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We present graphs of the lower part of the spectrum of the It-state doubling approximation to a g:$4:2
lattice field theory. The graphs exhibit critical behavior in the infinite-volume limit.

INTRODUCTION and the matrix elements

We are interested in studying the lower part of the spec-
trum of the ¹oupled anharmonic-oscillator operators

g (N, a)
~ qg (N)(q q )

H(N)
N

2

N —1

, + w, '+ (3 ~g) qj' —g q, q, +, for n=1 and N are known. %e compute E. N Xl
and Xt~ ' as follows. Expand W,

t l(qt, . . . , q2~) in the
basis

in the infinite-volume limit (i.e., the limit as tV tends to ~).
In this paper, we present the results for the lower part of
the spectrum given by the E-state doubling approximation
for K equal to 4, 8, and 12. This approximation, which is
described in the next section, exhibits critical behavior in
the infinite-volume limit. Here, g is a positive parameter,
and as explained in Ref. 1, we take the %'ick constant cu to
be 1.927913. The operators H(N) result from the quantiza-
tion of finite-difference approximations to the classical
Hamiltonian

e ll2
(Qt2+ P„2+$2+ g@4) dx

%e take the lattice spacing to be 1 and use Dirichlet boun-
dary conditions.

The spectra of the operators H(N) for N = 2, 4, 8, 16 were
studied in Refs. 1-3, where additional references can be
found. Variational methods were used to study these opera-
tors in Refs. 4-6. A generalization of the moment recur-
sion method was used in Ref. 7 to study a two-oscillator
operator. A theoretical analysis of the two-state doubling
approximation in the infinite-volume limit was made in Ref.
8.

THE E-STATE DOUBLING APPROXIMATION

%e will briefly describe the K-state approximation of H N

for N = 2", n = 2, 3, . . . . This approximation is natural
when the doubling algorithm is used to compute the energy
levels of H(. Details of the doubling algorithm are given
in Ref. 3.

Let E&' (j=1,2, . . . ) denote the eigenvalues of H +
in increasing order and W& (qt, . . . , qn) denote the corre-
sponding eigenfunctions. Assume that the eigenvalues E&(N)

(+t (qli ~ ~ ~ v qtV)+t (qiV+ I r i q2N)I

so that

+j g +tt p' (qt, . . . , qtt)+t (qN+1 q2N)
i, l =1

Then the equation H( + = E' 9' becomes

(g(x) q g(N))5 5 g(/Y, Algid, 1) gj E(2N)gj
i

-
l i'I l'l lli I l ll ~ ~Ilt

ii=1 & t

for i', I'=1, 2, . . . . The K-state approximation is obtained
by replacing the infinite sum above by a finite sum, that is,
i, l = 1, . . . , K and numerically computing the lowest eigen-
values and corresponding eigenvectors of the resulting
K x K matrix eigenvalue problem. Having computed ap-
proximations to E,( and to 'P, , we compute approxima-
tions to Xlm( ', Xl( ' by using the truncated formulas

K K
~(2N 1) + + Cl Cm g(N 1) g

i n ii nnin=1 i' „'—1

K K
g(2N 2N) ~ + Cl Cm g g(NN)

lm ~ ~ in i n ii nn'n=' i', n =1

%e take advantage of the fact that H N commutes with the
unitary operators 8 and 5, where

R'P(qit, . ~ qtt) = +(qw

S'P(qt, . . . , qn) =+(—qt, . , —qw)

Thus, in each of the four invariant subspaces

~++= (W:RW= +W and SW= +4)
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FIG. 1. From the top down: masses for the 4-, 8-, and 12-state
approximations as a function of g. The dot-dashed line is for 2 cou-
pled oscillators (1 doubling); they coincide within graphical accuracy.
The dashed line is for 16 oscillators (4 doublings), and the solid line
is for 128 oscillators {7doublings).

FIG. 3. Spectrum of the 4-state approximation in the range
0.0-2.0. The lowest eigenvalue is subtracted from all eigenvalues
(vacuum renormalization). The dot-dashed line is for 1 doubling,
the dashed line is for 4 doublings, and the solid line for 7 doublings.

we compute the lt. /4 lowest eigenvalues of the correspond-
ing restriction of H . Therefore, we take K to be a multi-
ple of 4.

