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Self-energy corrections to fermions in the presence of a thermal background
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The interaction of a fermion with a thermal background in the context of QED is investigated.
Employing the matrix form of the real-time formalism for the propagators, the one-loop fermion
self-energy is calculated for the general case of finite temperature and chemical potential. These re-
sults are shown to include others found in the recent literature as special cases. As an application,
the shift of the electron's mass in a neutron star is calculated. It is shown that, at neutron-star den-
sities, the shift is large compared to the free-particle electron mass, but small compared to the elec-
tron chemical potential.

I. INTRODUCTION

Finite-temperature and -density (FTD) nonrelativistic
field theories have been around for some time, but only in
the last decade has there been interest in relativistic ver-
sions. This has been due largely to the discovery that bro-
ken gauge symmetries can be spontaneously restored at
sufficiently high temperatures. ' More recently, some
workers have investigated other aspects of FTD field
theories in an attempt to discover their effect on certain
early-universe processes such as primordial nucleosyn-
thesis. The results, to date, have not altered the zero-
temperature predictions significantly. Calculation of the
one-loop QED mass shift for a point fermion in the pres-
ence of a background characterized by a nonzero (T) or
chemical potential (p) (hereafter referred to as the thermal
background) has already been attempted for several
cases. ' ' However, because particular assumptions
have been made in some of these calculations, their results
are not, in general, comparable. ". One of our purposes
here will be to do a general calculation which will allow a
meaningful comparison of these special cases, and to con-
firm the domain of validity of each one. Further, since
most calculations to date have been performed at zero
chemical potential (of interest in the early universe, but
not in neutron stars), our general calculation will include
p&0 effects.

The results of the general calculation of the mass shift
at finite temperature and chemical potential are presented
in the following section. To evaluate the general case, the
real-time (matrix) propagator form of FTD field theory
will be used (see Refs. 12—15). The results of our calcula-
tion are shown to contain the calculations of Refs. 3, 7,
and 10 as special cases for p=0. Analytic results for
T =0 special cases are also presented in an extension of
Refs. 3, 7, and 10 using finite-chemical-potential propaga-
tors. '

As an application of the mass-shift calculation a simple
model for a neutron star is presented in Sec. III to show
the conditions to which one must go to give chemical po-
tentials large enough to produce a noticeable mass shift.

II. GENERAL CALCULATION
OF THE MASS SHIFT

For a massive fermion, the bare propagator function
(i.e., the 11 component of So, see Refs. 12—15 for details)
is modified by the FTD self-energy correction shown in
Fig. 1, to give

where

X(E)= —aJC br't +mo —d— (2.1)

and u is the four-velocity of the heat bath normalized by
u u = 1. The quantities a, b, and d are Lorentz-
invariant functions which can depend on two Lorentz sca-
lars

and

co =K u~

k=[(IC u ) —K ]'

(2.2)

(2.3)

K-P

FIG. 1. One-loop contribution to the fermion self-energy il-
lustrating the momentum labels used in the text.

The results of all of the calculations are summarized in
Sec. IV.

In the interest of clarity, the following notation will be
used consistently throughout the paper: (i) quantities with
a zero subscript (e.g. , Xo) denote the T=p, =0 contribu-
tion; (ii) quantities with a P subscript (e.g. , Xtt) denote the
FTD contribution; (iii) quantities with no subscript denote
both the T=p =0 and FTD contributions (e.g.,
X=Xo+Xp).
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such that

K =co —k (2.4)

and

(2.5)

where

In general, a, b, and d are complex, but we shall ignore
the imaginary parts in all our calculations. Justification
for doing this is briefly outlined at the end of this section.

