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Majorana spinors in higher-dimensional theories
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The formulation of Majorana spinors in higher-dimensional spaces is discussed.

The Kaluza-Klein formulations of supergravity require the
corresponding extension of Majorana spinors to higher-

dimensions. According to Scherk, Majorana spinors may
be defined for, and only for, D =2, 3, 4 mod 8 dimensions,
while van Nieuwenhuizen has found that D = 8, 9 are also
possible. We present here another simple consideration of
this question based on a slightly different extension of the
definition of charge conjugation.

The condition for the existence of Majorana spinors in
any number of dimensions is

The transpose of C is

C =e(p)( —)~C

and

Cykc '=( —)~ykr .

Then (lb) may be rewritten

y4r = ( —)~e (p) Cy gC

(9)

(10)

or

Q y4=$ C
By (9) and (10)

(la)
~(p) = 1

(y4C ')'(y4C ') = 1 (lb)

where

y4S y4= S

CS'C-' =S-',
(2)

(3)

and S is the spin representation of the Lorentz transforma-
tion generalized to the multidimensional space.

Equation (1) is preserved if y~ and C are transformed as
follows: D+2

'

yk

D+1
yk

0

0
k=1, . . . , D+I . (12)

yk

This is our condition for the existence of a Majorana spinor
in any number of dimensions.

Charge conjugation will be defined here by (5) in any
representation composed of matrices that are either real or
imaginary. It will then be defined in any other representa-
tion by (4). Then (3) will be correct by the usual argument.

The defining representation for the yk will be constructed
according to the following rule. If D is even, then to go
from D+1 to D+2 dimensions, choose

y„'= U 'y~U

O'= U CU

(4a)
The last matrix may be taken to be either

Consider a particular representation in which all matrices
are Hermitian and either real or imaginary. Define C to be
the product of the (p) imaginary matrices only. 3 Then or

0 1
'"yD+~(o) =

1 0 (13a)

0 —il+ yD+2(b) =
1 0 (13b)

C' = C-' =.(p)C,
where

(6) To continue from D + 2 to D + 3 one then includes both
y(a) and y(b). If one starts this sequence with either
(o.„o.„) or (o.„o.~) for D =2, one generates Table I for
D =2n.

TABLE I. Majorana spinors in even-dimensional spaces.

D pa Pb ~(pb) ( —) '~(p, ) ( —) ~(Pb)

2
4
6
8

10
12

1

1
—1
—1

1

1

1
—1
—1

1

1
—1

1
—1
—1

1

1
—1

—1

1

1
—1
—1
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For D = 2n, the numbers of imaginary matrices according
to the two choices are then

p, =n —1

Pb=&

(14a)

(14b)

According to the condition (11) and the table, Majorana spi-
nors may exist in 2, 4, 8 mod 8 dimensions. In 2 mod 8
dimensions this condition is satisfied in two ways. The sym-
metry or antisymmetry of C is indicated in column
( —)~e(p). For D =4, Eqs. (8) and (9) take their usual
form.

For D =odd both y(a) and y(b) must be included.
Then we have

(15)

and Table II. According to this table Majorana spinors are
possible in D = 3, 9 mod 8 dimensions.

In contrast to Ref. 2 all results are here based on the sin-
gle generic representation (12) and (13). Our treatment
also differs from Ref. 1 in that it is not necessary to com--
pute the number of symmetric matrices in the generic
representation, since the existence of C is always assured by
(5). However, we shall compute one example of such a
sum.

If I is a product of g matrices, y; . y;, then
8'

cr = p, (p,g)(cr)',

y. =(U) (yi y )U (24)

where p and p' may be different. But (24) implies by trans-
position

( —)' ~(p') = ( —)'~(p), (25)

and by (11), the condition for the existence of a Majorana
spinor implies

p' —p = even

To satisfy both (11) and (26) one requires

(26)

by (18). We find

2N

g( —)t" '~ge(g)cg2"=2"e(n) for p even (n odd), (22),
0

2ll

g( —)t" '~go(g)C2"= (' —)"2"e(n) for p odd (n even)
0

(23)
Then

N, (D) =
2 2 "+

2
2"

by either (22) or (23), in agreement with (19).
C is a product of p imaginary matrices only in the special

defining representation. In any other representation, C is
determined by (4). Suppose that C in the new representa-
tion is still of the form (5), then

where
p'=p mod 4 (27)

&(p,g) = ( —)'"+"~(g)e(p) (17)

N, (D) = g —,
' [I+~(p,g)]C, .

