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Exact gravitational field of a string
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The exact spacetime metric representing the exterior of a static cylindrically symmetric string is found,

The geometry is conical, with a deficit angle of 8m Gp, , where p, is the linear energy density of the string.

The results of Vilenkin, obtained using linearized gravity, are thus shown to be correct to all orders in Gp, .
Strings with Gp, ~

4 are found to collapse the exterior spacetime, resulting in dimensional reduction.

If gauge theories with spontaneous symmetry breaking
correctly describe elementary particle physics, then the
Universe may have undergone a number of phase transi-
tions since the big bang. ' Topological structures such as
vacuum domain walls, strings, and monopoles produced in
these phase transitions may possibly have survived to the
present day. ~ Cosmic strings seem to be of particular in-
terest, both as a possible "seed" for galaxy formation ' and
as a possible gravitational lens.

A string can be either infinite in length or a closed loop.
In either case, the string tension will generally cause it to
oscillate at velocities close to the speed of light, yielding an
asymmetric, highly dynamic structure whose gravitational
field cannot be easily calculated. Vilenkin has taken an im-
portant first step in studying the gravitational effects of
strings by calculating the gravitational field of a static,
cylindrically symmetric string in the linear approximation to
general relativity. He found that the spacetime exterior to a
string is conical in nature, with the deficit angle of the cone
equal to 8m@, , to first order in p, , where p, is the linear ener-
gy density (mass per unit length) of the string. '

The purpose of this paper is to extend the results of
Vilenkin's analysis to the full, exact theory of general rela-
tivity, i.e., to find the exact exterior spacetime metric of a
static, cylindrically symmetric string. There are two motiva-
tions for this work. The first is to reproduce Vilenkin's
first-order (in p, ) results with more rigor. Conical singulari-
ties in a spacetime are termed "removable" singularities,
and generally are removed so as to maximally extend the
spacetirne. In the case at hand, with a string present on the
z axis, we clearly do not want to remove the singularity en-
tirely, for to do so would remove the string as well. In or-
der to separate the true, physical string-induced conical defi-
cit angle from any spurious conical singularity which should
be removed by extending the spacetime, it is necessary to
match the exterior metric to an interior metric representing
the string. This cannot be done in the linear approximation,
as the approximation fails near the string. It is thus neces-
sary to study an exact solution to determine the exterior
geometry rigorously even at first order. The second motiva-
tion for this work is to determine the exterior geometry to
all orders in p, . While a standard grand unified theory has
p, —10, it is quite possible that values of p, much closer
to one will be of interest in future theories, possibly incor-
porating gravity in their unification scheme.

The string spacetime is assumed to be static and cylindri-
cally symmetric, with the string lying along the axis of sym-
metry. The most general static, cylindrically symmetric

T'=T* = —p (p& po) (2)

with all other components equal to zero.
The components of the Einstein tensor for the metric

given in Eq. (1) are easily found;9 the resulting Einstein
field equations are

G' = e 2(Q +Q +X ) = —87re

G~~=e "(v +v +P ) =0

Gvv= e 2"(v
vQ v+v pA. v+Q vA. q) =0

G;=e 2"(v pv+v v
—v vh. v+Q vv+Qv

+ IP pv v ij/ vX v) = 87rE

(3)

(4)

(6)

These nonlinear equations for the metric functions are
easily solved in the case of the uniform-density string. Con-
servation of stress-energy ( T ~ s= 0) yields.

(v p+ )I. v)E = 0

This implies, through Eq. (4), that v and X are constant,
and may be set equal to zero by an appropriate rescaling of
the coordinates t, p, z. Equation (5) is then satisfied au-
tomatically and Eqs. (3) and (6) become identical:

l// vv+ l/l v
= 87rE (8)

Equation (8) is easily solved by the substitution R =e&

metric has the form

ds = —e "dt + e ~dQ +e'"(dp + dz )

where v, Q, and A, are functions of p, and @= 0 and @= 2m

are identified.
The transverse dimensions of a string are of the order of

the Compton wavelength of the Higgs fields. Within the
classical theory of general relativity, it is then appropriate to
treat the string as a 5-functional source in its transverse
dimensions. In order to avoid any possible ambiguity aris-
ing from the use of a singular source, the string will instead
be chosen to have a uniform density, ~ ) 0, out to some
cylindrical radius po. The end results will prove to be in-
dependent of po, so that a "classical limit" may be taken by
reducing the string's transverse dimensions to zero, yielding
an unambiguous exact exterior metric for the string.

Following the arguments of Vilenkin, the stress-energy
tensor of the string is given by
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(g~~ = R') to yield

R = A cos(p/p~) + 8 sin(p/p~)

where

p, = (8n e)-'~' (10)

The metric on the axis will be flat (no cone singularity) if
A = 0, B= p+. The interior metric of a uniform-density
string is then

+dp +dz +p sin (p/p )d$

is 2mr~ cos(po/p~).
The concept of a mass per unit length for a cylindrically

symmetric source in general relativity is not unambiguously
defined (unlike the case of spherical symmetry). For a stat-
ic, cylindrically symmetric spacetime, a simple definition
which will be useful here is to simply integrate the energy
density e over the proper volume of the source (the string).
The mass per unit length (or linear energy density) is then

r 1

P PQ [ 28'
po

p, = J J ep, sin(p/p~) d$ dp =2~op, 2 1 —cos
0 Q p~

The exterior metric for the string spacetime must be a
static, cylindrically symmetric, vacuum solution of the Ein-
stein equations. The most general such solution was found
in 1917 by Levi-Civita. lo, ll

or, finally, using Eq. (10),

4p, = 1 —cos(po/p~)

