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Gauge invariance and the finite-element solution of the Schwinger model
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&e apply the method of finite elements to two-dimensional quantum electrodynamics. We con-
struct gauge-invariant operator difference equations and compute the chiral anomaly in the
Schwinger model. The relative error between the exact answer and the finite-element prediction
vanishes like M, where M is the number of finite elements.

I. INTRODUCTION

In a 1970 Physics Today article, P. A. M. Dirac wrote

The phenomena of high-energy physics have stimulat-
ed the development of several new mathematical ap-
proaches to calculate and explain the experimental re-
sults. Many of these approaches bear little relation to
methods used in other areas of physics and many have
incomplete or unsatisfactory aspects to them. They
have been used with varying success. Methods based
on the equations of motion, so necessary for low-

energy physics, have been. largely abandoned as being
intractable to this latest branch of physics. Yet if we
believe in the unity of physics, we should believe that
the same basic ideas universally apply to all fields of
physics. Should we not then use the equations of
motion in high-energy as we11 as low-energy physics?
I say we should. A theory with mathematical beauty
is more likely to be correct than an ugly one that fits
some experimental data.

Our intention here is to respond to Dirac's challenge.
In recent papers it was proposed that the method of

finite elements could be used to solve operator quantum
field equations on a Minkowski lattice. A first paper
showed that this method reduces the Heisenberg operator
equations of ordinary quantum mechanics and of two-
dimensional self-interacting boson theories to operator
difference equations which can be solved explicitly. The
solution exactly preserves the equal-time commutation re-
lations of the field operators. A second paper applied the
same ideas to free fermion field theories. The operator
Dirac equation was solved using the method of finite el'e-

ments and the solution was shown to be consistent with
the canonical equal-time anticommutation relations.
Moreover, this Minkowski lattice solution preserves uni-
tarity (and chiral invariance in the massless theory), there
is no fermion doubling, and the lattice Lagrangian (but
not the Hamiltonian ) is local.

by using the method of finite elements. In this paper we
implement Abelian gauge invariance. Specifically, we for-
mulate electrodynamics on a two-dimensional Minkowski
lattice and construct operator difference equations which
are manifestly gauge invariant and possess the correct
continuum limit. In the massless lattice theory (the
Schwinger model) chiral symmetry is broken and a mass
is generated. We compute this symmetry-breaking mass
and obtain answers in excellent agreement with the known
continuum results; the relative error between the exact
answer and the finite-element prediction vanishes like
M, where M is the number of finite elements.

II. GAUGE INVARIANCE ON
A FINITE-ELEMENT LATTICE

$~$+5$, 5$=ie5AQ, (4)

~,+5~„, 5~„=a„W.. (5)

Under this gauge transformation the left side of (1) does
not change; this implies that the field strength I'z is
gauge invariant. The current J" is formally gauge invari-
ant [under (4), J~~J&+O(5A )]. Thus, both sides of (2)
are gauge invariant. Individual terms on the left side of
(3) are not gauge invariant, but their sum is if g satisfies
(3).

On a finite-element Minkowski lattice, derivatives are
averaged forward differences. ' Thus, the infinitesimal
gauge transformation (5) becomes

The field equations in two-dimensional continuum elec-
trodynamics are

BpA —8 Ap ——I'"p

BQ" =J",
(i9+eg+p)/=0 .

Classically, the electric current is J"=ega"p. However,
in quantum field theory it is necessary to define J" as a
limit of a point-separated current.

An infinitesimal local gauge transformation is
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1
(530) „= (5A +I,n+I+5Am, n+I

—5A +I „—5A „),

1
(5a, ) „= „(5A +I,.+I+5A +I,.

„+,—5A „),

where h is the spacing on a square Minkowski lattice, m
is the space variable, m =0, 1,2, . . . , M, and n is the time
variable, n =0, 1,2, . . . , X. We take the boson fields and
their variations to be periodic:

(A~)0 „——(A„)M „, (5Ap)0 „(5&q)——M „,
&&0,.=&&M,n .

