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QCD chiral-symmetry breaking in a Rayleigh-Ritz variational calculation
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Within a Rayleigh-Ritz variational calculation for QCD, we establish the occurrence of chiral-
symmetry breaking if the force is sufficiently strong. The logarithmic behavior of gauge coupling is
essential for the result.

Quantum chromodynamics (QCD) is widely believed to
be the theory which describes strong interactions. One of
the important questions about QCD is whether it leads to
dynamical chiral-symmetry breaking for massless fer-
mions. A common approach to this problem is through a
gap equation for the generated mass, which is then dis-
cussed analytically in a linearized approximation. '

In this paper we study the energetics of chiral-
symmetry breaking, using an effective potential for com-
posite operators, developed by Cornwall, Jackiw, and
Tomboulis (CJT). This method provides a variational
approximation scheme that preserves some of the non-
linear features of field theory, which are presumably cru-
cial for dynamical symmetry breaking: by performing an
arbitrary va'riation of quark propagators in the effective
potential, a nonlinear gap equation for the generated mass
emerges. %'e improve this gap equation by allowing the
'coupling constant to run according to the renormalization
group. Then the equation in linearized approximation
possesses the chiral-symmetry-breaking solution obtained
by Politzer. We evaluate our effective potential, using
the running coupling constant, with a specific parameter-
dependent ansatz for the generated mass, consistent with
the solution of the improved linearized gap equation. By
varying the parameters involved, we show that for QCD

with massless fermions a stable minimum exists in which
chiral symmetry is spontaneously broken. Furthermore,
we have found that the logarithmic behavior of the run-
ning coupling constant and the generated mass are crucial
for the stability of the spontaneously broken chiral-
symmetry phase.

I. EFFECTIVE POTENTIAL

We consider an SU(N) gauge theory with massless fer-
mions in the fundamental representation. The Lagrangian
1s

L= trF +i%@%,
2g

where the potentials A& and field strengths F&„are anti-
Hermitian, Lie-algebra-valued matrices in the fundamen-
tal representation. Following CJT we construct the
Hartree-Pock approximation to the generalized effective
potential V(G, b. ), which depends on the complete fer-
mion propagator G and gluon propagator b. for the above
Lagrangian:

d4 .d4
V(G, E)= i f —

~ tr[lnS '(p)G(p) —S '(p)G(p)+ I]+ ,' i f ~
—tr[lnD '(p)b(p) D'(p)b(p)+ 1]+Vz—(G,E) .

(2m. ) (2~)'

[Space-time and group indices are suppressed in Eq. (2).]
We use the Landau gauge; the free propagators D"' and
S(p) are conventional, unit matrices in group space,

D" (p) =—,(g"' p "p"/p')&, —
7

S(p) =—I .l
(a) (c)

The first two terms in Eq. (2) are one-loop contributions.
V2(G, b, ) is the two-loop contribution given by the graphs
of Fig. l in the Hartree-Pock approximation. [The solid

FIG. 1. Hartree-Fock approximation to two-loop effective
potential. The solid line is the fermion propagator 6; the wavy
line is the gluon propagator A.

31 411 1985 The American Physical Society



412 P. CASTORINA AND SO-YOUNG PI 31

lines represent G(p); the wavy lines represent b,(p). In
addition to these diagrams there are ghost contributions. ]
The analytic expression for Fig. 1(a), the only relevant
graph for our problem, as we shall see later, is

d4
Vz'(G, b, )= ,'i—f f trI"„'G(p)l „"G(k)

(2m. ) (2m )

x &4b(p —k), (4)

where I „'is a Lie-algebra-valued vertex function.

II. THE CxAP EQUATION
AND LARGE-p ASYMPTOTE TO M (p)

G '(p) =S '(p) —X(p), (5a)

Demanding that V(G, b, ) be stationary against variation
of G gives from Eqs. (2) and (4)

Here A= few hundred MeV is the QCD scale and nf is
the number of flavors. Therefore, we shall improve our
lowest-order gap equation by introducing an effective cou-
pling constant g (P,K) into Eq. (6):

g (P,K)=g (P)8(P I—C)+g (K)0(IC P) .— (9)

With this effective coupling, Eq. (6) when linearized is the
same as Eq. (7), without the logarithmic corrections. Our
improved gap equation possesses, in the large-P limit, a
solution which is consistent with the large-P asymptote
to M(P) obtained by Politzer using an operator-product
expansion:

M(P) =4(qi%'(p)) (1nP/p)" for large P,g'(P)
P2

where p is a renormalization point and
2 =18Cf(N)/(11N 2n—f) Eq. uation (10) corresponds to
the Goldstone realization of chiral-symmetry breaking.

