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We propose three supersymmetric nonlinear 0 models with global symmetry E8. The models can
accommodate three left-handed families of quarks and leptons without incurring the Adler-Bell-
Jackiw anomaly with respect to either the standard SU(3) XSU(2) )&U(1) gauge group, or the SU(5),
or SO(10) grand unifying gauge group. They also predict unambiguously a right-handed, fourth
family of quarks and leptons. In order to explore the structure of the models, we develop a
differential-form formulation of the Kahler manifolds, resulting in general expressions for the cur-
vature tensors and other geometrical objects in terms of the structure constants of the algebra, and
the squashing parameters. These results, in turn, facilitate a general method for determining the
Lagrangian to quartic order, and so the structure of the inherent four-fermion interactions of the
models. We observe that the Kahlerian condition dc@=0 on the fundamental two-form co greatly
reduces the number of the independent squashing parameters. We also point out two plausible
mechanisms for symmetry breaking, involving gravity.

I. INTRODUCTION AND SUMMARY

Among the field theories that are useful in physics,
pure gauge field theories, the general theory of relativity,
and nonlinear o. models distinguish themselves by their
elegant embodiment of symmetry. Both the particle con-
tent and the form of interactions in these theories are
uniquely determined by symmetry, leaving only the mag-
nitude of the coupling constants free. The coupling con-
stants of gauge field theory are dimensionless while their
counterparts in the general theory of relativity and the
nonlinear o model are dimensionful. Consequently only
gauge field theories are renormalizable. For the other
two, the dimensional coupling constants define the critical
mass scales beyond which the theories fail; in other words,
the underlying systems enter a new phase at these critical
mass scales.

In the nonlinear o model for pions, ' the dimensional
coupling constant F denotes the mass scale characteriz-
ing the dynamical spontaneous breakdown of global chiral
symmetry SU(2)t. XSU(2)~ to SU(2)~. The origin of the
chiral symmetry is easily understood in terms of the
quark model of hadronic matter. Analogously, in general
relativity, the Planck mass, Mz, may be taken as a critical
mass scale beyond which space-time enters a different
phase.

The standard SU(3) X SU(2) XU(1) gauge theory for
the strong, weak, and electromagnetic interactions is re-
normalizable. When it is extended to incorporate the
quarks, leptons, and the Higgs scalar fields, care is taken
to preserve renormalizability. The only dimensional pa-
rameters appearing in the Lagrangian are the mass terms
of the scalar fields. Extension to grand unified gauge
theories with asymptotic freedom further tames the run-
ning coupling constant of the original U(1) in the ultravio-
let region. The characteristic mass scales brought out by
the renorrnalization procedure, and at which the gauge
couplings diverge, appear at the infrared region. We

would like to retain, as far as possible, this picture of
gauge interactions, grand unified or not, in the present pa-
per. The standard formulation carries with it an implicit
assumption that quarks and leptons are elementary, or
equivalently, of the absence of a critical mass scale (A~) in
the ultraviolet region, around and beyond which the
quarks and leptons will not be the proper dynamical de-
grees of freedom. So far there is no experimental evidence
in direct conflict with the assumption of elementary
quarks and leptons. If A does exist in nature, then from
the (g —2) factor of the electron and muon one estimates
A &10 TeV (Ref. 4) and from e+e Bhabha scattering
A & 750 GeV (Ref. 5). In either case A is much greater
than the known masses of quarks and leptons.

In this paper we explore the implications of the plausi-
ble existence of A in terms of the supersymmetric non-
linear 0. model. What we hope to derive ultimately is a
natural explanation of some features of elementary parti-
cle physics not accounted for by standard renormalizable
field theory. ' These features include three-family struc-
ture of the observed quark-lepton spectrum, and the mass
matrix of quarks and leptons. The mass matrix would in-
volve inevitably the scale characterizing the breakdown of
the SU(2)L XU(1) symmetry to U(l), , therefore the phys-
ics flowing from A, though perhaps necessary, is certain-
ly not sufficient for this purpose. The three-family struc-
ture, in contrast, is independent of the mechanism for the
symmetry breakdown and so might be determined com-
pletely by physics at A .