The left side of the finite-element transcription of (1) is

invariant under the transformation (6). Thus (I'z„) „ is

gauge invariant.
Constructing a gauge-invariant form of the Dirac equa-

tion on the lattice is the nontrivial part of this discussion.
The free Dirac equation (i9+p)/=0, by the finite-

element prescription, becomes

r (0m+In, +I+em, n+I em +In, ((m, n )~(2II)

+IX (0 +I, +I+0 +I,. Iti—,.+I —P,, )~(2')

+P(0m+1, n+I+ Pm+I, n + Pm, n+I+ Pm, n )~4

Equation (8) is, of course, invariant under the global phase
transformation

5g „=ie5QQ (9)

where 5Q is independent of the lattice site. The appropri-
ate local generalization of (9) is

5% „=ie50 „4'

where

(10)

5&,.=(5A +I,.+I+5A +I,.+5A „„+5A „)y4.

We solve (10) for 5Iii

1+mn, 4 ( 4, n + P mn+ I+ tom+ I, n +0m+ I,n+ I) ~

for then the mass term in the Dirac equation transforms
covariantly under an infinitesimal local gauge transforma-
tion.

A strict interpretation of the finite-element prescription
in Refs. 2 and 3 suggests the connection between the two
infinitesimal quantities 5Q „and 5Am „:

n —1 m —1 M

5$ „=(—1)"5$,+2ie g g —g ( —1) + +"+"'5Q
n'=0 m'=1 m'=m

Note that (12) is not the most general solution to (10); it has been simplified by imposing the boundary conditions

Ar, .=( —1) +'Po. , 50M,.=(—1) +'5Ito, .

(12)

(13)

In addition to these spatial boundary conditions, the variations 5$ „must also satisfy boundary conditions at
t =0 (n =0). We discuss these after (15).

Transforming the space and time derivatives in (8) using (12) we find that

( —1) + (5Q „—5Q ~ I „)(f ~ „+I + f „),

5(4m+In+ +It , ImI+ngm, n+, I Wm, n ) ie5~Im, n(pm+i, n+ 1+Ii'm+1, n gm, n+I Itim, n )

m M
+ie (14)

m'=1 m'=m+1

5(~liwm+I, n+ I+4m n+ I 4m+I, n tt , m) ne5+m, n(Pm+I, n+I + Item, n ~1 Pm +I, lnt('m, n )

n

+2ie g ( —1)"+" (5Q „—50 „ I)(1(i „+P +, „)
n'=1

+2ie( —1)"M,(P,+g, ,) —2( —1)"(5f,+5/, ,) .

The continuum limit of (15) must agree with the time derivative of (4):

ao(50) =ieao(5A)g+ie5A(a, y) .

This requirement determines the boundary conditions on the variation of the lattice Dirac field at n =0:
5(P,a+0 ,+I=O)[ie&5, mO ( &5, mI5&m, O)~2l(It('m, 0+Pm+I, o) .

A first approximation to the interaction term on the lattice is
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0 n

(I, ) „= ~ g ( —1)"+" [(&o) „+(&o),, (](g ),.+P,, )
2 I

+ ( —1)"[(~o), i+ (~ o)m, o](4m, o+ 4m+ i,o)

ey'
m'=1 m'=m+1

( —1)™+~~[(&)),„+(&() t,„](Q,,+&+Q

because if we perform an infinitesimal gauge transforma-
tion by varying (16) with respect to A, according to (6),
and combine the result with the terms obtained by varying
the free Dirac equation (8), then all terms of order 5A~ „
cancel. This cancellation depends on g satisfying the free
Dirac equation. However, there are two problems: first,
we neglected to vary (16) with respect to g; second, when
the interaction term (16) is included, the free Dirac equa-
tion is no longer satisfied. We therefore vary I& with
respect to g and obtain new first-order terms. Then we
invent a second interaction term I2 so chosen that, if it is
varied with respect to A and combined with the terms ob-
tained by varying I~ with respect to P, all first-order

