the proton distribution H~(x, A )

as in (3.9) and (4.11), we then obtain from (4.6) and (4.13)
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to two nontrivial summations here when expressed in
terms of the moments. By considering the n+ —", mo-
rnents, we have facilitated the moments method for the
proton recombination problem which has previously been
treated in alternate ways.

The moments of G (yi,y2,y3) are, from (4.12),

G(n, ,np, n3)
105

B(n&+ —,,n2+n3+ 1)B(n2+ —,,n3+ —,), (4.15)
I

where B(a,B) is the Euler beta function. Combining
(4.10), (4.14), and (4.15), we finally have

H~(n + —", ,A) = 105 n~
5~ „„.. . B(n&+3,n 2+n 3+6)

1f l 1$2Pf3

3

XB(ni+3, ii3+3) g [&(n;+ —,
' )D(n;+ —', ,A)] . (4.16)

This completes the description of the proton distribution
in terms of the moments. Note that not only is the 'x

dependence determined by the n dependence, even the
normalization is fixed. In the next section, we shall relate
H~ to two crucial parameters in K and D,

=[B( ,', b + I)]-'Vz (1——z)',

I.(z) =a (c + 1)(1—z)' .

(5.1)

(5.2)

As discussed immediately following (4.3), the sea is sa-
turated by gluon conversion to qq pairs. Hence, the nor-
malization constant a is constrained by (4.3) to be

b+1
f(2b+ 3)

(5.3)

For definiteness, we shall let f=3. Since the x depen-
dence of inclusive distributions will not depend sensitively
on the precise shape of I.(z), we shall adopt for the pa-

V. PHENOMENOLOGY OF p+A —+@+X

In order to apply (4.16) to data analysis we need specif-
ic forms for K and D. For the latter we have (3.14) which
involves one unknown parameter, k, representing the de-

gradation effect of the target nucleus. For the former,
there are two terms, KNs and I-, representing the valence
and sea quark components, respectively. They have been
determined phenomenologically in a number of different
ways with compatible but not exactly the same results.
The data that have been fitted are low-Q structure func-
tions' and low-pr h +p +n ++X rea—ctio—ns. ' ' On the
basis of the physics discussed in Sec. II, we now feel that
none of those methods can yield parameters as reliable as
what can be obtained using nuclear targets. For structure
functions, the Q is not as low as would be required for
soft processes; for hadron-proton reactions, the lack of the
attention paid to the spectator valons may introduce inac-
curacies which can be avoided in a nuclear target. Thus
our proposal is to treat the phenomenology of IC(z) afresh
here. In that sense, this section deals only with the fitting
of the p+A~p+X data. But once the adjustable pa-
rameters are determined, absolute predictions can be made
for other reactions, which is the subject of the next sec-
tion.

We shall adopt the usual forms'7'~2 for J Ns(z) and
L (z)

&Ns(z)—:&(z)—L, (z)

I

rameter c the value that has been used before

c=5. (5.4)

Thus the only adjustable parameter in IC(z) is b It de.ter-
mines the average momentum that a valence quark has in
a valon

1z= I dzKNs(z)=(2b+3)

From (5.1)—(5.4) we obtain

(5.5)

B(n;+2,b + I) 2(b +1)K(n;+ —', )=
B( , ,6+1—) 2b+3

oi'(pT, A) =oi'exp[a (pr)A ' ] . (5.8)

(5.6)

Substituting this and (3.14) into (4.16), we finally have an
expression for H «(n +—', , A) in terms of just two parame-
ters, b and k. We shall adjust them to fit the
p +A ~p +X inclusive distributions.