The supersymmetric nonlinear o. model provides a
field-theoretic setting that accommodates massless fer-
mions, henceforth to be referred to as o fermions, mass-
less spin-0 bosons, and a critical mass scale A in the
form of a dimensionful coupling constant. The model as-
sumes that the phase beyond A~, which we shall call the
preonic phase, possesses supersymmetry. It makes no as-
sumption about the proper dynamical degrees of freedom
in the preonic phase of matter.
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K(y', y*') K(y', y"')+F(y')+F*(y*'), (2)

where F(P') is any holomorphic function of the P'. After
integration over 8 and 8, and elimination of the auxiliary
fields F', Eq. (1) yields the Lagrangian density

g)„B„(t'8"P*'— g;,,X'o "D—„—X'J

gJ)fc Pgj,X'o "D„X—'+ ,' Rg,„j(,(X'XJ)(X—"X) . (3)

Here g,J.„R;k,JI„and Dp' are, respectively, the metric
tensor, curvature tensor, and covariant derivatives defined
on the Kahler manifold. We have explicitly

and

g,,„=a,a,.K(y, y*),
mnw ~R; I

——0 Bg gk —g -g;„~g (5)

DX'= aX'+ g"*a„g,(.aPX", (6)

where g'* is the inverse of the metric tensor g,J, .
A beautiful class of Kahler manifolds exists, where

each can be expressed as a coset space G/H. Here G is a
compact, connected, simple Lie group and H a closed sub-
group which is the centralizer of a torus in 6 (Ref. 9).
G/H is a homogeneous space with isometry group G and
isotropy group H. The scalar fields P', being a local coor-
dinate system of the manifold, form a nonlinear realiza-
tion of G. The o. fermions g', transforming in the same
way as dP' under the action of 6, transform like an iso-
tropy representation under the action of H. Most of the o.

Each nonlinear o. model is characterized by an abstract
manifold on which the spin-0 Bose fields take values.
The collection of general coordinate transformations on
the manifold which leave the length of an infinitesimal
line element on the manifold invariant forms a group
called the isometry group. A subgroup of the isometry
group which leaves a p'oint p of the manifold fixed is
called the isotropy group at the point p. Obviously the
tangent space at the point p forms a linear representation
of the isotropy group, called the isotropy representation.
For the manifolds that interest us, both the isotropy group
and the isotropy representation are the same for every
point of the manifold. The action of a nonlinear cr model
is invariant under the isometry group of transformations
of the abstract manifold.

The abstract manifold for the N =1 supersymmetric
nonlinear o model in (3 + 1)-dimensional space-time
must perforce be a Kahlerian complex manifold. The
spin-0 bosons are represented by complex scalar fields,
denoted by P', and the o fermions by two-component
Weyl fermions, denoted by X'. Together with auxiliary
complex scalar field F', P', and X' form a chiral superfield
O'. The superspace action takes the form

I=f d x d Od OK(4",N*~), (1)

where K(N', @*J) is a real function of the chiral super-
fields @', and antichiral superfields 4&"J, which is obtained
from the Kahler potential K(P',P*J) by simply substitut-
ing N' for P', and &&*J for P*~. Obviously the action is in-
variant under the transformation

of a desirable model will be identified as the known
quarks and leptons. ' '" The SU(3)c X SU(2)L, X (U)(1)
gauge interactions, and similarly the grand unifying gauge
groups SU(5) or SO(10), will be obtained by gauging a
part of H. The isotropy representation of a manifold is
thus the chief means by which we identify the promising
models. The content of an isotropy representation is com-
pletely determined once the G, H, and an invariant com-
plex structure' are chosen.

In Ref. 10 we showed that, within the class of models
mentioned above, only those with G =E7,E8 can have an
isotropy representation capable of accommodating three
families of quarks and leptons. In the case of 6=E7, the
grand unifying gauge group can be SU(5), and there are
three possible choices of H, namely, H =SU(5) X U(1),
SU(5) X SU(2) X (U)(1), and SU(5) X SU(3) X U(1) (Ref.
13). But they suffer from the Adler-Bell-Jackiw (ABJ)
anomaly. ' It is not possible to accommodate both an
H DSO(10) and three families of quarks and leptons
simultaneously when G=E7. In the present paper we will
show that when 6=Es and H =SO(10)XU(1),
SO(10)X SU(2) X U(1), and SO(10)X SU(3) X U(1), the
corresponding models can accommodate the three left-
handed families of quarks and leptons without incurring
the ABJ anomaly with respect to either
SU(3)CXSU(2)L XU(1), SU(5), or SO(10)-gauge group.
An additional surprising prediction of the E8 models is
that there is a right-handed, fourth family of quarks and
leptons. The fourth family differs from the first three
also in the U(1) -, SU(2) X U(1) -, and SU(3) X U(1)-
representation content for the cases where H=SO(10)
X U(1)', SO(10)X SU(2) X U(1)', and SO(10)X SU(3)
X U(1), respectively. It is not possible to find an invariant
complex structure such that all four families are left-
handed simultaneously.