I

I

terms once again vanish, provided that g satisfies the
Dirac equation with interaction term I&. Again we have
neglected to vary I2 with respect to g. Also, with the in-
teraction term I2 included, g no longer satisfies the Dirac
equation with I~ only. Thus, we invent a third interaction
term I3, where the variation of I3 with respect to A can-
cels the variation of I2 with respect to g, given that P sat-
isfies the Dirac equation including both I& and I2. This
process is continued ad infinitum with the nth interaction
term I„proportional to n powers of e, n —1 powers of h,
and n powers of A. Fortunately, the infinite series of in-
teraction terms I =I]+I2+I3+ . . exponentiates and
can be summed in closed form:

0 n 8

( —1)"+"exp ieh g B „(e " —1)P
n=i n" =n'+1

~ 1 h M M—( —1)"exp ieh g B „(e ' —
llew o+ sec g C ~ „g sgn(m" —m)( —1) +

h
mn m0 ~ 2 m, n

~ M iehC

)&exp g sgn(m"' —m)sgn(m'" —m")sgn(m"' —m)C ~ „(e " '" —l )0
ttl

where

B „=[(Ao) „+(Ao ) „g]/2,
=[(& ) „+(A,),„]/2,

&,.=(0,.+g +i,„)/2,

8 „=(g „+g „+()/2,

(20)

(21)

and sgn(x) is 1 if x&0 and —1 if x &0. This interaction
term completely solves the gauge-invariance problem.
The full lattice Dirac equation is (8) with I „ included on
the right side. This equation is invariant under the gauge
transformation (6) and (12). It is also invariant under fi-
nite gauge transformations. In the limit h ~0 we recover
the continuum Dirac equation (3). Moreover, the point
separation mentioned after (3) (point separation is re-
quired to give rise to chiral-symmetry breaking and mass
generation in the massless theory) has arisen in a natural
way in the interaction term I. It is crucial that (17) in-
volves only fields at time n + l and earlier, so that we can
solve the Dirac and Maxwell equations interactively in
terms of the initial fields by time-stepping through the
lattice.

e
B„J~5 ——— E,

7T
(22)

where E =F0& is the single nonvanishing component of
the field-strength tensor. One then infers the dynamically
generated boson mass

m=em —1/2 (23)

In this section we present a simple example of a field-

III. THE SCHWINGER MODEL
FOR ONE FINITE ELEMENT

The Schwinger model is ab initio massless (1+ 1)-
dimensional quantum electrodynamics. Although essen-
tially trivial, it points the way to dynamical symmetry
breaking and mass generation because manifest gauge in-
variance is seen to be compatible with a "photon" mass.
This feature, together with the solvability of the model,
has made it a popular laboratory for studying the chiral
anomaly in field theory. The finite-element procedure
leads to an interaction which is exactly gauge invariant,
but which exhibits the nonlocal, point-separation structure
necessary to break chiral symmetry. It is precisely the
breaking of chiral symmetry which in the continuum
gives rise to the chiral anomaly
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theoretic calculation using the method of finite elements.
We consider the massless Schwinger model for the case of
one finite element M=1,%=I. We choose a gauge in
which Ap ——0 and Al ——W. The periodicity condition (7)
implies that there is no space variation on one finite ele-

ment, and that only the time index n=0, 1, need be
displayed. The difference equation corresponding to (1) is

(El+Eo)/2=(MI —Wp)/h .

The simplest choice for a gauge-invariant current is

(24a)

(00+el )(00+01)=0 (24b)

«I —Eo)/h =e(Co+el)1' 'Y (00+01)/4 .
/

We will return to the question of how to construct a con-
served gauge-invariant current for a general lattice in Sec.
IV.

The lattice Dirac equation on one finite element is

(24c)

iy (QI —g/jo)=y'($0+$1)tan(ehW0/2) . (24d)

The equal-time anticommutation relations are [I(il'„,g„]+=6' lh, where the superscripts a, b = 1,2 are Dirac in-
dices.