The fermion self-energy is

d PX(K)=ie f ~ y"D~„(P)S(K P)y"—,
(2vr)

I (P)=2 5(P )nb(P),

I f(P) =2m 6(P rno—)[Q(PO )nf (p) +0( —P )n (P}]

The n's are the distribution functions
I

nb(»=[exp(PIP. u ~) —1] ',
Dp„(P)= —g~„

1

P2+
—iI b(P)

nf (P) = I exp[p(
~

P.u
~ +p)]+1I

S(P)=(P+mo)
2

+il f(P)
1

P —mp +ig

with P the inverse temperature, and @&0 implying the
particle and the background have the same sign for net
charge. Ignoring the T=p =0 piece in Eq. (2.5) leaves

iI b(P) I"b(P) I—f (K P)—
(K —P)'

d4P i I f(K P)—
Xp(K) = ie f— y„(K—P)y

(2m ) P2 (2.6)

(1+a) (co —k )+2( 1+a)bco+b c=0, — (2.7)

For the remainder of this section, we will concern our-
selves with only the first two terms of Eq. (2.6), i.e., the
real part of Xp(K). The full fermion propagator will ex-
hibit a pole when

This expression is rather complicated specially when
one remembers that a, b, and c are, of necessity, functions
of co and k. Rather than attempt to solve Eq. (2.8) for the
complete dispersion relation, we will content ourselves
with calculating the FTD mass shift which we define by

where c =mp —d.
Writing Eq. (2.7) in the form of a dispersion relation

gives

b+[c +—(1+a) k ]'~
1+6

5m = lim m —nzp .
k~p

Applying this definition to Eq. (2.8) we find

6m = lim [ —,Tr(u ReX~)+ —,
'
Tr(ReX&)] .

k p

It can be shown that

(2.9)

(2.10)

ReXp(K)= f d P 5(P —mo )[8(—Po)nf+(K P)+e(PO)nf (K ——P)](P +K)'

E—P —2mo+, , &(P')nb(P)
(K+P) —m02 (2.11)

where a= e2/4n. .
A change of variables, P~P+K for the first term and P~ P for the—second term, has been made. —,Tr(g ReX&)

and 4 Tr(ReX~) can now be evaluated. We find

4 Tr(& ReXp) = f dp [ [co(L ~+ +L ~ )+p(L ~+ L~ )]nb(p)+p[L2+nf (r)—L2 nf+(r)] I, —
2~k (2.12)

, Tr(ReX —)= f dp +[L2 nf (r)+L2 nf+(r)] —[L&++L~ ]nb(p)k o r (2.13)
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where

+ p(co+k)+(K —mo )/2
I, )———+ln

I
p(co —k)+(K —mo )/2

rco+pk+(K +mo )/2

rIo —pk+ (K +m o )/2
I.2

——+ln

p=
~

P ~, r=(p +mo )'/

6m =Ig+I ++I
mp

where

We now take the k~O limit and find

(2.14)

(2.15)

3-

-2
10

I

10
I

10
I

10

2' ~ x y —2
dX

2yw —w —1

20! ~ x y+2
dX

y 2yw+w +1

1

(y+v)/t+ 1

1

(y —v)/t+ 1

(2.17)

(2.18)

t=, U=, y=(x +I)'/
mo' /3mo' mo'

Equations (2.16)—(2.18) yield an implicit equation for
m which cannot be solved analytically. We have solved
these equations numerically, an example of the solution to
Eq. (2.15) for various values of p being shown in Fig. 2.
The small- T region is shown in more detail in Fig. 3, and
it can be seen that for p/mo (—1 it is possible to have a
negative mass shift, although its magnitude is small. In
Fig. 4 the results for p=O are shown along with the re-
sults of a similar calculation performed in Refs. 3 and 7.
As one would expect the general solution agrees with the
results found in Ref. 3 at T«mp, and with Ref. 7 at

4aw " 1+2x +2(w —1/w) —w 1
Ig —— dX X

4x w —(w —1) e —12 2 2 2 x/t

(2.16)

TEMPERATURE (T/mo)

FIG. 3. An enlargement of the low- T portion of Fig. 2 show-

ing region of negative mass shift (p is shown in units of mo).