The E8 and E7 models are highly interesting in yet
another respect which we shall mention now. The isotro-
py representations of the associated abstract manifolds are
reducible. Generally, a homogeneous manifold 6/H,
which need not be Kahlerian or even complex, with a
reducible isotropy representation would allow independent
rescalings' for coframes (vielbeins) corresponding to the
different irreducible components of the isotropy represen-
tation without affecting the isometry group. The rescal-
ing act is often referred to as squashing. Thus, an ordi-
nary (i.e., without supersymmetry) nonlinear cr model
based on such a manifold would carry as many indepen-
dent squashing parameters as the number of irreducible
components in the isotropy representation. The Kahler
manifolds for the E8 and E7 models are indeed squashed
manifolds. But we will show that the Kahlerian condition
on the metric tensors of the manifolds greatly reduces the
degrees of independent rescalings. Furthermore, we will
show that there exists a unique choice of the ratio of re-
scalings for which a Kahlerian manifold is of the Einstein
type

Let us now outline the order of presentation in the
present paper. In Sec. II we determine the invariant com-
plex structures for the E8/H manifolds by analyzing the
root space of the Lie algebra E8. We then find a proper
basis for the algebra, and construct the commutators in
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terms of this basis. The isotropy representations, and so
the field content of the E8 models, are determined in this
section.

In Sec. III we develop a differential-form approach to
the Kahler manifold. We derive the general expressions
for the various geometrical objects such as the connection
one-form, curvature two-form, and Ricci two-form, which
are not available elsewhere in the literature. It is here that
we find the results relating to squashing that we men-
tioned above.

In Sec. IV we propose a general method for determina-
tion of the Kahler potential to the quartic order. We ap-
ply the method to one of the E8 models, namely, that with
H=SO(10) X SU(3) XU(1).

In Sec. V we point out some general features of the
four-fermion interactions inherent in the supersymmetric
nonlinear o model. For the E8 models, the inherent four-
fermion interactions can induce proton instability even in
the absence of any grand unifying gauge interactions.
Thus the critical mass scale A of the models should be
around or beyond 10' GeV.

In Sec. VI we propose two plausible mechanisms for the
explicit breakdown of the global symmetry G when a su-
persymmetric nonlinear o. model is coupled to supergravi-
ty.

In Sec. VII we conclude the paper with some further
discussions. These include the value of the mass scale A,
and the implications of the E8 models.

The Appendix provides the commutators of E8 algebra
in terms of a basis adapted to the structure of the E8
models.

II. THE FIELD CONTENT OF THE
E8 MODELS—INVARIANT

COMPLEX STRUCTURE AND E8 ALGEBRA

Besides being a nonlinear realization of the global sym-
metry G, the complex scalar fields P' also take part in the
linear representations, namely, the chiral supermultiplets
4', of supersymmetry. In order to ensure that the algebra
of G commutes with the supersymmetry algebra, it is
necessary that G transforrnations do not mix chiral super-
multiplets with antichiral supermultiplets. Accordingly
the action of G on P' which are complex coordinates on
the manifold G/H is characterized by a set of holo-
morphic Killing vectors on the manifold. In other words,
the manifold is endowed with a 6-invariant complex
structure.

The criterion' for an invariant complex structure on
the Kahler manifold G/H can be stated in terms of some
positivity and closure properties defined on a system of
roots of the algebra G. Let 0= {6@1,6@2, . . .,co

co +1, . . .,co +7, } by a system of positive roots of the
algebra G such that a subset of it, say, 6={co +1,co +2,
. . .,co~+1, }, form a system of positive roots for H. Then
the subset '0= {co1,co2, . . .,co } defines an invariant com-
plex structure if it is a closed system of roots. A set of
roots of G is said to be closed if it contains the sum of any
two of its elements whenever this sum is a root of G. The
system of roots of an invariant structure, +, can be split
into further subsets each of which can be identified with
the weights of an irreducible linear representation of the

I

with an even number of plus signs in the parentheses (. . .).
We chose the following system of simple roots for E8,
namely, {a;, i = 1,2, . . . ,8 },where

A) =e( —e2, 2=e2 —e3 o.3 ——e3 —e4,
1a4 ——e4 —e5, a5 ———,( —e1 —e2 —e3 —e4

+e 5 e6 +—e 7
—e 8 )

o.6 ——e6 —e7 7 —e7+ e8 +8 e4+ e5 ~

The resulting system of positive roots of E8 is

0= {e;+e~, 1&i &j &5,

e6+e7,

e7+e8

e6+e8

+e;+e6, 1&i &5,
+e;+e7, 1&i &5,
+e; —e8, 1&i &5,

1—(+e1+e2+e3+e4+e5+e6 —e7 —e8)
1

1 — 2 — 3 —4 — 5 e6+ 7 8)

T( —e1 —e2 —e3 —e4 —e5+e6+e7+e8)
—'(+e, +e2+e3+e4+e5+e6+e7 —e8) } .

Again the total number of plus signs in each parentheses
(. . . ) above should be even. For the case G/H=E8/
SO(10)XSU(3))&U(1), one can verify that the system of
positive roots of H is

e={e;+ej, 1&i &j&5,
e6 —e7,

e6+es

e7+e, } .