The data that are available are inclusive cross sections
at fixed pT (Ref. 8). Thus, strictly speaking, we have no
way to compare theory and experiment, since our theoreti-
cal result at present is only for cross sections integrated
over pT. To facilitate the comparison we assume that the
longitudinal and transverse momentum distributions are
factorizable, i.e.,

dE =A i oi'(pT, A )H~(x, A ), (5.7)
dp

where the A ~ factor exhibits explicitly the A depen-
dence of the geometrical cross section. To be general, we
must allow both the transverse and longitudinal com-
ponents to depend separately on A. It is physically
reasonable to expect that the p~ distribution would
broaden with increasing A just as the x distribution would
become more damped at high x when A gets large. So far
in the valon model no investigation has been made of
o~(pT, A). The formalism developed in this paper allows
us only to test the A dependence of the x dependence of
H~(x, A), For data at fixed pT, there is an extra A depen-
dence in o~(pT, A) which is unknown. It can be deter-
mined phenomenologically if we adjust the normalization
separately for each A as we fit the x dependences. To
parametrize that A dependence we adopt the form, sug-
gested by (3.14),
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0 ' 3~P expt

(5.9)

then a good parametrization of them has been found in
Ref. 3, i.e.,

We do not regard cx~ as a parameter in our model, since
the whole factor represents an unknown that separates the
available data from the proper scope of the model. As it
turns out, our complete description of H)'(x, A) enables us
to determine a~ and a~, even though they are of no conse-
quence in the present paper.

Since (4.16) is in terms of moments, we shall compare
theory and experiment in the moment space. If we denote
the moments of the data (at pT ——0.3 GeV/c) by

x10

A

12

-63.5
108.
207.

3

M(n, A)=ao (n —1) '+ g ajn (5.10)

where

a) ———6+ —,6 ——,62 1 3

a = ——„6+—,5, a = ——,61 2 1 3 . 1 3

b, =0.189(A 'i~ —4.762),

pro ——177 mb/(Gev/c)

How these formulas are derived does not concern us here;
they should be viewed only as a good representation of the
data. Our task is to fit M(n+ —, , A) by H~(n+ '2', A)
with arbitrary normalization by adjusting the two parame-
ters b and k. For each A the best fit can be achieved by a
constrained set of values of b and k. It corresponds
roughly to a straight line in the (b, k) space shown in Fig.
2. While it is not possible to determine b and k uniquely
for one nucleus [because K and D appear multiplicatively
in (4.16)], there is clearly no ambiguity whatsoever when
all five nuclei are considered collectively. The best choice
1S

1 10 1 2 g 4 5

FICx. 3. Moments of proton inclusive distributions calculated
with b = —0.68 and k=O.OI.

themselves be well described by (5.8) with a)'=0. 12 and
o~=3.81 mb/(GeV/c) . Evidently, the simultaneous fit-
ting of both x and A dependences results in strong con-
straints on the parameters in the theory. The resultant
theoretical curves in x can be obtained by inversion of the
moments, which is particularly easy in the form of (5.10).
The results are shown in Fig. 4.

A number of comments are in order for the parameters
in (5.11) thus obtained. First, b = —0.68 is somewhat dif-
ferent from the value of b = —0.42 determined in the

b = —0.68, k =0.01 . (5.11) 10

With these values the results for H~(n+ —", , A) as ob-
tained from (4.16) are shown in Fig. 3. With appropriate
normalizations they differ from M(n + —", , A) as calculat-
ed on the basis of (5.10) by less than 1% for 1 & n & 6 and
for all five nuclei. The five normalization factors can

0.05—
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G

'lO
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p+A = p+X

O o o

0.04—

0.03—
k

0.02—
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A =12 27 i 108
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FICx. 2. Constraints on the parameters b and k for each
value of A.
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) f ) l ) I ) I )
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X

FICx. 4. Fit of the proton inclusive cross sections.
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Aq ——160 fm . (5.12)

Even with the comments immediately following (3.22)
taken into consideration, a degradation length of the order
of 100 fm is very long on the nuclear scale. For lead
L =(—, ) 1.2(207)' =9.48 fm; hence, from (3.18) we have
(z) =0.94. Each quark losing 6% of its momentum im-
plies that on the average the three valence quarks collec-
tively lose 6% of the fraction z of the proton momentum,

