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SU(N) XSU(N) chiral models on asymmetric lattices with standard and improved actions
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Using the background-field method we determine the relation between A parameters of symmetric

and asymmetric lattices for SU(N) &(SU(N) two-dimensional chiral models. We also evaluate the
derivatives of the couplings with respect to the asymmetry factor which are useful in finite-

temperature calculations. We consider the standard and the improved (Symanzik) actions.

I. INTRODUCTION

It is well known that there exist many similarities be-
tween SU(N) lattice gauge theories in four dimensions
and SU(N) &&SU(N) chiral models in two dimensions. '

Since these chiral models are mathematically simple while
retaining the basic features of gauge theories, it is
worthwhile to study them in detail.

The similarities between these models have been exten-
sively discussed in the literature. The most relevant ones
are the following:

(a) Both are matrix non-Abelian models with asymptot-
ic freedom. The chiral (gauge) model is expected to be
disordered (confined) for any nonzero value of the cou-
pling constant.

(b) The lattice phase diagrams are very similar. For ex-
ample, when the matrices are in the fundamental repre-
sentation a sharp crossover from strong to weak coupling
is observed in Monte Carlo simulations. " Furthermore, a
mixed fundamental-adjoint theory has a phase diagram
qualitatively equivalent to the mixed gauge model. '

(c) The high-temperature character expansion as well as
the lattice Schwinger-Dyson equations are very similar.

(d) The one-dimensional chiral and the two-dimensional
gauge models are identical and exactly soluble.

Perhaps the main difference is that the chiral (two-
dimensional} model has no instantons in contrast to the
gauge theory. These interesting facts have motivated a
great amount of work on the subject.

In this paper we evaluate in the chiral two-dimensional
model the ratio between A parameters for asymmetric and
symmetric' (Euclidean) lattice using standard and im-
proved (Symanzik) actions. This calculation is useful for
Hamiltonian (time continuous) and finite-temperature for-
mulations, and it is also an interesting exercise in lattice
theories. It has been previously performed for pure lattice
gauge theories ' and with the inclusion of fermions. ' '"

As was remarked in Ref. 12, for the evaluation of ther-
modynamical quantities it is necessary to know the varia-
tions of the spatial (g, ) and temporal (g, ) couplings with
the asymmetry factor /=a, /a, (a& is the lattice spacing
in the p direction). These quantities are evaluated in this
paper.

For the standard action with group SU(N) we obtain

1/2

f(g)—
2

where

1 1f(g) = arctan —+—arctan( g'),

and

dgs =0.042 6N —0.045 4/N,

de 0.002 8N +0.0454/N .
/= 1

(2b)

II. RENORMALIZATION-GROUP ANALYSIS

The standard chiral SU(N) XSU(N) model is defined
in an asymmetric lattice by the action

S= —p, g tr[U(x)Ut(x+1) —1+H.c.]

—p, g tr[U(x)Ut(x+s) —1+H.c.], (3)

where U(x) are spin SU(N) variables localized on the
sites x of a rectangular two-dimensional lattice. p, and p,
are independent coupling constants introduced in order to
keep physics unchanged under independent variations of
the spatial and time lattice spacings. This action is invari-

From Eqs. (2a} and (2b) we verify a "sum rule" derived
from the invariance of physical magnitudes under a
change of g (Ref. 9). The results for the improved action
involve numerical integrations and they are given in Sec.
IV.

The organization of the paper is as follows. In Sec. II
we review the basic features of renormalization in lattice
gauge theories applied to the calculation of A ratios in
different renormalization schemes. Section III is devoted
to the specific calculation with the standard action while
in Sec. IV we work with an improved action.
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ant'under the global transformation

U(x)~ U) U(x) Uz [U), U2 H SU(X)] .

The couplings P„P, may be parametrized as

g, '(a, g)' '
g, (a,g)

'

(4)

where g~ ——g, . g, is the only coupling present near the
continuum limit.