We view the algorithm as follows. The operators H ap-
proximate g:@:q lattice field theories for g ~ 0. The E-state
approximation produces operators H~ which tend to H ~

in the limit as K tends to infinity. Thus, the H~ also ap-
proximate the field theories. For example, the mass
mt~ (g) of Ht~ is the difference between its two lowest
eigenvalues: m (g) = Ej~~ (g) —EP (g). In the infinite-
volume limit (N ~), mt~)(g) tends to m(g), the mass
of the field theory. Similarly, the K-state masses m~ tend
to m as E~ ~, so that

m(g) = lim lim mxt '(g)
W~ oo K~ oo

In the K-state algorithm, we interchange the limit processes:
first we calculate mlc(g) = lim~ mx( (g), and then we in-
crease K

RESULTS

We now exhibit the behavior of the lower part of the
spectrum of the infinite-volume limit of the E-state approxi-
mation.

The dot-dashed line in Fig. 1 shows the masses for 2 cou-
pled oscillators (1 doubling) in the 4-, 8-, and 12-state ap-
proximations. They are equal within graphical accuracy. A
rigorous poof of the rapid convergence of this method and
rigorous error bounds are given in Ref. 1. In fact, the error
analysis in Ref. 1 indicates that the rate of convergence is
exponentially fast with respect to the number of states. The
dashed and solid lines show the same quantities for 16 and
128 oscillators (4 and 7 doublings). Note that in the critical
region (where the mass becomes zero) the rate of conver-
gence of the mass as K increases seems slower for larger
numbers of coupled oscillators.

We show in Fig. 2 the convergence to the infinite-volume
behavior of the K-state approximation by displaying the
masses for 1 through 7 doublings with E =12. Again, the
convergence is slower in the critical region. For K equal to
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FIG. 2. From top down: masses for the 12-state approximation
for 1, 2, . . . , 7 doublings. FIG. 4. Same as Fig. 3, but for the 8-state approximation.
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FIG.- 5. Same as the solid line in Fig. 3, but for the 12-state ap-
proxirnation.

4 and 8, curves with similar behavior are obtained. This
clearly exhibits the critical behavior of the models: the in-
finite doubling mass becomes zero for a finite critical value
g, of the parameter g. We see from the solid lines in Fig. 1

that the value g, decreases with E.
The behavior of the eigenvalues above the mass as a

function of the number of doublings arid the number of
states is similar to the behavior of the mass. This can be
seen in Figs. 3, 4, and 5. We also see from the solid lines
in these figures that for g ( g, (away from the critical re-
gion) the spectra converge to two excited states with ener-
gies m and 2m.

In the infinite-volume limit, the spectrum becomes con-
tinuous above the one-particle threshold if we let K tend to
infinity- before N. This behavior is clearly seen in the de-
tailed graphs of Ref. 2. Since here we use a small number
of trial functions, the spectra cluster about the one- and
two-particle thresholds in the infinite-volume limit.

The mass for the field theories near the critical point g, is
expected to behave like

ttt (g) = c lg —gc I" (for g ( g, )

where e.is a constant and v =1. The 4- and 8-state models
yield v=0.9691+0.0001 and v=1.00+0.01 respectively.
The corresponding values of g, are 8.489 861 941
+ 0.000000001 and 7.624 437 432 + 0.000000001.

These values were obtained from a table of infinite-
volume masses constructed for values of g slightly smaller
than the critical value. These masses were computed by
doubling sufficiently many times to ensure convergence
(typically 20 to 40 times to obtain an accuracy of 7 decimal
places in the masses).

f 2

FIG. 6. Phase diagrams for H(f2, 3 ) (see Ref. 4). The two so]id
lines are our 4- and 8-state approximations (respectively, right and
left). The three remaining curves are those from Richardson and
Blankenbecler (Ref. 4).

Finally, in Fig. 6 we compare our computations of the
critical point using the 4- and 8-state approximations with
the results obtained by Richardson and Blankenbecler:4

62
, + (q, ' f')'+IJ (q, +—t q,)'—

9qj

To make the comparison, we appropriately modified the
coefficients in our definition of H ~. Our phase diagrams
appear to approach the one in Ref. 4 in the small-f2 (large-
6) region as we increase the number of states. Only a few
states are needed to obtain an accurate phase diagram when
f2 is large (b small).
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