We have not succeeded in demonstrating this for the gen-
eral case; however, we have studied several special cases
with the following result. For massless fermions, in the
k~O limit, we find

Ima
Rea

2
$2~2

64m.
(2.19)

T Q)mp.
Before leaving the general calculation and moving on to

discuss some special cases we would like to address an is-
sue raised at the beginning of this section. It was pointed
out that the coefficients a, b, and d are, in general, com-
plex. Including them in Eq. (2.1) would lead to a condi-
tion for poles similar to Eq. (2.7) except that terms like a
would be replaced by (Rea ) —(Ima ) . In order to justify
ignoring Ima we should show

2
Ima
Rea

10

1O4

10

5m
mp

10

10
10

0 2
I

10

TEMPERATURE (T/mo)

10 1O-4

0.1

I

1 10 10 10
TEMPERATURE (T/mo)

10

FIG. 2. Numerical solution of Eq. (2.15) showing the FTD
mass shift as a function of T for various values of p {p is shown
in units of mo).

FIG. 4. Comparison of mass-shift calculations performed:
(1) in this paper; (2) in Ref. 3; (3) in Ref. 7.
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Unfortunately, the ratio depends on co, and of course the
value of co depends on whether or not terms like Ima are
ignored. We can, however, do a consistency check. Ig-
noring Ima leads to the result cu = (am/2) T so the ratio in
Eq. (2.19) becomes

(a}
'

l.4-

1.5
I

1.2

A. Special cases

One can obtain expressions for the mass shift at asymp-
totic values of small and large 1u, /mo by using the same
methods as were employed in Refs. 3, 7, and 10 for small
and large T/m. For example, in Ref. 3 a low-
temperature approximation was made by neglecting the
heat-bath term and evaluating the self-energy in the k =0
limit. Performing the same calculation for T =0, @&0,
we find

Re%&—— I (v —1)' (u+2) —3 ln[(v —1)' +u] I,
2m

(2.20)

where u is defined below Eq. (2.11), and the upper (lower)
sign in Eq. (2.20) refers to p&0 (p &0). Comparison of
this approximate expression with the results of numerical-
ly integrating Eqs. (2.16)—(2.18) shows reasonable agree-
ment ( & 10%%uo error) for the range

—10( (10 .
mp

(2.21)

To obtain analytic expressions for p/mo »1, the tech-
niques used in Ref. 7 for massless fermions can easily be
extended to p, &0. After some algebra, one finds that

M = (p+m T)
277

where M is defined by

M = —,'Tr(JCReXp) .

(2.22)

(2.23)

Equation (2.22) contains both the p=O results of Refs. 7
and 10, as well as the T=0 result from Ref. 10 as special
cases.

It can be demonstrated that M in Eq. (2.22) actually
does enter into the dispersion relation between co and k
like a mass. Working in dimensionless variables w—:co/M
and K =k/M, the dispersion relation for massless fer-
mions reads

1 W1+ 1+——,ln
K K

(2.24)

where w+ ——(w+~)/2. A plot of (w —~ )'/ generated by
Eq. (2.24) is shown in Fig. 5(a). Of course, for a free mas-
sive particle one would expect w —K =1, so that one can
see that deviations of up to 40go from the k =0 value are

132m.

Put another way, inclusion of terms like Ima would be
necessary only if the resulting correction factor was on the
order of 8m/a-3000. Calculations for other special cases
give similar results.

1.2-

I I I

2 3 4 5 6 7 8 9
K

FIG. 5. (a) Effective mass (in units of M) from w —~
shown as a function of K. (b) Ratio of w calculated from Eq.
(2.16) to wf ——(~ +1)', again as function of K.

found for the effective mass as a function of k. On the
other hand, one would expect w and wf =(v +1)'/ to
converge as v~ oo, and this is shown in Fig. 5(b). Hence,
the greatest effect on the behavior of the free massless
electron's energy caused by introducing it into the medi-
um at finite T, p will be at low values of k.