&(p) =&(p)p+&~(p)

=f,cf(N)r„G(k)r.a4 (p —k),d k
(2'�)' (Sb)

III. RAYLEIGH-RITZ APPROXIMATION

In order to study the nonlinear aspects of the problem
we evaluate

where Cf(N)=(N 1)/2N. A—(p) is that part of the
self-energy which exists in the normal solution, while
Xz ——iM(p) is a possible chiral-symmetry-breaking contri-
bution. By setting in Eq. (5) b4"=D4", A(p)=0, and
I &

——gy&, i.e., their lowest values, we obtain a nonlinear
equation for the generated mass:

4

(2m ) k —M (k) ( —k)

Next we improve Eq. (6) by the renormalization group
to account for asymptotic freedom. It has been shown
from the behavior of the vertex function and the fermion
and gluon propagators that for large P = —p, the gap
equation (5b) when linearized becomes, after the angular
integration,

M(P)= f dK', g'(P)M(K) 1+0

X~(p) = f g Cf(N)y4G~(k)y„D4"(p —k) .
(2m )

(12)

In the lowest approximation we shall set XN ——0 and
GN

' ——S '. The gluon propagator plays no role in
chiral-symmetry breaking, hence we ignore its difference
between the symmetric and asymmetric phases:

0= V(G, b, ) —V(G~, b ~ ),
which is the difference of the effective potential between
the normal solution and symmetry-breaking solution. The
equation for the normal, symmetry-preserving solution
has the form

GN S ~N ~

—1

'(p) =&~ '(p) =D '(p) —11~(p) . (13a)

+ f",dIC' ', g'(IC)M(K) I+a

where IC = —k . The running coupling constant g (P) is
given by

24
g (P) = (lnP/A) ' for large P .

11%—2nf

II~(p) =0, &4"(p)=&~~"(p) =D4"(p) . (13b)

With these approximations diagrams (b) and (c) in Fig. 1

do not contribute to 0 as mentioned earlier and we have

We make a further approximation of ignoring the radia-
tive corrections to the gluon propagator (although we do
use a momentum-dependent coupling constant):

d4Q= —i tr lnS 'pGp —S 'p Gp+1
(2m. )

4 4

+ 2i f 4 f &g Cf(N)tr[y4(G(p} —S(p))y (G(k) —S(k))D" (p —k)],
(2n. ) (2m. )

(14)

where g is the effective coupling given in Eq. (9). Using explicit forms for the propagators G, S, and D, we obtain,
after some algebra,
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(2m) P (2m) P —M (P)

(2m. ) p M—(p) (2n. ) [k —M (k)](p —k)
(15)

Now we shall evaluate 0 with a specific, parameter-
dependent ansatz for M(p) and vary these parameters.
First we assume that the large-distance behavior leading
to confinement in QCD is irrelevant to chiral-symmetry
breaking. Thus we take the following form for the run-
ning coupling constant at small P:

24g'(P) — (lnP, /A) '—:g, z, P (P, , (16a)
11K—2nf

while for large P we remain with the expression Eq. (8),

I

direct solution ot the renormalization-group-improved
nonlinear integral equation carried. out by Higashijima,
and confirm the validity of the variational Rayleigh-Ritz
method for dynamical symmetry breaking developed by
CJT.

As a check that dynamical symmetry breaking occurs
for P, /A (1.5 we have made the following observation.
Instead of evaluating the effective potential first and then
varying m to look for the solution, we simplify the effec-
tive potential by using the minimization condition, Eq.

gz(P) = (lnP/A) ', P &P, .
11%—2nf

P, is a momentum defining the infrared region. Then it
is reasonable to use the following form for the generated
mass, as a variational ansatz:

.)2

—(8~')
A+

.08—

I 1

Pc 13
A

I I
I

I
I

I
I

M(P) =m for P (P,
1 —3/2

=I ln
p2

' A/2 —1
I'ln—
A

.04—

I
I

I
I

I
I

for P&P, , (17)

which is consistent with the asymptotic solution given in
Eq. (10).

With the above expres'sion for g (P) and M(P), we find
that our effective potential 0/A is a function of m/A
and P, /A whose' minimum determines the solution m /A
for various values of P, lA. Our order parameter m plays
the role of some suitably regularized expectation value
(%%) and the value of P, is related to the maximum

' strength of the coupling constant involved in the calcula-
tion. We take A as a fixed parameter in this problem.