&++p~~ +X reaction' at 70 GeV/c where the m is
in the proton fragmentation region. The discrepancy is a
reflection of the concerns expressed in Sec. II regarding
hadron target. We believe that the present value is more
reliable not only because of the advantages of the nuclear
targets, but also because the proton distribution is less af-
fected by resonance intermediate states than for pions, as
discussed earlier. Using b = —0.68 in (S.5), we see that
the average momentum of the valence quark in a valon is
z=0.61. Since the three valons exhaust the momentum of
the host proton, the sum of the three valence-quark mo-
menta is the same fraction, 61%%uo, of the proton momen-
tum. This is roughly 15' higher than the value deter-
mined in deep-inelastic scattering, as one should expect,
since at high Q some of the valence quark momenta are
lost by gluon emissions. We now have a reliable quark
distribution in a proton for soft hadronic reactions; for
uud it is given by (4.4). For other quark combinations,
similar convolutions can be used as the case may be. In
Ref. 22 can be found extensive examples of various possi-
bilities. Basically, GUUD, X, and L contain all the neces-
sary information.

The second part of (5.11) gives our result on momen-
tum degradation of fast quarks through nuclear matter.
Since k is such a small number, a very small fraction of
the quark momentum is lost to a target nucleus. This is
obviously not true for a slow quark. Annihilation with an
antiquark in the sea is a distinct and likely possibility if
the incident quark has low momentum. At high momen-
tum, Drell-Yan and other annihilation or large-pz cross
sections are small compared to low-pz scattering, the
probability for which is summarized by (3.3) and (3.6).
Now, with k=0.01, the degradation length is, from (3.22),

where z=0.61 as determined in the previous paragraph.
This is enough to render the A dependence of the proton
distribution to be detectable. In the case of a nucleon tar-
get, although its 3 value is too small to warrant the strict
applicability of (3.18), yet one can obtain a crude estimate
of (z) from (3.18) using L=l fm, getting (z) =0.994.
Evidently, the nucleons (or any hadron) are extremely
transparent to fast quarks; this explains why the factori-
zation of beam and target regions has proven to be a reli-
able phenomenological rule for hadronic reactions for
many years. Now, we have a quantitative understanding
of factorization at the quark level.

Despite the insight that we have gained on the quark
distribution and nuclear degradation, what we have done
so far nevertheless involves some data fitting for the
p+A —&p+X reactions. To gain further credibility in
our approach, it is necessary that some predictions be
made and be compared with data. To that end, we turn to
the p +3~++X reactions in the next section.

VI. PREDICTIONS FOR p +A —+m'+X

We now make predictions without any free parameters
for p+A~m+X on both the x and A dependences. The
procedure is similar to that described in Sec. IV. In this
paper, we focus our attention on the inclusive m+ produc-
tion.

The first step is to determine the joint distribution of u
and d quarks in the initial proton. They can originate
from either two different valons or the same one. Let
those valon distributions be denoted by GUU, GUD, GU,
and GD,' they are to be obtained from GUUD by integration
over the momentum of the uninvolved valon, e.g.,

1

GUU(y„y2) = f dy3GUUD(y„y„y, ), (6.1)
1 —y 1

GU(y)= f (6.2)

Since IC(z) is the favored quark distribution in a valon
(i.e., quark having the same flavor as the valon) and L (z)
the unfavored distribution (different flavor or antiquark),
the ud distribution arising from two valons is

(2) 21 —z 1 —y 1 Z 1I'„q(z1,z~) = dy1 dy22 GUU(y1, yz)+Z] Z2

The ud distribution arising from one valon is
r

Z2 +GUD(yl y2)
y2

Z1
+L,

y1

'z, J'
L,

y2
J

(6.3)

F„g(z1,z2)= f dy 26U(y) —K L(1) 1 z1
x(+%2 2 y

Z2

y —Z2

Z1+ GD(y)L L
Z2

y —Z1

where the square bracket contains a symmetrization of the two possible ways of accounting for the momenta of the two
quarks in the same valon. Similar symmetrization of the two L functions in the second term is not necessary when L
has a functional form such as (5.2).