+( 2+ 2 2)1/2 [(3 2 )2/3+ 2i1/2 (3.1)

The solution of this equation for p, as a function of n„ is
shown in Fig. 6. At small n„, p, -m„—m~, while for
large n„(but not so large that the neutrons are relativistic)

p, =(3' n„) / /2m„. (3.2)

III. NEUTRON STARS

Because the electromagnetic mass shift at finite chemi-
cal potential goes like v'a/2mp, its physical effects are
going to be small. To observe such effects, one must ei-
ther find a physical observable which can be measured
very accurately (for example, the magnetic moment) such
that a small value of 1M could yield a detectable result, or
find an environment with a very large value for p. One
such possibility would be a neutron star. ' To determine
whether the chemical potentials are large enough to pro-
duce an observable effect, we adopt a simplified model of
a neutron star and calculate the appropriate electron
chemical potential and mass shift. Construction of a de-
tailed model to calculate the changes in neutron-star prop-
erties arising from the electron mass shift is beyond the
scope of this paper.

For the model, a uniform gas of electrons, protons, and
neutrons will be chosen for the neutron-star matter (clear-
ly, such a model will not be valid at high densities where
strong-interaction effects will become important). Chemi-
cal potentials p„pz, and p„, which include the mass, are
assigned, respectively, to the electrons, protons, and neu-
trons present with number densities-n„nz, and n„. For a
Fermi gas with a Fermi energy much larger than the tem-
perature, these quantities can be related via
p =I + (3mn) . I.f p, +p~ exceeds p„, then electrons
will be captured by protons until the number densities
change such that p, +p~ =p„. Hence, for each value of
n„, there will be a value of p, which satisfies the P-
stability condition.

Assuming local electrical neutrality so that n, =nz, the
chemical potential equality then yields
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IV. SUMMARY

lO-

-I
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n o

IOI 0 I 0 IO IO

n (&m-')

FIG. 6. Expected value of the electron chemical potential and
electron mass shown as a function of neutron number density.
[Normal nuclear matter density (no) is indicated for compar-
ison. ]

Both of these limits are obvious from Fig. 6. This figure
includes a region in which p, exceeds m, although obvi-
ously e ~tr +v, would be allowed in this region (see
Ref. 18).

From Fig. 6 it can be seen that over much of the neu-
tron density range of interest in the formation of a neu-
tron star, p, is large compared to I,. It is found that the
finite p, electron mass (—:M) from Eq. (2.15) becomes sub-
stantial compared to m„as is shown in Fig. 6, but small
compared to p, , (M/p, —1/30). The larger electron mass
will lead to an earlier onset of electron capture in the for-
mation of the neutron star, and hence an increase in the
rate of neutrino emission. Since the neutrino mass is
changed only by the weak interaction, its mass shift
would be very small indeed and would not compensate for
the increased electron mass. Similarly, the abundance of
electrons in the neutron-star core would be lowered.

We have performed a calculation of the QED self-
energy corrections for a massive fermion at finite T and
p. It is found that the solution contains for zero chemical
potential both a high- and low-temperature limit which
agrees with two previous special-case calculations. We
have also extended the calculation to finite chemical po-
tential and shown that the magnitude of the corrections is
similar to that found for @=0, T&0. Analytic expres-
sions for large and small p at T=0 are also given.

In an attempt to find a system which has a large
enough chemical potential such that these finite T, p ef-
fects might be observed, the interior of a neutron star was
considered. In a simplified model, it was shown that the
electron mass shift in a neutron star may be several times
its rest mass, and hence the rate of cooling of the star will
be changed. However, the mass shift is still small (3.5%)
compared to the chemical potential, so one does not ex-
pect there to be large changes to any measurable quanti-
ties. Other evidence for this conclusion can be found in a
calculation of the energy density of a gas of electrons,
positrons, and photons at finite chemical potential, where
it has been shown' that the ratio of the corrections to the
energy density to the ideal (free particle) value is of order
a/27r.
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