And the system of roots of invariant complex structure is

1II= {e6+e7, e6 —e8, e7 —e8,
+ei +e6~

+e;+e7, 1&i &5,
+e; —e8, 1&i &5,

1

2 ( —el —e2 —e3 —e4 —e5+e6 e7 e8)

group H. This provides an algorithm for determining the
irreducible pieces of a reducible isotropy representation,
and thus the corresponding invariant complex structure.

The root space of E8 is an eight-dimensional Euclidean
space. ' In terms of an orthogonal basis e;, i =1, . . .,8,
the roots of E8 can be expressed as

+e;+ej, 1&i&j &8,
and

1—(+e +e +e +e +e +e +e +e )
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1—(+ei+e2+e3+e4+e5 —e6+e7 —eg )

1
—,(+e&+e2+e3+e4+e5+e6+e7+eg )

1—(+e&+e2+e3+e4+e5+e6+e7 —eg) I

Thus the isotropy representation can be taken to be

I =(16,3, —,
' )+(16*,1,1)

I &g,I,J=1,2, 3I = SJ =TJ —,'—5J g T,',ij =1,2 .
1

2

U IS= —, g T/ T3 —~

U t VJ = TJ3, VJ = TJj = 1,2 I

+(16',1,0, 1)+(10,2, ——,, —, )

+(10,1, 1, —, )+(1,2, —,, —, )

+(1,1, —1,—', )+(1,2, —,,0) (8)

with respect to SO(10)XSU(2)XU(1)'XU(1). The isotro-
py representation of the Kahler manifold Eg/SO(10)
X U(1) with the structure %"' is

I"'=(16,1, —,', —, )+(16,—1,—,, —, )

+(16,0, —1, —,)+(16*,0,0, 1)

+(10,1, ——, , —, )+(10,—1, ——,', —', )

+(10,0, 1, —, )+(1,1, —,', —', )

+(1,—1, —, , —, )+(1,0, —1, —, )

+(1,1, —,,0)+(1,—1, —,,0)

+(1,2,0,0),
with respect to SO(10)XU(1)"XU(1)' X U(1).

The basis of the E8 algebra can always be chosen to re-
flect a given isotropy representation. For the isotropy
representation I of Eq. (7), we choose the basis

+(10,3*,—, )+(1,3, —, ) .

Next one can check that 0"=O'U Ie6+eg, e7+egj and
0"=ql'U Ie6 —e7I are the systems of roots of the invari-
ant complex structure for the Kahler manifolds
Eg/SO(10) X SU(2) XU(l) and Eg/SO(10) XU(1), respec-
tively. We have the regular embedding U(1) C:SU(2)
XU(1) C:SU(3)XU(1). The isotropy representation of the
Kahler manifold Eg/SO(10) X SU(2) XU(1) with the
structure %" is

I-'=(16,2, —,', —,
' )+(16,1, —1, —,

'
)

Similarly we obtain a basis of Eg adapted to the isotropy
representation I " from Eq. (10) by further splitting of the
set of SU(2) generators:

I Si,ij =1,2) = IK=TI —T21 U I U=T,' U T2]—
The isotropy representations I, I", and I" establish

our claim that the Eg models allow three left-handed, and
one right-handed family of quarks and. leptons. They are
obviously free from the ABJ anomaly with respect to the
group SO(10), and so are with respect to the regular sub-
groups SU(5) X U(1) C:SO(10) and SU(3) X SU(2) X U(1)
C:SO(10). We note that the isotropy representation I of
Eg/SO(10)XSU(3)XU(l) is not ABJ-anomaly free with
respect to the SU(3) factor of the isotropy group, nor with
respect to the U(1) factor. We also observe that both I"
and I" incur the ABJ anomaly with respect to at least
one U(1) factor of the respective isotropy groups. One
cannot gauge these anomalous symmetries. The
anomalous U(1)'s provide naturally a Peccei-Quinn sym-
metry because of the U(1)-SO(10)-SO(10) triangle anoma-
ly.

III. GEOMETRICAL OBJECTS
ON KAHLER MANIFOLD

We regard Kahler manifold 6/H as a collection of
right cosets I gH I parametrized by complex numbers Iz'I.
The left action of g HG on a coset representative L(z,z*)
is given by

gL(z, z*)=L(z',z'*)h,

where i7, an element of H, and L(z', z*' ) are functions of
g and L(z,z*). The explicit form of L(z,z*) depends on
the specific embedding of G/H in G.