For the flavor-independent valon distribution (4.12) that we have used, we have GUU ——GUD =6' ' and GU ——GD =G" ',
where

ly1y (1—y1 —y2)]
105 1/2
2m' (6.5)
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G11)(+) 1O5

+ 1/2( 1 +)2 (6.6)

Their moments are

G (n1,n2) = B(n1+ —,,n2+2)B (n2+ —,, —,),105 1 (6.7)

G'"(n)=",,'B(n+ —,', 3) .

From (6.3) and (6.4) we obtain the moments of the quark distributions to be'

F„~(n1,n2) =F '„d'(n1, n2)+F „'d'(n1, n2),

F „'g(n1,n2) =G "'(n1+n2 —1) I [E(n1,n2)+L(n1, n2)]L(n2)+IC(n1)L(n1, n2) J,
F'„&(n„n2)=26' '(n, ,n2)[2K(n, )+L(n, )]L(n2),

(6.8)

(6.9a)

(6.9b)

(6.9c)

where

(6.10)
1

K(n1,n2)—:f dzz ' (1—z) ' ~K(z)
0

and similarly for L(n1,n2). From (5.1) and (5.2) we have

I

through the nuclear target are therefore subject to the
same momentum degradation as described in Sec. III.
Thus, the moments of the ud distribution after going
through the nucleus A are, as in (4.10),

B (n1 ——,', n 2+ b)
+NS(n1 n2)

B( ,',b+1)—

L(n1, n2) =a (c+1)B(n1—l, n2+c),
B(n1 —,', b + 1)—

&Ns«1) =
B(—,',b+1)

L(n2)=a(c+1)B(n, —l,c+1) .

(6.11)

(6.12)

(6.13)

(6.14)

F g(n1 n2 A) F g(n1, n2)D(n1, A)D(n2, A) ~ (6.15)

In the formation of pions, if we consider the recom-
bination process described before, ' ' we would have for
the pion distribution

m+ dX )dX2
H (x,A) = F„d(x„x2 A)R„d (x1,x2,x)

X)X2

(6.16)

For the detected m+ to be in the projectile fragmenta-
tion region both the u and d quarks must be in the frag-
mentation region also. Consequently, they both have high
momenta even though the momentum fraction of d may
be small compared to that of u. Their propagations

I

where

7r+ X)X2
R„~ (x1,x2,x)= 5

X

X) X2J —1
X X

In terms of moments we then have

(6.17)

n

H (n +3,A)=(n+1) ' g [B(n1+1,n n1+1—)] 'F„&(n1+2,n2+2, A) .
n, =O

(6.18)

This is the basic equation for the direct formation of n.+

from ud quarks. The polarizations of u and d have been
tacitly summed over, since they have not been partitioned
into the S=O and 1 states; thus (6.18) gives a normaliza-
tion that represents the sum of ud —+~+ and
ud —+p+~m. +. It would even give the correct x depen-
dence if the latter indirect process has the same formation
function as that of the former direct process. However, in
reality that is not the case. Our aim now is to take the
resonance formation and decay into account as carefully
as possible. It is an important step to improve the recom-
bination model which has thus far not dealt with this
problem seriously.

Since g and strange resonances make negligible contri-
butions, we shall consider only the vector mesons p and co.
Because neutral vector mesons can decay into ~+, it is
necessary to consider uu and dd channels also. In the
Appendix we determine the decay distribution I"z(z) and
I „(z) for p and co into m+, respectively, where z is the
longitudinal-momentum fraction of the pion, the polariza-
tion angle of the vector meson having been integrated

over. In obvious notation we have

H... =H,";, +H~ I„+H1'I +H I „, (6.19)
where the first term on the right-hand side is for the
direct production of m. +, while in each of the last three
terms a convolution in the vector meson momentum is
implied.

