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Axial-gauge formulation of a three-dimensional field theory
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Since the non-Abelian version of a recently formulated gauge theory in two spatial dimensions
gives rise to a nonlinear constraint upon, the fields in the radiation-gauge approach, one is motivated
to attempt a description in terms of the axial gauge. This is accomplished in the Abelian version of
the modkl, with results similar to those encountered in the radiation gauge. The non-Abelian case is
then formally solved in the same gauge, it being subsequently shown, however, that the theory is not
covariant. It is argued on the basis of perturbation theory that such noncovariance is a real effect
which is not readily circumvented by modification of the field transformation properties.

I. INTRODUCTION

The impact of gauge theories upon the development of
particle physics in recent years would be difficult to over-
state. Yet progress in fully exploiting the gauge concept
has been limited except at the more phenomenological lev-
els by the mathematical complexities of such theories.
This situation makes the development of either soluble or
simplified models particularly welcome despite the fact
that these are frequently constructed in other than four-
dimensional space-times. One such effort in a world of
two spatial dimensions that has recently been advanced' is
based upon the Lagrangian

~=
2 0"&, d 0 +g4"J,+~'

where j& is a conserved current constructed out of fields
contained in W'. In Ref. 1 it was shown that (1) describes
a theory which is unusual in many respects, including, in
particular, the following.

(a) Although (1) is invariant (up to divergence) under
gauge transformations, it does not imply a gauge particle
(i.e., a photon). This follows from the fact that in the ra-
diation gauge

c);P;=0, i =1,2
the fields Q can be explicitly evaluated in terms of the
current j& as

Q;(x) = —ge~181 I d x'9'(x —x')jo(x')

and

p (x)=g I d x' j (x') )& V '&(x —x'),
where

,
—V W(x) =5(x) .

Thus the system described by (1) may be said to be one in
which a spatially nonlocal current-current interaction has
disguised itself as a gauge-field coupling. The absence of
a photon may be particularly useful in applications where
it is helpful to be able to neglect radiation losses in a
rigorous way.

(b) Although the theory described by (1) has been shown
to be covariant, it was found that the charge-bearing field
has an anomaly in its spatial rotation properties. Stated
slightly differently the commutator of that field with the
(single) angular momentum operator includes a term
which depends upon the coupling constant g.

(c) A bound state was found to develop in the propaga-
tor of the P& field for small g in the case of a coupling to
a spinor field for the appropriate sign of the spinor mass.
This result depends crucially on space being two-
dimensional, but is a rigorous result for arbitrarily small

It is clear from these results that there is much content
in this theory. One issue, in particular, which immediate-
ly presents itself is the matter of the non-Abelian version
of (1). This is formally accomplished by allowing P", to
transform as the adjoint representation of some unspeci-
fied non-Abelian group and replacing (1) by

~= z W&t vad 4'" g4"&pvat'—0a—0"+g4J„,6

where t' are a set of imaginary matrices which comprise
the structure constants of the group and j," is a current
operator which need not be specified for now. The equa-
tion for P" thus becomes

~pvad Pa+ t 2 g+pva4 tat +gjp

which for the p =0 component reads

—V X p, i 2 g p X t, p =gj—, .

In the Abelian case (4) could readily be solved in the radi-
ation gauge to yield (2), but in the present application one
is confronted with the necessity of solving a nonlinear
constraint for the fields P';(x). There exists, however, a
straightforward approach which can avoid this difficulty,
namely, the use of the axial gauge as defined by the condi-
tion

n $, =0,
where n is a unit two-vector, i.e.,

n 2
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This freedom is consequently used to fix (6) as the unique
gauge choice.

The spatial components of the field equations can be
resolved into two scalar equations by taking projections
parallel and perpendicular to the vector n. The latter
yields

or

p (x)=g I d x'd„(x —x')n X j (x')+g(n X x,x ) .