A left invariant one-form can be defined in terms of
L (z,z*):

ILgg, TJ, T,XI, Yg, WI ,Z~,X,YI„,W. ,Z, J . (10)
e(z,z")—:L '(z, z*)dL(z,z*) . (12)

Here the indices I,J =1,2, 3 are the SU(3) indices;
A, B=1,2,. . . ,10 are SO(10) indices; a = 1,2,. . ., 16 is the
SO(10) spinor 16-index; and a the 16*-index. Lz e, TJ,
and T are anti-Hermitian, and gi TI 0. They generate-—
the SO(10), SU(3), and U(l). The barred generators are
anti-Hermitian conjugates of the corresponding unbarred
generators. The collection IX,Ylz, W, Z . I has the iden-

tical representation content as the I . The explicit expres-
sions for the commutators of E8 algebra in terms of the
basis given by Eq. (10) are collected in the Appendix.

A basis of the E8 algebra which is adapted to the isotro-
py representation I" of Eq. (8) can be obtained from the
basis of Eq. (10) by splitting the set of SU(3) generators as

It takes value on Lie algebra of G. We shall denote by
I T I a basis for the algebra, adapted to an invariant com-
plex structure. %'e use the following index convention:
a,P,. . . for generic 6 indices; a, b, . . for H.

indices;I, J, . . . for holomorphic flat coset indices; and
i,j, . . for hol. omorphic curved coset indices. Antiholo-
morphic indices are obtained by putting an asterisk on top
of the corresponding holomorphic indices. We can write
the one-form e(z,z*) as

e(zz*)=Tie +TI,e *+T e

= Tie; dz'+ Tl~ e;~*dz'*+ T,e dz'+ T e dz'*,

(13)
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where e;, e;,*, e;, and e|e are functions of both z and z*.
In particular e; and e;,* will play the role of vielbein
(coframe) on the manifold G/H. It follows from Eq. (12)
that the one-form satisfies the Maurer-Cartan equation:

de= —eRe . (14)

e (z',z")=Di(h ')e (z,z*),
e'(z', z'*) =Db(h ')e (z,z*)+(h dh ')',

(16)

(17)

and the complex conjugate of (16). Here D~(g) denotes
the adjoint representation of g&G: g 'T~g=D~(g)TIi.
The matrices Dz(h '), h HH, are block diagonal in our
chosen basis. Each block acts on an irreducible represen-
tation of H. Therefore the transformation laws (16) and
its complex conjugate allows the construction of a G-
invariant Hermitian metric on G/H:

And from the anti-Hermiticity of e and T, i.e., e = —e,

(e )'=e, .
'The action of g EG on the one-form is given by the

transformation law

e(z', z'*)=h(g, z,z')e(z, z*)h '(g, z,z')

+h(g, z,z*)dh '(g, z,z*) .

Or, equivalently,

de I+I I Re J=0 (23)

group H=SO(10)XSU(3)XU(1), the commutators of the
Es algebra (see the Appendix) are such that the ratio
among CI is unambiguously determined. That is,
Cz. C~.C~.Cz ——4:2:1:3. And the model has only one in-
dependent characteristic mass scale. This property is
shared by all supersymmetric nonlinear 0. models in
which the center of the isotropy group H has only one
U(1) factor; the ratio among CI is identical to the ratio
among the eigenvalues of the U(1) generator in the isotro-
py representation.

In the case when the center of the isotropy group H has
two or more than two U(1) factors, CM can be any linear
combination of Q'(M), the generators of the U(1)'s,

CM =a, g'(M) . (22a)

Here the coefficients aa are such that CM is positive de-
finite for all values of M, but are otherwise arbitrary.
Consequently, the corresponding model has as many in-
dependent characteristic mass scales as the number (n) of
the U(l) factors. (Of course the condition that CM )0 for
all M puts some bounds on the mass scales. ) Alternative-
ly, one can parametrize with just one mass scale A, cor-
responding to the overall squashing, plus the angles of the
spherical polar coordinate system in n dimensions.

In terms of the rescaled vielbein, the connection one-
form I J is given by

c& =g;~,dz'dz*j=cre e * (18)
and the anti-Hermiticity condition

by adopting the rescaled vielbein
—I Ic

For the ordinary (i.e., without supersymmetry) nonlinear
o. model based on an abstract manifold with a reducible
isotropy representation, the Cr associated with pach ir-
reducible sector is in principle an independent parameter.
Thus the model is characterized by as many independent
characteristic mass scales as the number of M-irreducible
sectors in the isotropy representation. ' The rescalings of
.the vielbein, Eq. (20), are often referred to as the squash-

ings of the manifold. In supersymmetric nonlinear 0-

models the CI's are constrained by additional conditions
which will now be explained.