The inclusive distribution for the vector mesons can be
described in the recombination model in just the same way
as for the pion. In a shorthand notation in which (6.16)
appears as

~+ m'+

4 uZ ud (6.20)

+ 3 +H~ = 4FgR~g, (6.21)

H~ = , (F„„+Fdic)R~--
H = —,

'
(F„„-+Fdic)R" .

(6.22)

(6.23)

where the extra 4 factor is due to the S=O state, we have
similarly



31 PROTON-NUCLEUS INCLUSIVE REACTIONS AND MOMENTUM. . . 509

While (6.17) satisfies the condition

f dx ) dxz
R„g (x„xz,x)=1,

x] x2
(6.24)

therefore set for simplicity

R~ (x &,x2,x) =R"-(x&,x2,x)= —,
'
R„~ (x &,x2,x) = —,R .

(6.26)
the normalization of the neutral qq states implies

dxy dx2 o
R~„-(xq, x2,x)= —,

x] x2
(6.25)

and similarly for R„"„-, as well as for the dd state. The
functional dependence of R ~ and R" is not known
theoretically H. owever, since it is an empirical fact that
the resonance production inclusive distributions are very
similar to that of the pion, it suggests that assuming R~
and R to be roughly equal to E. would not be a bad ap-
proximation. Furthermore, it has been our experience
with the recombination model that for meson production
the result does not depend critically on the detailed shape
of the recombination function so long as it vanishes suffi-
ciently rapidly at the kinematical limits x;/x =0 and 1 to
simulate short-range correlation in. rapidity. We shall

For the quark distributions there are only two ine-
quivalent ones

Fuz=Fuu —=F.q Fdd =F~- (6.27)

where 5 stands for 5(z).
In terms of moments the quantities inside the

parentheses in (6.28) become just multiplicative factors,
while the FR factors in front are transformed as in
(6.16)—(6.18). It therefore follows that

Hence, combining (6.19)—(6.23) and the above two equa-
tions yields

H... = —,'F„,R(25+ql +3I „)+—',F„,R(I +I „),
(6.28)

+ 1l

H „,( n +3,A ) = ( n + I )
' g [8 ( n ~ + 1,n n& —+1 ) ]

&& I —,'F„(n&+2,n n&+2, A—)[2+9I z(n +3)+3I ~(n +3)]

+ 8Fdq(n)+2, n ni+2, A)[I p(n—+3)+I „(n+3)]I . (6.29)

(6.30b)

F„-has already been specified by (6.9) and (6.15). The only remaining function to be specified is Fd , which is, a-ccording
to the same procedure as for F„,

Fdq(n [,n2, &)=[Fd-(n $ y n2)+F d-(n ),n2)]D(n „A)D(n2, A),(&) (2)
(6.30a)

F
dq (n 1 n2 ) 2 G (n 1 +n2 1) I [+(n1 n2 )+4L'(n1 n2)]L'(n2) +@nI )I (n 1 n2) I

F~q'(n„n, )=2G"'(n„n, )I.(n, )[re(n, )+2I.(n2)] . (6.30c)

With these equations to supplement (6.29) we have finally
completed the description of total ~+ production which
contains both direct hadronization and indirect ones via
vector mesons.

Using the parameters determined in (5.11), there are no
unknown parameters in our system of equations. The re-

sults of our calculation for H „„(n+3,A) are shown in
Fig. 5 where only the moments for 3= 12 and 207 are ex-
hibited. The other A values yield curves that are bracket-
ed in between those two shown. Evidently, the depen-
dence on A is weak. Those moments are inverted by the
method of Ref. 27. The results are shown in Fig. 6, again
for A = 12 and 207 only, the others unplotted being in be-
tween. We have also shown in the same figure a dashed
curve corresponding to direct production only for the Pb
target, i.e., Hd;, (x,207). The effect of resonance contri-
bution is clearly very important for x & 0.6.