0
(18)

Also

N, (D) =
2

2"(2"+ 1) (19)

Then the total number of symmetric matrices in the algebra
js

However, we should find all the allowed values of p
without making the assumption (24) in order to determine
when Majorana spinors exist according to (11). In order to
do this let us designate as standard any representation in
which the matrices are Hermitian and either real or ima-
ginary and in which C is defined by (5). We shall now
show that a Majorana spinor is allowed in any standard
representation according to (11) if it is allowed in our refer-
ence representations (Tables I and II).

Let U be a unitary matrix that connects -two standard
representations and may change p. Then

These expressions for N, (D) must agree and must be in-
dependent of p. Here D =2n. For our example choose
p, =.n —1. Then

yk= U 'ykU

and the complex conjugate equation is

~ky'=(& ') "~kU

(28)

(29a)
z(p, g) = ( —)'" ' 'e(n)e(g)

28

N, (D) = —,
' 2'"+ —,

' e(n) g( —)'" '"e(g) Cg'"
0

TABLE II. Majorana spinors in odd-dimensional spaces.

(2O)

(21)

and

'gk = Skulk

where

yk=&kyk and +k= +1
Then

kyk= Vyk V

where

(29b)

(30a)

(30b)

( —)~~(p)
V= UU (31)

3
5
7
9

11

1

2
3
4
5

1
—1
—1

1

1

—1
—1

1

1
—1

—y„= Vy„v ', k=1, . . . , E,
yk ——Vyk V ', k =@+1, . . . , D

(32a)

(32b)

The reflection matrix Vis symmetric and unitary.
If gk ——1 for all k, then UU =I and U is a rotation ma-

trix. Let gk= —1 for k =1, . . . , K. Then
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and

p'=p —I+8 =p+K —2I (33)

if yk is not included in I .
By (32) and (44)

where there are I (R) imaginary (real) matrices in the origi-
nal representation that change to R (I) in the new represen-
tation.

In order to find the general solution V of (32) consider
the most general U. It may be built up as product of uni-
tary transformations of the type

Also

s =even, k=1, . . . , K,
s =odd, k =X+1, . . . , D .

V eim m I'/2

(45)

(46)

U e/If (34) U=cos +i sin IP7l & . ~ fn&
4

(47)

where @ is real and I' is a Hermitian product of s different
yl

I [1—~(s) l/2
yl - yi1 s

(35)

Here e(s) is the function defined in Eq. (7). Then the
transpose of I is

By (45) and (46), V is a product of the set of matrices
(i~, . . . , i, ) that is either the same as the set (1, . . . , K) if
s is even, or is complementary to the set (I, . . . , X ) if s is
odd.

The number of matrices that satisfy (32a) is s if s is even
and D —s if s is odd. In either case this number is

r'= (s)( —) r, (36)
A= —,

' [1—( —)']D+ ( —)'s (48)

where q is the number of antisymmetric or imaginary ma-
trices in the set (it, . . . , i, ). Then

The number of imaginary matrices that satisfy (32a) is q if s
is even and p —q if s is odd. In either case

V = UU = exp (i [I + k (s) ( —)q]I'g ] (37) I = —,' [ I —( —)']p + ( —)'q (49)

In the nontrivial case By (33), the change in the number of imaginary matrices is

Then

e (s) = 1 and q is even

(38)

(39a)

= —,[1—( —)*](D—2p)+ ( —)'(s —2q) . (50)

If D is even, one may take D = 2p as in, Table I. Then

or bp = ( —)'(s —2q) (51)
k (s) = —1 and q is odd

Then

(39b)
There is an increasing (decreasing) sequence corresponding
to even (odd) s. By (39) this series progresses in steps of 4.
If D is odd one may take D —1 = 2p as in Table II. Then

and hp =, —,
' [1—( —)*]+ ( —)'(s —2q) (52).

Vyk V '=cos'2yyk+ sin'2/1 ykI + —sin4@(l, yk)
2

This equation for odd D is different from (51) only in the
case that s is odd. Then

Equation (32) now requires
(41)

bp =1—(s —2q) (53)

V'Yk V = I Ykl = l3k (S)yk (43)

(42)

Since qk= 1 for all k if m is even, Eq. (32) also requires
that m be.odd. Then (41) becomes '

p =n, n —1 mod 4 if D =2n

p =n mod 4 if D =2n +1 (54)

This series begins at s = 1 with 4p = 0.
It follows from (50) and (52) that the possible values of p

are

where

P (s)=(-)'
if yk is included in I, and

Pk(S) = ( —)'

(44a)

(44b)

It follows from (54) and (11) that if a Majorana spinor is al-
lowed in our reference representations, then it is also al-
lowed in any other standard representation. We conclude
that Majorana spinors (as defined here) exist only in 2, 3,
4, 8, 9 mod 8 dimensions.
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