To the metric defined by Eq. (18) we associate a two-
form:

co= —,'igjk, dz Rdz *=—,'iCre Re * . (21)

A complex manifold is a Kahler manifold if and only if
the two-form is closed, i.e., des=0. By applying the
Maurer-Cartan structure equation (14) and Eq. (21), we
find readily that the condition dao =0 demands that

Ci+C~=cx if fIJ&0 . (22)

where Cr are positive-definite real numbers, but otherwise
could be different for different H-irreducible sectors. The
metric can be brought back to the canonical form

ds2=e 'e '*

(r', )*=—r,'. (24)

By applying the Maurer-Cartan structure equation, we ob-
tain from Eq. (23) that

1/2 1/2

J K

CIJ ——

Cr CK

RJ ——dI I+I"KRI J .

Substituting Eq. (25) in Eq. (26), we obtain
1/2

I K
f&JfMN+

CJ

ICM C~
1 I a

( C C )1/2 MN*
IRJ ——

(26)

Cr

CJC~C

1/2
I K+

f~+gfMNe

Cr CJ

CK C~Cz

1/2
I K

fN*EfMJ

CK

(c,c,c c„)'" (27)

Thus the nonvanishing components of the curvature ten-
sor are of the form RJMN, (RJN, M = —RJMNg). The Ricci
tensor has the nonvanishing components

(25)

The curvature two-form RJ can now be evaluated. By
I

definition

Here fIJ is the structure constant: [TI,TJ]=fiqTx. If
we pause now to examine the E8 model with the isotropy

I 2 I a
~MNe Q~ IMNs faifMN~

CM
(28)
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The scalar curvature can also be evaluated to yield

I a
farfMM* .

CM
(29)

The nonvanishing contributions to the factor Xrf,r of
Eqs. (28) and (29) comes only from those indices a that
correspond to the generators of the center of H. And for
such indices a, the structure constant

fMN. "Q'(M»MN*, (30)

where Q'(M) denotes the ath toral U(1) charge of the
generator indexed by M. Therefore the Kahler manifold
becomes an Einstein type, i.e., SM&, ~6M&„for the fol-
lowing value of CM.

CM~ QQ (I)Q (M).
a, I

(31)

This choice of CM obviously satisfies the condition (22).
[The proportionality constant of Eq. (31) can be shown to
be positive definite. ]

IV. DETERMINATION OF KAHLER POTENTIAL
TO THE QUARTIC ORDER

The Kahler potential is of interest because it determines
the Lagrangian density, Eq. (1), of the supersymmetric
nonlinear o. model. We have not yet found a practical and
general method for computing the full expression for the
Kahler potential. We have succeeded in inventing a gen-
eral method for calculating the Kahler potential to quartic
order, which will be explained in the following.

Given a connection one-form for a Riemann manifold,

the antisymmetric part of the connection is simply the
torsion, which transforms as a tensor under a general
coordinate transformation on the manifold. The sym-
metric part is not a tensor, and its value at a given point
may be created or annihilated by proper choice of a local
coordinate system. A Kahler manifold has zero torsion;
therefore, a coordinate system exists such that the connec-
tion vanishes at the origin of the coordinates. We denote
by IP'I the coordinate system, and K(P, P*) the Kahler
potential with respect to these coordinates, then

and

k*jj '= a a„.a, a,.sc(y, y*)
y=y*=o

'

The first-order and third-order derivatives of It(y, y*)
vanish at the origin. Therefore the values of the metric
tensor and curvature tensor at the origin of the coordi-
nates are sufficient to determine the Kahler potential to
the quartic order. The metric tensor at the origin is sim-
ply 6,J~, and the value of the curvature tensor at the origin
is determined by Eq. (27) in terms of the squashing ratios
Cr and the structure constants fIr.

Among the three E8 models, we have calculated
K(P, P*) for the one with isotropy groups
H =SO(10)X (SU)(3) X U(1), using the method. Let
Ix,yr~, w, z I be complex coordinates, consistent with
our method, on the Kahler manifold Es/SO(10)
X SU(3) XU(1). Then, up to quartic order, the Kahler po-
tential is

«0 4*)=x'xr+yr~y ~+w.'wr. +z.z.

+~ 4(x xr) + 2~ (yr~y w)(x xsc) —
2 (x xz)(yrgy ~)+ —,(x wr )(w xrc)+ —,(x xr)(z.z )

+ 2 (»» ~)(yrrryir) 4(yr~yr~)(y rry rr)— 3(yr~y rr)(wr:X»—w')+(y»y')(w y„,w )

——,
'

(yr~y ~ )(w wr; )+ 2 (yra y w )(w wz ) —,
'

(yrpy & )(zp»z)+ (yr~y ~ )(zz

+(w wr;)(w wr) ——„(wrIqw~)(w I zw ) ——,'(zw )(wrz)+ —,(wrI zz)(w I ~z)+ —,'(zz)

I 1 I J)+ erJscx y w(zl pw )+ —e xryJ (zl"„w )+—'xry (zl *z)

—erJr:y ~ye(w &zaz)
& ——I ~JE —I —J

v'3 (32)

where k being related to the overall squashing is undeter-
mined, and xr=(x ) y ~=(yr~), etc.