For comparison with the data we have the same prob-
lem as in the case of the proton distribution, viz. , the pion
data exist for fixed pz only. Again, if we assume factori-
zability in pz- and x, we have

0
o (pr, A)H„, (x, A) .

p
(6.31)

As before the A factor is to account for the geometri-
cal cross section of the target. o (pr, A) is unknown and
need not be the same as o~(pz. , A) since in the quark pic-
ture the sea quarks need not (and do not) have the same
transverse momentum distribution as the valence quarks;
their A dependences are presumably also different. In
this section we are not interested in fitting data. We want
to compare the calculated x dependence of H'«, (x,A)
with the data. To that end we have plotted in Fig. 6 the
data points for A ~ E d o /dp and multiplied the
theoretical curves by an overall normalization factor of 10
mb/(CreV/c) for ease of comparison. Evidently, the gen-
eral x dependence of the data is remarkably well described
by the theoretical curves. Furthermore, there is no signi-
ficant systematic A dependence of the x dependence, just
as our result for H „,(x,A) indicates. One could individ-
ually adjust the normalizations for each A and extract
some features about o (pz, A), but that would not lend
any further support to what we intend to demonstrate re-
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I I I other model exists that can give such detailed predictions
with such accuracy. These results therefore give strong
support to the physical relevance of the valon model for
hadron-nucleus collisions.

10

10-4—

10
2 4 6

I l t

8 10 12

garding H„, (x,A ).
In view of the drastic difference between the proton and

pion x distributions, it is striking that our theoretical re-
sults agree so well with the data. To our knowledge, no

A =2O

A =12

p+A = IT +X
beam - 1OOGeV/c

PT = 0.3 GOV/c

0 c (~2)
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FICx. 6. Comparison of data with theoretical curves for w+
inclusive cross sections. The solid curves include resonance con-
tributions, the dashed curve does not.

FICx. 5. Moments of m+ inclusive distributions for 3=12
and 207, calculated in the valon-recombination model without
adjustable parameters. Predictions for other A values lie in be-
tween the two curves.

VII. CONCLUSION

%e have used the inclusive reaction p +A ~p +X as
input to extract two basic parameters. One of them speci-
fies the valence-quark distribution in a valon (and there-
fore in a proton) and the other describes the degree of
momentum degradation that a quark suffers as it goes
through a nucleus. With those parameters fixed, there is
essentially no more freedom left in the valon model. We
then calculated the inclusive distributions for
p+A ~n.++X and found excellent agreement with data
for both the x and 3 dependences. It is the best demon-
stration of the credibility of the valon model for soft ha-
dronic processes.

The physics of multiparticle production is now quite
clear. At high energy, the incident hadron breaks up after
its initial impact with the nuclear target and loses its iden-
tity. A stream of quarks then propagates through the nu-

- cleus with very little loss in momenta. Each valence
quark has a distribution that varies roughly as (1—x;)
while a sea quark behaves as (1—x~) . In hadronization,
if the three valence quarks recombine, the resultant proton
distribution can be quite flat, since the proton momentum
x, being g,.x;, allows more phase space at higher values.
On the other hand, if a valence quark recombines with a
sea quark to form a meson, the sea-quark distribution, be-
ing sharply damped, does not add significantly to the
meson momentum, which therefore follows essentially the
same distribution as that of the valence quark. This is the
origin of Ochs' observation which first prompted the
recombination model. '

In this picture, the A dependences are a1so easy to
understand. For the proton distribution, because all three
valence quarks suffer momentum degradation, the
dependence is significant and detectable. In the case of
the pion, because its distribution follows that of one
valence quark only (the exact behavior of the sea-quark
distribution being unimportant), the A dependence is re-
duced by a factor of three in the exponent and is therefore
hardly noticeable.

