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The problem of a head-on collision between a spherically symmetric electric and magnetic charge is

reconsidered. The assumption of the equality of the electric and magnetic forces made earlier is abandoned
as it does not follow from the model. It is shown that the rotational angular momentum a charge acquires
is determined by the amount of the angular momentum which the charge removes from the field by virtue

of its extension. The interaction energy of each charge with the dipole it induces in the other charge is

equal to the rotational energy of the charge itself. This results in simple expressions for the effective poten-

tial, and the distance of closest approach as given by classical electrodynamics and nonrelativistic mechanics.
A mechanism is suggested for the transfer of the angular momentum from the field to the monopole.

I. INTRODUCTION II. TORQUE ON A SPHERICAL CHARGE

In an earlier paper, ' referred to here as I, we investigated
classically the problem of a head-on collision between an
electric and a magnetic charge, each of a finite radius and a
spherical charge distribution, to remove a long-standing dif-
ficulty with the conservation of the angular momentum.
Recent interest in magnetic monopoles, and the possible
far-reaching implications of their existence, ' prompted us
to reconsider this problem and report our new results which
correct, simplify, and generalize the results of I, and il-
luminate the exchange of angular momentum between par-
ticles and fields.

We consider the charges to move on the x axis from in-
finite separation with an initial velocity of approach vo, and
with the electric charge e on the left and the magnetic
charge g on the right. Initially, all the angular momentum
of the system is in the electromagnetic field and equals
(eg/c)x, where x is a unit vector pointing from e to g. As
the finite charges approach each other, the field angular
momentum L is decreased by an amount which is converted
into a rotational angular momentum l for the charges.

The electric charge induces in the magnetic charge an
electric dipole which repels the electric charge by a force
which is inversely proportional to the fifth power of their
separation. A similar repulsive force is obtained between
the magnetic charge and the magnetic dipole it induces in
the electric charge. It was assumed in I that these two repul-
sive magnetic and electric forces were equal, or inequivalently
the electric and magnetic interaction energies were equal. This
is an ad hoc assumption which cannot hold in general, and
can be looked upon, at best, as an external constraint on the
system. We shall here abandon this assumption, and con-
sider the torque one charge exerts on the other, and equate
the torque to the rate of change of the angular momentum
of the charge. In Sec. II the torque equation is derived. In
Sec. III it is shown that the rotational angular momentum of
the charge is determined by the amount of the field angular
momentum which the charge removes by virtue of its ex-
tension. This will render the angular momentum conserva-
tion of the system of field and charges self-evident. In Sec.
IV a simple but general expression is derived for the
minimum distance of closest approach, and a mechanism is
suggested for the transfer of the angular momentum from
the field to the monopole.
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which when used in (2.1) gives
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FIG. 1. Geometry of the model.

Figure 1 shows the geometry for the calculation of the
torque the magnetic charge exerts on the electric charge.
The center of the electric charge 0 is chosen as origin for a
spherical polar coordinate system. A is the center of the
magnetic charge at a distance x from 0 (and OA is taken as
the polar axis). An element of electric charge ep(r) d3r

centered at P (r, 8, @) and moving with velocity vx relative
to A experiences the Lorentz force e p d3r (v/c ) (g/s ) sinn
perpendicular to the plane of the paper. Here s =AP and p
is a spherical charge distribution normalized to unity and
p(r) =0 for r & R the radius of the sphere. By the sine law
sinn =r sinH/s. The only component of the torque I' which
survives is in the x direction and I = I x, where

I'= t 2mr p(r) dedr (2.1)40 c Jo s3

The (sing/s)3 integration is characteristic of this probem.
It is performed by a partial integration with respect to s,
since s ds =xr sin&de followed by an expansion of 1/s in
spherical harmonics which selects only the cos0 term. The
result is
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where the parameter X is defined in terms of the second
moment of the charge distribution by

pR
r p(r) d"r (2.4)

Since I = dl/dt, where 1 is the rotational angular momen-
tum of the sphere, and since v = —dx/dt, we see that 1= ix
and

IV. RESULTS
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C
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We assume that the electric spherical charge is rigid and
rotates with an angular frequency A. By the Biot-Savart law
or the vector-potential method, the magnetic field outside
the sphere is that of a dipole p, x, where

dl eg 2 d 1—= —zR—
dt c dt x2

With the initial condition l = 0, for x = ~, we have

(2.5)
and II = i/I, where I is the moment of inertia of the charge
about the x axis. If the mass density is mf (r), with f (r)
normalized to unity, we have

eg A. R
X
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I= JI r f(r)d r =2mb. 'R
3 0

By the above and Eq. (2.6),

(4.2)

It should be emphasized that the torque I is the same
whether the magnetic charge is a point charge or spherical
charge, as long as we assume that we deal with nonoverlap-
ping spheres, since B is the same at the 1ocation of the elec-
tric charge elements.

