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Using microcanonical simulation techniques we study SO(3) gauge theory with dynamical quarks and con-
trast the results with quenched simulations. We measure the expectation value of the gauge action, Qf,
and the Z2 monopole current density. We locate the first-order bulk transition in the quenched case by ex-
hibiting metastable states and find that the effect of the light dynamical fermions on the transition is simply
a shift in the critical coupling.

Studies of SU(2) lattice gauge theory have shown that the
weak-coupling region occurs for P=4/g~ ) 2.20 where ma-
trix elements such as the string tension scale according to
asymptotic freedom. ' The strong-coupling region occurs for
P & 1.90 where a few terms in the strong-coupling expan-
sion give good approximations to local matrix elements. In
the intermediate-coupling region 1.90 & P & 2.20 the theory
"crosses over" from strong- to weak-coupling behavior.
Some insight into the character of the crossover region has
been achieved by pursuing an idea of Polyakov, who sug-
gested the study of variant lattice actions of a given continu-
um theory. In particular, consider the two-dimensional
phase diagram of the model2

S = P g (1 —tr~ UUUU/2) +Pq g ( —trq UUUU/3), (1)

~here the first term is the standard single-plaquette action
and the second term has the trace taken in the adjoint
representation of the gauge group and describes the pure
SO(3) lattice theory. In the continuum limit Pq ~ the
pure SO(3) theory should be identical to the SU(2) theory
since they are based on the same Lie group. In the P-P&
plane one finds a phase structure for Eq. (1) similar to a
gas-liquid system in three dimensions as shown in Fig. 1.
The proximity of the end point of the line of first-order
transitions to the Pq =0 line near P = 2.0 suggests an ex-
planation of the rapid crossover region in the pure SU(2)
theory. Apparently the critical end point of the line of
first-order transitions causes the correlation length of the
theory on the P~ =0 axis to grow rapidly for 1.90 & P
& 2.20. This crossover from a relatively disordered to an
ordered state can also be monitored with a local matrix ele-
ment, the density of monopole current loops. 3 Let 7i(p) be
the sign of the trace of the product of the four U matrices
around the plaquette p, 7i(p) =sgn[trU(t)p)]. Then define

a density of Z2 monopole currents

M=1 — q p (2)
pEQc

where the product goes over the plaquettes forming a 3-
cubic surface c. This and closely related quantities have
been discussed and interpreted in Refs. 3 and 4. M was
found to be discontinuous across the line of first-order tran-
sitions in Fig. 1. On the weak-coupling side of such a line it
proves to be considerably smaller than on the other, and
thus could be cited as an origin of disorder in the phase dia-
gram. Along the SO(3) axis in Fig. 1, for example, M
jumps discontinuously from a finite value on the strong-
coupling side of the first-order transition to an exponentially
small [exp( —constxP)] quantity on the other. Quantities
such as the action

Sg = Pg $ (1 —trg UUUU/3)

also jump discontinuously at the transition. The idea of
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FIG. 1. SO(3)-SU(2) phase diagram. The interior solid lines la-
bel first-order phase transitions.
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monopole currents has been developed beyond the simplest
operator Eq. (2) considered here. "Thick" monopole
currents have been introduced and have been related to the
appearance of asymptotic-freedom scaling laws in the con-
tinuum limits of lattice theories. 5 There is a strong belief
that thick monopole currents play a crucial role in the con-
fining properties of the continuum gauge theory. 5

In this paper we wish to study this crossover phenomenon
using microcanonical methods and then add light dynamical
fermions into the model to see how the crossover is altered.
There are several reasons why such studies should be done
at this time. The most important one concerns the appear-
ance of continuum behavior in lattice calculations. If the
lattice theory's crossover behavior from strong to weak cou-
pling is very abrupt, then continuum physics (asymptotic
freedom) may be pushed to very weak coupling. Since lat-
tice fermion algorithms are computationally slow, this fact
should be dealt with before one begins a massive simulation
of the mass spectrum of a gauge theory. In this paper we
will consider the SO(3) theory. Since the SO(3) transition
separating its strong- and weak-coupling regions is first or-
der, microcanonical simulations are particularly effective
here. Other studies have shown that the S-shaped curves
of the van der Waals theory of first-order transitions are ac-
cessible to microcanonical simulations. Suppose one simu-
lates a physical theory on a finite lattice using microcanoni-
cal methods in which the energy is fixed. Then one can
probe metastable states near a first-order transition more
clearly than in a canonical formulation because of the ab-
sence of the latter's heat bath which allows rnetastable states
to rapidly decay. In a microcanonical simulation the meta-
stable states can decay only if the system phase separates.
But the large surface-to-volume ratio encountered on small
lattices inhibits this mechanism and leads to clear mul-
tivalued thermodynamic quantities when plotted as func-
tions of temperature.