To calculate the chiral-symmetry-breaking mass co, we
make the approximation that there exist six states in this
field theory: the vacuum state

i
0), a boson state

i
8) of

mass co, and four fermion states. Following the procedure
used in Ref. 2 to compute masses in quantum oscillator
problems, we use the Heisenberg equation for operators,
which in the continuum reads

i M=[M, H],d
dt

to relate the time dependence of an operator to its mass
spectrum. Taking the expectation value of the above
commutator between

i
0) and

i
8 ) states gives, on the

lattice,

((g
i MI ~0) —(8 iWoi0))/h ice(& i~-o~0) . (24e)

This asymptotic relation becomes exact in the limit h ~0.
We now solve the five equations (24) in the asymptotic

limit 6~0. In this limit the difference between M0 and
Ep and El and gp and gl is O(h), and can be ap-

proximated, by using equations like (24e). We also drop
the time index and replace $0+$1 by 2p. The anticom-
mutation relation sets the scale for the Fermi field:
Q=O(h ' ). Finally, we use (24b) to eliminate the lower
component of the Fermi field /3, in favor of the upper
component a, where p=h 'i (a, 113). Equation (24b) is
particularly interesting because it implies that the metric
is not positive definite. If the metric were positive defi-
nite, the theory would be trivial. We perform the indicat-
ed algebra and reduce (24) to

0=tan(e (B
i
a a

i
0)/co ) . (25)

J"=e(40+ PI )r"(Ito+ PI ) /4 .

From this definition the two components p =0 and p =1
of (2) become

In this section we perform a direct calculation of the
chiral anomaly by computing the divergence of the axial-
vector current. We begin by noting that in the gauge
Ap ——0 the interaction term (17) satisfies the recursion re-
lation

(26)

Using this gauge we can solve the massless (1M=0)
Dirac equation very easily because the chiral components
decouple. Denoting the +1 eigenvalues of y5—=y y' by
superscripts, we find that

.~(+ ) '~~cm, n ~(+ )
'lt m n+1 Pm —1 n

( —) '" mn ( —)
4'm —In+I e, Pm, n r

which differ from solutions of the free massless Dirac
equation by simple phase factors depending on the vector
potential 3 contained in C. Evidently, it is appropriate to
regard the field P as canonical, for the solution (27)
preserves the canonical equal-time anticommutation rela-
tions,

(+)f (+)[4 m 4nm. 'nl+ =
h,

~m, m' . (2&)

To proceed we need an expression for the current J",
the source of the field E. On the lattice the Maxwell
equation (2) becomes

1
m+ 1,n+ I+Em+ lnEm, n, +I Em, n ) =—(E

1
1

2h
IE +I,.+I+E,n+I Em+I, .—Em—

,.)=~,.
Thus, the analog of 8"J&——0 is

(29)

1 0 0 0 0 1
(Jm + I,n + I +Jm, n + I Jm +Injmn+ ~, m + I, n ,+ I

1 1 1+J ~I,. J,n+I —J—
,.)=o. (30)

It is extremely fortunate that the finite-element transcrip-
tion of the current

0 pJm, n e+m, n V 7 +m, n (31)

The anticommutation relation [a,a]+ ——1 implies that
the matrix element in (25) equals c, a number of order
one. There is some ambiguity here but choosing the
lowest nontrivial zero of the tangent function, we have
01 =ce /n. . This result agrees well with the known result
e /vr for the continuum Schwinger model. It is not clear
why such good agreement is achieved for only one finite
element. One possible reason is that the model is free in
the continuum. Another is that while commutation rela-
tions only have infinite-dimensional representations, an-
ticommutation relations do have finite-dimensional repre-
sentations, in this case six-dimensional (six states).