As in Eq. (8) a renormalization-group equation can be
developed for g~,

gg (a, g)=Po In(1/aAg ), (12)

and the ratio between A parameters is given by

where the asymmetry factor g is introduced in order to re-
cover the classical action in the continuum limit.

In the symmetric Euclidean case (/= 1) the bare cou-
pling constant gz is a function of the cutoff (1/a) given
by the renormalization-group equation'

—P ~f3
aAz —(Pogz )

' ' exp( —1/Pogz ), (6)

where Po, P& are the first two coefficients of the Callan-
Symanzik function

2
dgE 4

Pogz +Iaigz +
da

(7)

For our purposes it will be enough to keep the lowest
order, i.e.,

gz (a)=Poln(1/aAz) .

It has been shown'" that for chiral models 13o N/8n. ——
This coefficient is independent of the renormalization
scheme and it can be used both for the symmetric and
asymmetric cases. The AE parameter arises as an integra-
tion constant in Eq. (7) and it is the only dimensional
magnitude of the theory. Then every dimensional physi-
cal quantity must be proportional to a certain power of
AE. As an example, the mass gap is given by

I =EEAE,L L

where Kz can be obtained by lattice calculations (Monte
Carlo simulations or strong-coupling expansions). In gen-
eral we are interested in a continuum theory where

1 1 1
A~ /Az ——exp

Po gz gg
(13)

In order to evaluate Eq. (13) the background-field
method is used' in Secs. III and IV where it is proved
that the renormalized coupling constants may be written
as a function of the bare couplings as

1 1
, +C,(g),

g g~

1 1
, +C,(g),

gS g gS

or recalling the definition of gg,
C~(k)+ C.(k).+'

gg 2

(14a)

(14b)

(14c)

1 1

2
— 2+CE .

gE g gE
(14d)

From the invariance of the renormalized coupling con-
stant it follows that

1 1
2 2

=CE—
gE

C, +C,
2

(15)

It has been proved' that this one-loop calculation is
enough for an exact evaluation of the A quotient.

For the symmetric lattice a similar relation may be
found,

g PV~PV (9b)
So, replacing Eq. (15) in Eq. (13) we finally get (drop-

ping the subscript L),

1+0 (gz'), (10)

so Eq. (3) may be written as

S=—
z g tgtr[U(x)U (x+t) 1+H.c.]—1

x

+g
' tr[ U(x) U (x +s)—1+H. c.]J,

. (K,A in the Pauli-Villars renormalization scheme,
for example). Knowing Az/A and Kz from the lattice,
we obtain E

For chiral models the relation Az/A has been
evaluated for symmetric lattices with standard and im-

proved actions. ' In this paper the relation Af/Az is cal-
culated for both these actions (A~ is the scale parameter
corresponding to an asymmetric lattice).

It will be shown that in the weak-coupling region

A~/Az ——exp
1

[2Cz —C)(g) —C,(g)]
0

where C, (g) and C, (g) can be evaluated in a weak-
coupling expansion. This is the object of Secs. III and IV.

III. STANDARD ACTION

P(x)=P (x)A, (a= 1, . . . , X —1) .

The iF matrices satisfy

(18)

In order to carry out the calculation indicated in Sec. II
for the standard action we follow closely Ref. 3. The spin
variables U(x) are parametrized as

U(x) = e ~ U"(x), (17)

where U"(x) solves the classical equation of motion and
P(x) is the quantum field given by
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[X,A,&]=if »gi',

tr(A, A.~)=
2

U"(x) is parametrized as follows:

U"(x)U "(x+p) =e

(19a)

(19b)

y 2

&S;„,'&= —(a,a, ) g " A„(l),
x,p, P

where

Aq(n) = f [dk]

(26b)

(26c)

where F„(x) is the background field and p, =t or s. In
fact we do not need to give an explicit expression for
U"(x)

The first step is by now quite standard. We must ex-
pand U(x) up to order (g~,F& ), assume periodic boun-
dary conditions, and choose a background field varying
slowly in distances of the order of a lattice spacing, i.e.,

i
&„+(x) i «+„(x) (V =lattice difference operator) .