The microcanonical equations for the SO(3) lattice theory
with dynamical fermions are the obvious modifications of
the microcanonica1 equations presented previously for
SU(2) and SU(3). Beginning with the SU(2) equations, one
replaces the standard gauge action term P trUUUU with
2P!trUUUU!2 to pass from SU(2) to SO(3), and one in-

cludes staggered Euclidean fermions in the adj oint
representation of the gauge group SU(2) by placing
Grassmann variables $; (i = 1, 2, 3) on sites. The fermion
contribution to the lattice action is

I

S~= g$"(n) 2 g (7In) (D„(n)@(n+p, )
N

We first simulate the quenched SO(3) model. We mea-
sured the gauge field action, (ITII]I) in the zero-mass limit,
and the monopole current density M on a 6 lattice. (QI]I)
was measured by conjugate gradient methods at each Is for
three masses of 0.10, 0.075, and 0.050 (in lattice units) and
the results were extrapolated to zero mass in the usual
fashion. The resulting curves are shown in Fig. 2. Very
clear S-shaped curves resulted for each observable, indicat-
ing a hard first-order transition in agreement with past stud-
ies. The multivalued (QQ) result is new and shows an in-
teresting correlation with the monopole current density.
Various authors have speculated that monopole condensa-
tion is an important mechanism which drives chiral-
symmetry breaking and our data support this view.

Next, light fermions of mass m =0.10 were included in
the dynamics and the simulation was repeated. Several
thousand (2000—5000) microcanonical time steps were tak-
en at each P value to measure observables with small sta-
tistical uncertainties (less than five percent in all cases). We
were searching for the possibility that light fermions
suppress the monopole current density and thereby weaken
or even remove the first-order transition separating the
weak- and strong-coupling regions. Since monopole
currents are suspected to lead to flux-tube formation in pure
gauge theories, and since dynamical quarks allow the flux
tubes to break via pair production, a characteristic change in
Fig. 2 was anticipated. To our surprise, Fig. 3 resulted,
showing that the only numerically significant result was the
shift of the curves of Fig. 2 to stronger coupling with little or
no change in shapes or amplitudes. The shift toward
stronger coupling was expected, since the dynamical fer-
mions screen the gauge field forces. It is surprising, howev-
er, that no other effects were found. In particular, the fer-
mion influence on the monopole current density was not
strong, when expressed in lattice units. This might be un-
derstood by realizing that the Z2 lattice monopoles mea-
sured here are ultraviolet-singular objects.

This study suggests that dynamical lattice fermions may
not produce smoother strong- to weak-coupling crossover
regions in lattice gauge theories. This point may be impor-
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where n labels sites, p, labels directions, D„(n) are the U
matrices in the adjoint representation, q„(n) are the phases
of staggered fermions, 7 and m is the bare fermion mass. As
in previous microcanonical simulations, the second-order
formalism is used in the (4+ 1)-dimensional microcanonical
Lagrangian and its real psuedofermion field P(n) is set to
zero on all odd lattice sites so the lattice theory simulates
two Dirac fermions in the continuum limit [species doubling
yields only two Dirac flavors because P(n) is real]. 8
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FIG. 2. The action S, (QQ), and M in the quenched SO(3)
theory on a 64 lattice. Circles label the action data, triangles the
monopole density, and squares the chiral condensate.
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tant to renormalization-group studies of the SU(3) lattice
theory with dynamical ferrnions. The very rapid crossover
from strong to weak coupling in the pure SU(3) gauge
theory may well survive the inclusion of light fermions and
may complicate the approach to the asymptotic scaling re-
gion. ' It would be particularly interesting to study that re-
gion of the phase diagram Fig. 1 near the end of the critical
line to confirm this point explicitly. This paper represents a
start toward that goal which will require considerable com-
puting power.
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FIG. 3. Same as Fig. 2 but two m =0.10 adjoint fermions are in-
cluded in the microcanonical dynamics. Several typical error bars
(statistical) are shown.
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