V. THE FOUR-FERMION INTERACTIONS

A supersymmetric nonlinear o. model has four-fermion
interactions, Eq. (3). The structure of these interactions is
determined by the curvature tensor of the Kahler mani-

I ~ I a+Jr MNa = falfMNe (33)

fold. The general formula derived in Sec. III, namely, Eq.
(27), allows a few general conclusions to be drawn about
the interactions.

For a Kahler manifold with irreducible isotropy repre-
sentation, e.g., the Hermitian symmetric spaces, ' the ex-
pression for curvature tensor, by Eq. (27), becomes
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C

(c c )'" " "' c,c c
1/2

7 K
fxifMw.

We recall that the index a runs through all generators of
the isotropy group H. Therefore the four-fermion in-

teractions of the model based on such a Kahler manifold
have the same group-theoretical structure as the effective
four-fermion interactions that would have resulted from
exchange of one massive gauge boson of gauge group H.

For a Kahler manifold with reducible isotropy repre-
sentation, not all components of curvature tensor can be
reduced to the form given by Eq. (33).

The general expression for the curvature tensor is, from
Eq. (27),

g Qi&0 (35)

such breaking will come from the gauging of a subgroup
SCH. It breaks G to S&&R C G at the tree level, where R
commutes with S. Further effects resulting from gauging
of supersymmetric nonlinear o models have been studied
before. ' ' Here we point out two plausible mechanisms
which are available when the model is coupled to super-
gravity.

It is an intrinsic property of a Kahler manifold that
there exists at least one linear combination, denoted Q, of
the generators of the center of the isotropy group H, such
that the sum of the Q charges of cr fermions is nonvanish-

ing, i.e.,

1/2
I Ke

C C CJ M N

C7CJ 7 KfNO KfMJ
K M N

(c,c,c c )'" (34)

where I runs through all o. fermions. The U(1) generated
by Q is a chiral U(1) because the fermions are two-
component Weyl fermions. Therefore it happens neces-
sarily that the fermion triangle with one Q current and
two energy-momentum tensors has an anomaly. The Q
current, Jz~, of massless o. fermions is not conserved, but
obeys

There are values of (I,J,M, N) index for which the last
four terms at the right-hand side of Eq. (34) result in
four-fermion interactions which cannot be induced by ex-
change of a gauge boson of the gauge group H. A glance
at the last six terms of the Kahler potential given by Eq.
(32) immediately verifies the point.

Specializing to the E8 models, where H =SO(10)
X SU(3) X U(1), SO(10)X SU(2) XU(1), and SO(10)
X U(1), we conclude first that the critical mass scale A
may be around or beyond the usual for grand unification,
namely, AG.UI -10' GeV. Otherwise, the four-fermion
interactions would likely induce a rate of proton decays
too abundant to be consistent with experimental result.
Second, there are four-fermion interactions different from
those induced by either SU(5) or SO(10) grand unifying
gauge interactions. They may be a source of some phe-
nomena not predictable by the standard renormalizable
theory.

One can get a better understanding of the above-
mentioned property of the four-fermion interactions by
invoking the concept of a holonomy group. The curva-
ture two-form RJ provides a representation of the genera-
tors of the holonomy group. Furthermore the com-
ponents R7yJ~Ng obey the symmetry relation R7,J~Ng

R+g~Jig When the four-fermion interactions are pic-
tured as current-current interactions, the currents have the
property of the generators of the holonomy group. In the
case of Eq. (33), we say the holonomy group is identical to
the isotropy group. But in general, according to Eq. (34),
they are not identical.

VI. EXPLICIT BREAKING OF G SYMMETRY
BY SUPERGRAVITY

The global symmetry G of a supersymmetric nonlinear
o. model has to be explicitly broken in order for the model
to approximate reality to a higher order. One source of

, gQ, RR,
384

(36)

where RR = ,' d'" ~R&„—,R p, R&, being the usual

Riemann curvature tensor of curved space-time. '

Q is an element of the algebra of G. The violation of
global conservation of Q implies the simultaneous viola-
tion of the symmetries generated by those generators,
denoted by X generically, which carry nonvanishing Q
charge, because Q is required for the closure of the com-
mutators [X,X], where X denotes the anti-Hermitian con-
jugate of X. For the E8 model with H =SO(10)
X SU(3) XU(1), Q is the generator of the U(1) center of
H, i.e., Q = T of Eq. (10), and QIQI ——56. The E8 is bro-
ken explicitly to SO(10)XSU(3)C:H by this mechanism.
In general one may choose QI ~ CI.