IV. RESUI TS

p4

—08-
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We have analyzed our effective potential numerically
and obtained the following results: For SU(3) with nf =3,
dynamical symmetry breaking occurs when P, /A(1. 5

and a stable minimum exists at m/A(1. For example,
when P, /A=1. 3, the minimum occurs at m =0.5A. The
effective potential Q for P, /A=1. 3 is shown in Fig. 2(a).
As P, lA decreases, the value of rn at the minimum in-
creases. For P, /A&1. 5, m =0 is always the global
minimum [see Fig. 2(b)]. This tells us that a large cou-
pling constant,

3g, Cf(N =3) ) 1 (18)
8m

is necessary for dynamical chiral-symmetry breaking.
When we change the number of flavors, for example
nf —9, dynamical symmetry breaking occurs when

P, /A (2.25, which again implies the requirement in Eq.
(18). Our results agree with the numerical study of the
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FIG. 2. (a) Effective potential Q for P, /A = 1.3, %=3, and
nf ——3. (b) Effective potential Q for P, /A = 1.75, %=3, and

half
=3.
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M(k) 1

k —M (k) (p —k)

d p M(p)
(2')" p —M (p)

Then, together with the one-loop contribution, we obtain

(19a)

(6), which results from an arbitrary variation of G: the
two-loop contribution in Eq. (15) can be written in a sim-
ple form if we use Eq. (6):

dp M(p) dk
(2~) p —M (p) (2m)

—(87r')Q
A4

—O. I—

—0.2—

T ~l I

—= 1.3Pc
A

n=2
(2m) p

\

\
\

I

dp M(p)+2lnf
(2n) p —M (p)

(19b) -0.50 .8 m
A

The physical meaning of 9, which is different from II,
can be given as follows: 0 is the effective potential for
every value of m which is a solution of the gap equation,
Eq. (6). Therefore, for a symmetry-breaking solution,
m&0, 0 must be negative in order that the solution have
lower energy than the symmetric phase m =0. Indeed, we
find that for P, /A & 1.S, 0 &0 for all m (see Fig. 3). 0
becomes more negative for larger m, implying that for
larger values of m the corresponding minimum potential
energy is lower. Notice that 0, in Fig. 3, is unbounded
from below. However, this does not mean that there is an
instability, since Q does not determine the minimum.
Minimization is carried out on 0, which is bounded
below, and Q 'is the value of Q at the stationary point.
That 0 is negative is a clear signal for dynamical symme-

try breaking. The value of 0 and Q at the stationary
point, for example, m =0.5A for P, /A=1. 3 should be in

principle the same. However, in Figs. 2(a) and 3, they are
somewhat different. This discrepancy comes from the
fact that for fI an ansatz for M(p) has been used, while
for Q, the exact equation for M (P) in the approximation
which we use has been employed to reexpress the two-loop
term in the same form as the one-loop term. The ansatz
has been used only at the later stage to evaluate the single
loop. Thus, the value of A at m =O.SA is a better ap-
proximation to the true vacuum energy than Q.

In fact, when the integrals in (19b) are continued in
Euclidean space and M is assumed to be positive there,
one sees that Q is an integral of a negative integrand,
hence always negative, on a solution, even outside our an-
satz.

V. DISCUSSIONS

%'e emphasize that the logarithmic behavior of g and
M(P) in Eqs. (16) and (17) is crucial for the stability of
dynamical chiral-symmetry breaking. %'hen we evaluate
A ignoring the logarithmic behavior both in the coupling
constant and in M(P), i.e., using the ansatz

FIG. 3. Effective potential A for I', /A = 1.3, N =3, and
nf =3.

M(P) =m, P &P,

=mI', /I' & I')P, (20)
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and a constant coupling constant, we find that dynamical
symmetry breaking occurs for 3g Cf(%)/8~ & —,', but a
stable minimum does not exist; the effective potential de-

creases monotonically as m increases from zero and is not
bounded from below. For 3g Cf(X)/Svr2& —,, m2=0 is a
stable minimum, indicating no symmetry breaking. Our
interpretation of this is that by taking a constant coupling
constant [and Eq. (20)] in the lowest-order calculation of
0 to which only Fig. 1(a) contributes, one is considering a
theory which is not asymptotically free and for that
theory no stable minimum exists with chira1-symmetry
breaking. We stress that there is no connection between
the two Q's: one cannot obtain the A with constant g
and M(P) in Eq. (20) from our 0 for QCD, by varying in

M(P) the power in the logarithm away from 2 /2 —1, be-

cause there is further logarithmic dependence in g for
the QCD O. Our study of II using constant g2 and Eq.
(20) shows the importance of the logarithmic behavior,
which is a hallmark of an asymptotically free theory.

In the course of our study we received a paper by Casal-
buoni et al. , in which chiral-symmetry breaking in QCD
is examined by a method similar to ours, omitting the log-
arithmic behavior.
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