and
m/a m/a~ d zk

dk (26d)

In the evaluation of Eq. (26b) we use the slowly varying
properties of the background field and we generalize the
demonstration given in Ref. 3 that an integral with two
propagators may be written as a A&(n) one,

The integrals Eq. (26c) admit a closed form

Recalling Eq. (10) the action may be written as

~ =~ci+~f'ree+~lnt ~

(21)

(22a)

A, (0)—A, (1)= arctang',1

A, (0)—A, (1)=~ arctan(1/g),

(27a)

(27b)

a,a,

agan

2
xp gjM p

ya

x,p P

(22b)

(22c)

1

4X Qp
(+~r )' . (22d)

f »p (x+IJ)QP(„)
x,p ap

A&(0)= In[64/m a, (1+/ )]+O(m az) . (27c)

2
exp 1—+2

——f (g)
. 2

From Eqs. (26a), and (26b) we can read the one-loop
corrections to the bare coupling constants. Recalling Eqs.
(14)—(16) the A ratio may easily be obtained,

Now the one-loop calculation can easily be performed.
The partition function of the model is given by

where

f(g) =g arctan —+—arctan(g') .
1 1

(28)

Z=e "II f dpe '
1 —S;„,+

2

1-&S- &+ '2 + (23)

In the evaluation of Eq. (23) we must consider the formu-
la

&y (k)y~(k')&=& p5 X '(k)(a, a, )-', (24)

where P (k) is the Fourier transform of the quantum field
Eq. (18) and X(k) is the propagator deduced from Sr„„

k~a~r(k)= g, sin' " " +m'. (25)
a~

The mass term is introduced as a regularization parameter
which prevents infrared divergences.

The results are

Note that in the limit g—+ oo we recover the result of Ref.
3 for the Hamiltonian version of the model. Note also
that Eq. (28) gives a small change of scale between the
symmetric and asymmetric lattices for any %.

As was remarked in Sec. I the evaluation of the deriva-
tives of the coupling Eqs. (14a) and (14b) with respect to g
at the symmetric point are very important in finite-
terl]Lperature calculations. In the present case they are
given by

dgs =0.042 6N —0.045 4/%, (29a)

dg~ = —0.002 8&+0.045 4/% .
g'=1

(29b)

An interesting fact that can be deduced from Eq. (29) is
that the following sum rule holds:1—

&S;„,&= — (a,a, ) g —" [A„(0)—A„(1)], dg~ dgs

g=i
=Pa (30)

(26a) This rule is a consequence of the invariance of physical
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magnitudes under changes of g in the weak-coupling lim-
it. In Ref. 9 it was derived for gauge theories using the
string tension. In the chiral models the demonstration is
analogous but deals 'with the mass gap. Equation (30) is a
good test for the calculation of this section.

For completeness we give the A relation between the
Pauli-Villars scheme and the Euclidean lattice taken from
Ref. 3,

Ag /AE

1.0

A /AE ——v 32 exp[a(N —2)/2N ] . (31)
0.5

IV. IMPROVED ACTION

Recently some improved lattice actions have been pro-
posed in order to reduce the effects of finite-lattice spac-
ing near the continuum limit. The Symanzik method con-
sists in the addition to the standard action of irrelevant
terms which eliminate O(a ) corrections to the Green's
functions in perturbation theory. The method has been
applied to the chiral models' ' with N=3 showing that
the introduction of next-to-nearest-neighbor interactions
satisfies the above quoted ideas.