(9)

It is evident that (5) effectively reduces p; to a single- ities as there yet remains the class of transformations
component vector in the two-dimensional space, thereby
trivializing the cross product of P'; with itself and making + + +
(4) a linear equation for the nonvanishing component
n X p, . On the other hand, since the earlier treatment of
the Abelian model was based on the radiation gauge, it is
not immediately clear that there exists a consistent opera-
tor formulation in the axial gauge. Because of this the
task of extending the work of Ref. 1 to the axial gauge
will first be considered. Having once derived and verified
the consistency of the results it is relatively straightfor- —n. VQ =gnX j
ward to extend it to the non-Abelian case. The resulting
operator formalism is found, however, to fail the test of
covariance, a result which is reinforced by perturbative
calculations.

II. THE ABELIAN AXIAL GAUGE

The axial-gauge condition evidently allows the replace-
ment of P; by the combination

n;n—

which, because of the two-dimensional identity

5jJ 1ljllJ +Fg E&I1lk7f/

is equivalent to the combination

e n—nX"Q.
&J J

Thus the equation

—VX P=gj'
for the Abe1ian case easily reduces to

—n V(nXP)=gj
with the solution

The former implies after using (9) that

n X Vg(nX x,x )=—[n j (x n= oo)
2

+n j (x'n= —(g) )]

or

g(nXx, x )

d n)&x'e n)& x —x
4

X[n j(x n=oo)+n j(x.n= —oo)] .

Despite the apparent ease with which the operator g has
entered the operator formalism, one finds that it is neces-
sary for consistency (i.e., in order that the Hamiltonian
generate time displacements) that /=0 and thus that

n X P(x) =g f d x'd„(x —x')j (x'), (6) n j (x n= oo)+n j (x n= —oo)=0. (10)

where d„satisfies the equation

—n ~ Vd„(x)=5(x) .

A solution of (7) is given by

d„(x)=——,
' e(x n)5(n Xx),

where

(7)

The validity of (10) must then be ascertained by reference
to the solution of the model as holding for all matrix ele-
ments.

One now proceeds to the verification of the consistency
of the theory with regard to the existence of a suitable set
of Poincare-group generators. For the case of a coupling
to a Hermitian spinor field as implied, for example, by the
Lagrangian

e(x) =

Although one could in principle modify (8) by adding a
constant to the alternating function, there are at least two
good reasons for not doing so. One is the fact that such a
term would violate the symmetry of (7) and (8) under the
reflection n~ —n. Second, and more to the point, is the
observation that in the Abelian case it is not needed, while
in the non-Abelian case it fails to solve the covariance
problem.

Additional arbitrariness in the expression for P;(x)
arises from the fact that one can add to solution (6) a
function of n & x and x . However, the axial-gauge con-
dition n. P =0 has not exhausted all gauge-fixing possibil-

where

and q is a charge matrix, the relevant components of the
conserved symmetric energy-momentum tensor are

and

7 Ok ~

y(gk &g yk)y q[&k ~l]g q
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All definitions and conventions concerning the Dirac ma-
trices are identical to those of Ref. 1.

With the Poincare generators defined by

P"= f d'xT",
Jwv f dzx(xvTov xvTow)

the transformation properties of the fields can be deter-
mined. One readily establishes that the Hamiltonian I'
satisfies

is consistent. This is made particularly clear by the
demonstration that the operators (11) and (12) satisfy the
Dirac-Schwinger covariance condition

i—[T (x), T (x')]

Since the proof of (14) is tedious but not particularly il-
luminating, the calculation will not be presented here. In-
stead, attention will now be directed to the principal
motivation of this paper, namely, the non-Abelian version
of the model.

and consequently that I' generates time displacements
for all operators of the theory. Equally straightforward is
the result

[P"0]=& ~k4

The commutator of P" with P" is of the same form pro-
vided that (10) is generalized to

III. EXTENSION TO THE NON-ABELIAN CASE

The discussion subsequent to Eq. (4) has already indi-
cated that the axial-gauge choice has the property of
linearizing (4). Thus one needs only to solve the equation

where j,"is formally defined by
j"(x n= oo)+j"(x n= —oo)=0. (10')