The second plausible mechanism is the following.
When a supersymmetric nonlinear o model is coupled to
supergravity, general Kahler invariance, Eq. (2), of the ac-
tion can be preserved at the classical level if and onlv if a
Kahler transformation, Eq. (2), is accompanied by a chiral
transformation of the Fermi fields:

X'~exp[+ ,' (F F')y~]X', ——
exp[ .(F F*)75]4„—, —— (37)

where pz is the gravitino (Rarita-Schwinger field). 20 The
chiral transformation, Eq. (37), can be traced back to a
U(1) symmetry denoted R. Each X' carries + —, units of
R charge while f„rcraies ——,. Modulo the uncertainty
caused by the field-dependent (F F*), we expect a viola-—
tion of the R symmetry by the anomaly of the fermion (X'
and P„)triangle with one R current and two energy-
momentum tensors. This anomaly thus breaks the Kahler
invariance. The understanding of this mechanism is still
in a preliminary stage, further progress is needed.
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VII. DISCUSSIONS APPENDIX

Contrasting the structure of the supersymmetric non-
linear 0. model studied here, particularly Secs. II and III,
with that of the ordinary nonlinear o. model we cannot
help but be impressed by the power of supersymmetry.
Besides pairing up the Fermi fields with Bose fields, su-
persymmetry demands that the manifold, on which the
Bose fields take value, should carry an invariant complex
structure, which in turn leads to nontrivial handedness as-
signment of the Fermi fields. Furthermore, the number
of independent squashing parameters is greatly reduced in
the supersymmetric models. Consequently, we anticipate
a crucial role to be played by the mechanism responsible
for breakdown of supersymmetry, especially in the matter
of confronting the E8 models with reality. Of course the
E8 symmetry, and parts of the isotropy groups
H =SO(10) )& SU(3) X U(1), SO(10) X SU(2) )& U(1), and
SO(10) XU(1) need to be broken too. We pointed out two
plausible symmetry-breaking mechanisms, which involve
gravity, in Sec. VI. They deserve further study.

In Sec. V, through an analysis of the four-fermion in-
teractions inherent in the E8 models we concluded that the
characteristic mass scale A should be around or beyond
the grand unification mass scale ABUT —10' GeV.
Indeed there is an additional argument which suggests
that A )A&UT. This argument originates from the fact
that, in the Es models, the SU(3)c XSU(2)L XU(1) gauge
group as well as the grand unifying gauge group SU(5) [or
SO(10)] is embedded in the isotropy group of each E&

model. Spontaneous breakdown of the grand unifying
gauge group to SU(3)C X SU(2)I X U(1) at AoUT therefore
necessarily means simultaneously spontaneous breakdown
of the SU(5) [or SO(10)] subgroup of isotropy group H.
Thus, the structure E8/H loses its meaning if A & AGUT.
This phenomenological lower bound on A suggests
naturally that A may in fact be related to the Planck
mass Mz.

Now let us assume that one of the three E8 models is
the correct one. What conclusion can one draw from it
about the dynamical degrees of freedom proper to the
matter in the preonic phase? First of all, the model im-
plies a supersymmetric preonic phase. Second, since Es is
not a classical group, the new degrees of freedom cannot
be the commonly speculated pointlike preons. (The global
symmetry of the ordinary preon model is necessarily a
classical group, or a product of classical groups. ) Third,
taking the suggestion that A be related to MJ, we expect
the new degrees of freedom to live in a new phase of
space-time. In the present state of the art, the super-
strings in higher-dimensional space-time seem to be the
only plausible candidate for the new dynamical degrees of
freedom.
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1[z., r» ]= (r„).pw, p,2
0

—6,
' 0

0
—6"„,for a=1,2, . . . , 5;

[z., w', ]= ' (r„).,r', ,v'2
0 gA —5

l

Al0 ~jk ~Aj kmn

0

[z,zp]= ——,'in pT ——,'(r„).pL„,

[ Yr~, Yia]= o~tt~tjtc&

0

0 g(A —5)i
mn

&(W —S)l
jk &(& —5j)kmn

for A =6, 7, . . . , 1(),

[Y',„,W ]=— 5 (I „)pZp,v'2

[w'. , wp]= — 2"(r, ).pI „,v'2

[ w, zp]=5 P
and their Hermitian conjugates. The objects I z,
3=1,2, . . ., 10, are 16&&16-dimensional gamma matrices
for SO(10). The explicit form for I

„

is

where (O, i, [jk]) is the row index, and (O, l, [mn]) is the
column index, in accordance with the splitting
16=1+5+10with respect to SO(10)&SU(5) branching.
One can introduce 32)& 32-dimensional gamma matrices

0 l~
3 =1,2, . . ., 10,

which obey the Clifford algebra I y„,7 ~ j =2&„~.The ob
jects Xzz are defined as
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