The action for the asymmetric lattice improved at the
tree level is

S = — g tr[U(x)U (x+t) 1+H.c.]-C

g~ x

0.25 0.5
I

0.75 1.0

asa F~~
S;„,= ' g f ~r Cp (x+p)p~(x)

X,P ap

Fp~+2DP (x +2@)P~(x)
ap

FIG. 1. The ratio A~/AE for the standard and improved ac-
tions with N=2 and (x).

g
—1C

2 g tr[U(x)U"(x+s) —1+H.c.]
gs x

g tr[U(x)U (x+2t) 1+H—.c.]
g~ x

C " (Fr)
4N a„

+4D " (Fr )'
ap

(33c)

—1D
g tr [U (x ) U "(x +2s )—1+H. c.],

gs x
(32)

(33a)2
gp P

V~/

Qp

X,P

s t

XsP

(33b)
ap

4 1with C= —and D= ——.
3 12 '

The relative coefficients have been chosen such that the
propagator has no O(a ) corrections. ' Although a one-
loop improved action for the symmetric case is known'
we only need to consider the tree-level version for a A-
relation calculation. '

Expanding Eq. (32) as in Sec. III we obtain
T

aa, (C+4D) F„

& (k)= g (4C+16D)sin1 k a

p ap 2

k a—I6D sin
2

(35)

which has no O (a ) corrections in the weak-coupling lim-
it.

The evaluation of (S;„,), (S;„,) closely follows Sec.
III. We obtain

where 7',„P (x)=P (x+2@) P(x). —
In deriving Eq. (33) we used the slowly varying proper-

ties of F&(x) in the approximation

U"(x)Ut"(x +2p) = exp[i 2F&(x)] . (34)

The improved propagator derived from Eq. (33b) is

and

(S;„,) = — (a,a, ) g " IC[8„(0)—B„(1)]+4D[8„(0)—B„(2)]I(N —1) Fp
4N „Qp (36a)

(S;„, ) =—(a,a, ) g " IC [D„(0)—D„(2)]+4D [D„(0)—D&(4)]I,
xp J ap

(36b)



31 SU(X) XSU(X) CHIRAL MODELS ON ASYMMETRIC. . . 381

and

8„(n)= f [dk] X'(k)
(36c)

(36d)

In the limit /= 1 we recover the results of Ref. 15.
From Eqs. (36a) and (36b) we determine easily the A relation between symmetric and asymmetric lattices with the im-

proved action

A~/AE ——expE I 1

2R p=f, s

X —1
I C[8„(0)—8„(1)]+4D[8„(0)—8„(2)]—C[E„(0) E„(1)]—

—4D[Ep(0) —Ep(2)] I

IC [Dp(0) —Dp(2)]+4D [Dp(0) Dp(4)] —C—[F~(0)—Fp(2)]
4ap

4D2[F —(0)—F (4)]I (37)

where E&(n)[F&(n)] is equal to 8&(n)[D&(n)] with g= l.
The integrals must be evaluated numerically taking care

of the divergences by means of the change of variables'
k,a, =x, and k,a, =x, /g which is valid only when one is
evaluating convergent differences of integrals between the
symmetric and asymmetric cases. In Fig. 1, Eq. (37) is
plotted as a function of 1/g for N=2 and oo.

In the Hamiltonian limit g'~ ao we get

A~/As ——exp( —1.3504—0.5584/N ) . (38)

The change in scale between Euclidean and Hamiltoni-
an formulations with improved action is higher than that
in the standard case.

The derivatives of the couplings with respect to g at the
symmetric g= 1 point are

With the improved action, a sum rule like that of Eq.
(30) cannot be derived following the steps of Ref. 9.

We also give the relation between A parameters for the
standard and improved actions, taken from Ref. 15,

& —1
AE/AE ——exp 2.003

2N
—0.2044 (40)

Finally, we remark that it would be very interesting to
study chiral models at finite temperature analyzing the
similarities with gauge theories. Also, an evaluation of
the strong-coupling series with the improved action for
physical magnitudes like the mass gap would show if the
scaling properties improve as expected. Another interest-
ing aspect is the introduction in the action of representa-
tions other than the fundamental one. Work is in
progress in these directions.

dgg =0.0367N+0. 038 3/N,

=0.038 4N —0.038 3/N .

(39a)

(39b)
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