IV. THE CHIRAL ANOMALY IN THE SCHVPINCxER
MODEL
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satisfies the discrete conservation law in (30). Equation
(31) is also gauge invariant, according to (10). Using (27)
we easily find the lattice divergence, Eq. (30), of (31) to be

cc py& &e . &h — ieh( m+~ n+y+ rn+I n
( "~iJ"")m,n = sin E~,n

T [e2( 1 +e '&k )2+ 'i'k
]—)

—e (1+e ") +1 e(1+e ")2

—e(1+e ")' —e'(1+e"")'+e "" (40)

where

X 0m +1,n +1(t'm, n +1+H.c

a [(~() +(,.+)+(~)),.+)

(32) in a representation where y~ is diagonal, and e=ph/4.
The energies of the modes are given by the eigenvalues t
of T,

(41)

where
—(A)) +) „—(A() „]. tan (cob/2) =4e +tan (pk/2) . (42)

Equation (32) has vanishing vacuum expectation value be-
cause the Dirac equation implies that

Hence the trace on Dirac indices in (32) vanishes and (31)
is an acceptable conserved current. '

The axial-vector current is defined by

Note that (42) is just the dispersion relation found in
Ref. 3.

Here we are interested in the simple case e =p =0; then
r

e 0
ip ~ a)= pk/~— (43)

0 e k

In terms of the eigenvectors of T,

= —ei'"(J„) (34)

where e('"= —e"", e '=1. The lattice divergence of (34)
differs from (32) by the replacement

U(+)
i0 7

( —)
0

v

the free Dirac field has the expansion

0m +1,n + (km, n + 1~fm + 1,n + 1 YSdm, n + 1 (35)
M

&k~(e ~&k+ (+ ) (+ ) + ~&k „(—) ( —))
k=1

(45)

Thus, Eq. (33) implies a nonzero value for the vacuum ex-
pectation value of the lattice divergence of (34). The
canonical anticommutation relations imply that" '

Since

(46)

[see Eq. (49)]. Thus (32) and (35) yield the axial anomaly
we infer from the canonical anticommutation relations of
g „ that

( "B„J~5") „=—e M sin— (37)
(+) (+)f[ak ak ]+= 4k .

Mh
(47)

iPkm
4mn= &ne, (38)

This formula, which is the main result of this paper, rap-
idly approaches the continuum result (22) as M, the num-
ber of lattice sites in the space direction, approaches ~.
The M=2 result, co=2 '~ e, is in error by only 25%%uo.

'

To prove (36) we work in momentum space. At the nth
time step let

For definiteness let us suppose that M is even; from (13)
we see that (ti „satisfies antiperiodic boundary condi-
tions. Then the physical interpretation of ak-', ak

—' as
creation and annihilation operators is as follows:

M m ~(M —1)for 0&k & —1 &pk &
2 M M

sPk m
m, n +1=&n +le

where the free Dirac equation implies that

&
pg + ( = T&

pg

with

(39)

where 1&k &M and pk =2nk/M if g satisfies periodic
spatial boundary conditions and pk=(2k +1)m/M if p
satisfies antiperiodic spatial boundary conditions. Then

ak ~0)=ak ~0)=0;

P

M m(M —1)for — (k ~0 — &pk &—
2 M M

We easily conclude that, for m&m',

(48)
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f5
( 0ttt, tt Pm, tt )

M/2 —1

X — X
k=0 k= —M/2

e i~(2k +1)(m —m')/~

(49)

lVg
( 1 itr(m —m')

)
1

sin[a(m —m ') /I]

5P „=iey56QQ (50)

Just as in the continuum this implies that the lattice chiral
current is conserved, but only to zeroth order in pou3ers of

Since the interaction is not simply linear in 3&, the
nongauged chiral current is not conserved in first order.
This is, of course, the same reason that point separation
breaks chiral symmetry in the continuum.

Equation (36) and the axial anomaly (37) follow immedi-
ately.

Finally, we explain how our method breaks chiral sym-
metry. Certainly, the free massless Dirac equation (8) is
invariant not only under the global transformation (9), but
under the global chiral transformation
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