The boost operators E;=J ' have the property of in-
ducing operator gauge transformations upon the gauge
fields as displayed by the results

[IC;,f(x}]=i(x 8' —x'8 )f(x)+ a;f(x)—

+gqn; A(x)f(x)

and

[K;,$~(x)]=i (xone' —x'ao)y~(x) —i [g~'y'(x) —g 'y'(x)]

—i 8"n;A(x),

where

A(x) = g f d'x'd„(x —x') n ( x —x ') n X j (x')

and the condition

[J,g(x)] =i (x && V')1((x)+ —
Ekl [a",u ]f(x)

8

+g f d x'd„(x —x')n (x —x')j (x') (13)

which displays the anomaly shown in Ref. 1 to be charac-
teristic of the spatial rotations of the charge-bearing field.
Although the radiation-gauge result displayed there is
considerably simpler than that of Eq. (13), the presence of
a rotational anomaly is seen to be quite generally charac-
teristic of the model.

The specific conclusion which one achieves as a result
of these considerations is that the ax'ial-gauge formulation

j n(x. n= oo) —j n(x n= —.oo)=0

must be imposed. Finally, turning to J= —,
'

ekIJ ' one ob
tains

and the matrices T, are required to provide a representa-
tion of the relevant symmetry group. Following essential-
ly the same sequence of steps as in the Abelian case one
arrives at the result

=g f d x da(x —x )Ja(x ) .

Similarly, upon decomposing the equation

~iva~ 0a +ig&iva0 a0 +gJa

into components parallel to and perpendicular to n there
follows

P, =g f d x'd„(x —x')n)& j, ,

provided that

n J, ( n x = oo ) + n. J, ( n x = —oo ) =0,
where

Ja =Ja+'&k0 raWk—
and the internal-symmetry index of Pa has been
suppressed whenever it is summed.

One is now confronted with the task of demonstrating
the covariance of the non-Abelian formulation. Although .

the use of (11) and (12) with appropriate matrix replace-
ments leads to an admissible set of operators P", it is not
possible to establish Poincare invariance. The crucial
point here is the fact that in examining the commutator of
T (x) with T (x'},there occur terms from

[gj."(x)4k(x»gJ&x')4i(x') 1

which do not conform to the Dirac-Schwinger condition
(14). Since the commutator (15) is proportional to g it is
apparent that it cannot be canceled by any of the other
terms in the energy-density commutator.

Direct calculation leads to the result that (15) has the
form
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g~ I d x"t,~j, (x")InX j ~(x)nX Jb(x )[,d„(x —x )a(&(x —x )+de(x x )dn(x

+n X j &(x')n X j,(x)[—,'d„(x —x")d„(x'—x")+d.(x' —x")d.(x' —x)]J .

By means of the identity

[—,
' d„(x —x")d„(x'—x")+d„(x—x")d„(x—x')]= —,

' d„(x —x')[&„(x—x")+d,(x' —x")]

+ —,
' 5(n X x —x '))5(n X ( x —x "))

it is readily shown that the commutator (15) can be rewritten as

—,g I d x"j,(x")t,d, InX j,(x),nX jb(x')I5(nX(x x—'))5(nX(x —x")) .

Since this term gives a nonvanishing contribution to the
commutator of the I.orentz boost with the Hamiltonian,
one is led to the conclusion that the axial gauge is not a
truly covariant approach to the non-Abelian version of
the model.

There does exist an escape from this conclusion, howev-
er, if an allowance is made for the possibility of modify-
ing the energy density by the inclusion of one or more ad-
ditional terms. Such terms must, of course, consist of to-
tal divergences if the Hamiltonian and equations of
motion are to be preserved. (A modification of this type
was used by Schwinger to demonstrate covariance of the
standard non-Abelian gauge theory in the radiation
gauge. ) In the following section, however, it is argued on
the basis of perturbation theory that the noncovariance of
the operator formalism is a real effect which appears in
fourth order in the coupling constant g.