Clearly, the valon model provides a unified approach to
the production of either proton or pion. It forms the con-
stituent basis for a description at the hadronic level, such
as that in Ref. 3, which cannot directly be generalized to
the pion-production case. In just the same way that the
parton model has provided an interpretation for the deep-
inelastic scattering data in terms of the proton constitu-
ents, the valon model provides a connection between the
hadron structure and soft hadronic processes. It is in this
sense that we stress the importance of doing experiments
on low-pT reactions. Indeed, as is evident from our re-
sults, we have extracted from the p +A ~p +Xprocesses
crucial information on the quark distribution in a proton
and quark interaction in a nucleus. Obviously, when the
theoretical method is applied to p —+E,A, and
w~w, E,p,p, and E—+m, E,p,p, etc., we shall be able to
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learn extensively about the structures of hadrons that are
not accessible to deep-inelastic probing by leptons. We
can discover the strange-quark distribution in a proton
and all quark distributions in pions and kaons. Similar
experimentation with hyperon beams can instruct us
about the structure of hyperons. It is therefore reasonable
to suggest that we are at the threshold of looking into the
internal structures of many hadrons that have hitherto
been inaccessible to experimental or theoretical investiga-
tions.

The other equally important finding in this work is the
effect of a nuclear target on a fast-moving quark. The de-
gradation length of the quark momentum being 160 fm
may appear to be very long, but is not unreasonable when
the effect of time dilation is taken into consideration.
Thus in a heavy-ion collision at ultrarelativistic energies,
the quarks in the fragmentation region of one nucleus are
not slowed down significantly by the other nucleus. Al-
though it does not mean that high densities cannot be
reached, it is an insight into the problems of the forma-
tion of quark-gluon plasma that cannot be overlooked.

Finally, there is an apparent dilemma that must be ad-
dressed. In Ref. 3 the degradation length for the proton is
found to be A~ =17 fm. Here for the fast quarks we find
A» =160 fm, under similar approximations for the nuclei.
One may ask how the two results can be understood in a
consistent picture. In particular, if a target has 17 fm ef-
fective length of nuclear matter, the value for Az implies
that the emerging protons has on the average only I/e
fractions of the initial momentum, apparently in direct
contradiction to the implication of the value of A». The
resolution of the dilemma lies in the recognition that a
proton loses its momentum primarily through the strip-
ping of slow partons by the target (which are responsible
for multiparticle production in the central region), while
the fast valence quarks go through with negligible loss of
momenta. If there were a way to measure the momentum
of the "object" that carries the baryon number as it
traverses nuclear matter, starting as a proton but emerg-
ing as three valence quarks, then the momentum fraction
of the object as a function of the distance l traversed
should initially decay as exp( —1/Az) but at about 60%
level flattens out as exp( —l/A»). This change of slope
reflects the complexity of the proton in the quark picture,
and underscores the danger of treating a proton as an ele-
mentary particle undergoing rescattering in a nuclear tar-
get.
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where z is the pion momentum as a fraction of the
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0, otherwise . (A3)

In the case of co decay, let the m+ recoil against a two-
pion system which has an invariant mass M. Then the
limits of the longitudinal momentum fraction of ~+ are

1 k
z+ ———,—6+

PPl ~

where
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4m

4m
I /2

1—
M

(A5)

where

M& (z)=m„(1—z)+m~ (1—z ') . (A6)

Equation (A5) is nonzero for z between the extrema z~+',

corresponding to M =4m~, i.e.,

b, =(M —m )/2m

k =m„[(—, 5) rj'~, —r =(—m /m„)

From the phase space factor for three-body decay we ob-
tain
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We derive here the longitudinal momentum distribu-
tions of a pion as one of the decay products of p and cu.

FICx. 7. Longitudinal-momentum decay distribution of co into
m+.
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I (z)=4m„C sec8tan8 1—2m„
tan 0

m~

—ln(sec8+ tan8)

z+' = —,
' (1—3r)+ [—,

' (1—3r) r]'—~

Integration of (AS) yields

(A7)

(AS)

z"' =0.868, "'=0.0367, (A9)

and the distribution I (z) is as shown in Fig. 7.
The moments I z(n) and I „(n) are determined numeri-

cally, as needed.

where sec 8=M& (z)/4m . The normalization constant
C is fixed by (Al) and is determined numerically. Using
physical masses for m and I,we have
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