III. FIELD ANGULAR MOMENTUM
IN THE SPHERE

By spreading the electric charge over a sphere we wish to
show that the field angular momentum is decreased from its
value for a point charge by precisely the amount given on
the right-hand side of Eq. (2.6). The calculation is a gen-
eralization of the results of Sec. V of Ref. 5. In Fig. 1,
the electric field E is radial and has the magnitude

T

(e/r ) f p(r') d'r', 8 equals g/s in the AP direction, and
0

Ex B brings in a factor sinP, which equals (x/s) sin& by the
sine law. This together with the definition of the field an-
gular momentum element dL= (1/47rc)rx (Ex B) d3r, and
the observation that L is in the x direction gives

(3.1)

for the magnitude of the field angular momentum inside the
sphere. The angular integration is performed as in Sec. II
and the integral is reduced to

eg A. R
jX =
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(4.3)

Thus the magnetic moment p, does not equal (e/2mc)1 unless
the second moment of r with respect to the charge distribution is
the same as it is for the mass distribution 6.

For nonrelativistic velocities the magnetic field of p, at the
center of the magnetic charge is (2p, /x2)x, which leads to a
repulsive interaction potential energy given by
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The introduction of the subscripts e and g for the electric
and magnetic charges in the quantities I, X, A. ', m, p, f; R,
and I is essential to avoid any confusion. The rotational en-
ergy of the electric charge is E,'= i, /2I„which equals the
potential energy V~ g. Similarly the electric dipole pg in-

duced in g by e interacts with e by the repulsive potential

mg c A.g 4x
(4.5)

2Mvp'=2( V~ s+ V~, ) + —,Mve'g pg, e (4.6)

which also equals the rotational energy of the magnetic
charge. Thus the rotational energy of the system is equal to its
potential energy.

The energy conservation equation now simplifies to

R ' fr
L(R)=

& Jl p(r')d r' d(r ) (3.2)
where M is the reduced mass. The distance of closest ap-
proach xp is given by

which by a partial integration gives

L(R)= 'g ( —,
' —) )R2x .
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Outside the sphere, E is that of a point charge, and the
only reduction to L by the electric charge takes place inside
the space occupied by the charge and equals (eg/c)XR2/x2,
which according to Eq. (2.6) is acquired by the charge as a
rotational angular momentum. Thus, within the sphere
r & R, the total angular momentum is the same as that of a
point charge, with the fraction ~ —X in the field, and the

fraction P in the charge. For X = ~, which corresponds to a

uniform surface charge distribution, all the angular momen-
tum is in the charge. It should be evident also that L for all
space plus I for both charges is (eg/c)x.
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(4.8)

If Rs is assumed to be of order g /( 2c m)an2d msc2 —10'6
GeV, then R~ —10 26 cm for n —20 and g/mac —10

For Rg 0 or mg ~, xp is the same as is given by Eq.
(9) of I with n = n' = A. = A.

'
and eg/c =h/2.

As an application, let us consider the head-on collision of
a point charge particle (R, = 0) with a magnetic monopole
of the type currently discussed in the grand unification
theories. ' If in Eq. (4.7) we set Xs —Xs, and eg/c = nt/2,
where n is an integer, we obtain

~ &/2
n h

Xp Xg Rg
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cm, and if t/Mc —10 '2 cm, we obtain xo —10 cm—10 Rg. The point is that the repulsive x ' interaction
does not preclude the projectile from penetrating the outer
layers of the monopole. If the projectile should recede from
the monopole after reaching the distance of closest ap-
proach, then the angular momentum of Eq. (2.6) which was
acquired from the field by the monopole will be returned to
the field and nothing interesting happens except for the
prevention of the violation of the conservation of the angu-
lar momentum. If on the other hand the projectile is cap-

tured by one of the fields of the three unified interactions
(electroweak and strong), then the angular momentum ac-
quired by the monopole will remain in the monopole sys-
tem, and thus this model suggests a mechanism for exciting
the rotational states of the monopole.
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