IV. PERTURBATIVE RESULTS

As has been seen, the formal operator structure of the
non-Abelian model in the radiation gauge has not been
successfully reconciled with the requirements of I.orentz
invariance. One could in principle search for a modifica-
tion of the energy-density operator (as in Ref. 2) which
would have the structure of a two-dimensional divergence
and thus alter the Lorentz transformation properties while
leaving intact the Hamiltonian equations of motion. In
this section the unlike1ihood of such a discovery is argued
on the basis of a demonstration that such formal tinkering
cannot be a solution of the covariance problem unless
there also occurs a modification of the Feynman rules.

The approach to be used here is based on a specializa-
tion of the internal invariance group to the case of U(N)
in the large-X limit. This technique has been recognized
for some time as being useful in suppressing many dia-
grams in the large-X limit provided that the combination
g N remains finite. Furthermore, since the axial gauge
has the property that there are no three-boson vertices,
one has the result that through order g"X one has only
to consider the same diagrams which characterize the
conventional two-dimensional non-Abelian model. The
g N and g N contributions to the fermion propagator
are shown in Fig. j..

Since the covariance-breaking terms are of order g, it
is anticipated that a calculation of the diagram in Fig. 1(a)
will be compatible with Poincare invariance while Fig.

yp+M =e'~r x "(m +yp)e'~r ~" (18)

with m being a covariant function of p and a being arbi-
trary. It is readily established that

m =mo+ (A —m)g %
4m

FIG. 1. (a} Second-order contribution to M. {b) Fourth-order
contribution to M.

1(b) will not. To this end one calculates the mass operator
to second order using

M' '=ma ig N—f y„y S~ (k),(2~)3 "m +y(p —k)

(16)
where

& ""(k)= d'"~n—~(nk)
This leads by direct calculation to the result

2+
(A —~)

Zm
2

[(p.n) —impy X n] tan ' ", (17)
277 Pl

where the linear divergence of (16) has led to the appear-
ance of the Pauli-Villars cutoff A. Because of the appear-
ance of the vector n, it is not clear by inspection of (17)
whether it is compatible with relativity. As is pointed out
in Ref. 3 and in more detail elsewhere, however, one ex-
pects a modification of the fermion propagator in the
form of terms which are not manifestly covariant What.
this means is that in the present case Lorentz invariance is
established if (17) can be brought to the form
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and

a =i tan
. g &p. n
4~' m

One is thus forced to conclude that the standard Feynman
rules lead to a noncovariant structure for the two-point
function which is totally consistent with the results of the
preceding section.

in complete conformity with the stated requirements on
these functions.

The corresponding calculation of Fig. 1(b) is made
more manageable by the recognition that since the fer-
mion bare mass plays no meaningful role, it is convenient
to set it to zero. This leads to the significantly simplified
result for the g N term:

2
g X 8 (2)
2m. Bm

ig N dk (p —k).ne(p n —k n)
4 (2m. )' "

( —k)'

which can be reduced to

4~2
i APy && ne(p n)'

8~

gN
y

d ~p. n —kn~
(2m) (p k) (k n)

The remaining integral is logarithmically ultraviolet
divergent and cannot be accommodated by the structure
(18) or the most general possible form:

yp +M =A (p) exp[a (p)Py && n+c(p)P

+Py b(p)](yp+~)

V. CONCLUDING REMARKS
I

It has been seen that tlie quantization of the model of
Ref. 1 can be carried out in the axial gauge. However, the
axial gauge (which was motivated primarily to enable one
to handle the complications of the non-Abelian case) has
not passed the crucial test of covariance in this latter case.
To set this remark in its proper perspective it should be
noted that similar difficulties have been found to charac-
terize the axial-gauge formulation of the usual Yang-Mills
theory.

On the other hand, the possibility of a radiation-gauge
formulation is not ruled out. Although the nonlinear con-
straints for the fields P& may not allow an explicit con-
struction of those fields, it could be possible to establish
covariance despite this notable shortcoming. In view of
the obvious desirability of having a non-Abelian model
which is presumably simpler than the standard one in
four dimensions, this question merits further investiga-
tion.
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