(17)

(18)
ds2 &2mdT2+ I

—2m[r2m (dr2+ dz2) + g2r2dg2] (12)
Combining Eqs. (16) and (18), we find

where m and a are freely chosen constants. As pointed out
by Vilenkin, the string is Lorentz invariant in the z direc-
tion. Requiring the metric of Eq. (12) to be Lorentz invari-
ant in the z direction restricts the values of m in Eq. (12) to
just two: m =0 and m =2. The former value is a flat, possi-
bly conical (depending on the value of a) space; the latter
is more unusual. As r decreases, the circumference of a cir-
cle (r = constant) increases, diverging as r 0. As r be-
comes large, the circumference asymptotically approaches
zero and the spacetime becomes effectively three dimen-
sional.

Now that the interior and exterior metrics have been
found, they must be joined together along the surface of the
string at p = po, r = fo. Einstein's equations, reduced to a
set of junction conditions by Israel, ' require that the intrin-
sic metrics induced on the junction surface by the interior
and exterior metrics be identical (up to coordinate transfor-
mations), and that the discontinuity in the extrinsic curva-
ture of the surface be related to the stress-energy of the sur-
face (if any). Consider first the m=0 flat exterior case.
The intrinsic metrics can then be matched by requiring
t= T, z= Z, and (setting g&+~ =g~@)

1 't

aro= pepsin
po (13)
py

The extrinsic curvature tensor is defined by

+ ~ p +
K0 = —

e& e& n .
& (14)

where eI is an orthonormal triad lying in the junction sur-
face, and n is the unit outward-normal vector in the in-
terior ( —) or exterior (+) metric. Calculating the extrin-
sic curvature tensors and equating them to each other (so as
to have no surface stress-energy present), one obtains the
relation

a = cos(po/p+) (16)

The exterior metric of the string is then given by Eq. (12)
with m = 0, and a given by Eq. (16). The geometry is coni-
cal with a deficit angle of 8/=2m[1 —cos(po/p~)]. The
circumference of a circle with proper radius r = rl = constant

g2 p 2/(p 2+ r 2)

Combining this with the intrinsic metric constraint, Eq.
(13), to eliminate ro, yields

a =1—4p,

so that the conical deficit angle is

5@= 87r p, (20)

exactly as in Vilenkin's linearized analysis, but now exact
to all orders in p, .

The exact exterior metric is

ds = —dt +dz +dI' +(1—4p, ) I' d@ (21)

While Vilenkin's expression for the deficit angle is correct
to all orders, his value for g&~ is correct only to first order,
as would be expected in the linear approximation. Since the
exterior metric now depends only on p, , not po ol p+, the
string source may now be shrunk to a 5 function, 1etting

po 0 while holding po/pe, and hence p„constant. In this
way we avoid any semiclassical complications in dealing with
the classical gravitational field of the quantum Higg's fields
over Compton-wavelength dimensions.

Since the exterior metric given by Eq. (12) with m=0
and a given by Eq. (19) is exact to all orders in p, , we can
ask what happens for large values of p, (of order 1). As
p, ~, a 0, and the exterior becomes a cylinder of ra-

dius p~.'

ds = —dr2+ dp + dz + p (22)

For 2 ) p, ) 4, a match to a conical exterior is again possi-

ble, but now the cone closes as one moves away from the
string; the exterior coordinate r decreases away from the
string. There is now an exterior conical singularity a distance

R = p tan( —po/ps) (23)

from the surface of the string. As po/p~ ~/2, p
and R oo, and the spacetime becomes cylindrical [Eq.
(22)]. As po/p~ n, p, —,', and the string closes upon it-

self; no exterior is needed or possible. These matches with

p, ~ ~ are of little interest, since as the po 0 limit is tak-

en, the p (or r), $ two-space collapses, reducing to a point
(if p, & 4 ) or a line (if p, =

~ ).
It is also possible to join the uniform-density string interi-

or [Eq. (11)] with the m=2 vacuum metric. In this case
there is always a nonzero surface stress-energy tensor at the
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junction. It is possible to join the metrics so that r increases
or decreases as one moves away from the string. The sur-
face stress-energy diverges as the po 0 classical limit is
taken, except in one special case where r is chosen to de-
crease away from the string and p, = 4, In this case the

metric parameter a is not determined by the junction condi-
tions. The exterior metric is given by Eq. (12) with m =2
and 0( r ( ro. The surface energy density in this case is
always negative, violating the weak energy condition. As
the classical limit po 0 is taken, the surface stress-energy
vanishes and ro ~. This case is unphysical, however, be-
cause as ro ~ the string is removed to physical infinity.

In summary, the results of Vilenkin, obtained within the
linear approximation to general relativity, have been shown

to be correct to all orders in p, . The exact exterior geometry
of a static, cylindrically symmetric string with p, ( 4 is that

of a cone with deficit angle 8@= 8m@„and a metric given by
Eq. (21). In terms of light bending, a photon traveling past
the string will be deflected through an angle 6@=4m p, . If
p, ~ 4, the exterior has collapsed onto the string; this is

probably related to the fact that r ~2M for any radius

sphere centered on a string with p, ~ 4 .
Note added in proof. Since this paper was written, I have

become aware of a preprint by J. R. Gott III, which has
since appeared in print [Astrophys. J. 288, 422 (1985)],
which independently derives the exact static, cylindrically
symmetric string solution for the m = 0 exterior, with partic-
ular application to the gravitational lens problem.
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