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We present a qualitative derivation of the chiral model from QCD. This is based on using a

Nambu —Jona-Lasinio —type effective Lagrangian as an intermediate step. A detailed derivation of
the anomalous low-energy Wess-Zumino term is presented. This includes vector, axial-vector, and

pseudoscalar particles. The low-energy scale is set by H —(V%). We also present the low-energy

nonlinear chiral model which generalizes the Skyrme model. The possibility of soliton solutions is

indicated. There is a possible application of these ideas to electroweak theory.

INTRODUCTION

A well-known fact about strong interactions is that
pions are approximately Nambu-Goldstone bosons associ-
ated with the spontaneous breakdown of SU(3) X SU(3)
chiral symmetry. This is amply substantiated by the
phenomenological success of current-algebra soft-pion
theorems and chiral models. ' In QCD, the microscopic
theory of the strong interactions, numerical calculations
indicate the spontaneous breakdown of chiral symmetry.
There are also qualitative arguments that in the long-
wavelength and large-X limit QCD can be approximated
by a weakly coupled local field theory of mesons. The
strength of the coupling in this effective field theory is
proportional to 1/N, N being the number of colors.
Baryons appear as solitons in this effective field theory,
their mass being proportional to X.

More recently there has been a revival of interest in
current-algebra anomalies, the Wess-Zumino term, and
its topological properties. These developments are espe-
cially interesting because the anomaly coefficients con-
tained in the Wess-Zumino term are universal: they are
identical for the low-energy theory (written in terms of
composite smooth fields) and the microscopic theory.
These coefficients are solely determined by the fermion
representation of the microscopic theory. The Wess-
Zumino term also fixes the quantum numbers of the topo-
logical solitons.

At present there is no calculation that derives this field
theory of mesons, the chiral model plus Wess-Zumino
term, from first principles. The issue is similar to a
derivation of hydrodynamics from the principles of atom-
ic physics. The theoretical framework is that of the re-
normalization group, and there is a possibility that
Monte Carlo renormalization-group calculations can in-
clude the combined gauge-field light-quark systems and
attempt a derivation of the chiral model. In particular,
the numerical coefficients occurring in the chiral model
will have to be predicted from the microscopic theory. Of
these universal anomaly coefficient is perhaps the least
difficult to calculate.

Some time ago we had outlined the proposal that the
Nambu —Jona-Lasinio — (NJL) type Lagrangian con-
sidered as a cutoff field theory may adequately reproduce
the main features of the low-energy chiral model includ-
ing its topological anomalies and higher-order nonlinear
terms which can support soliton solutions. ' ' In this
paper we present a detailed exposition of this proposal.
We have also included vector and axial-vector couplings
in the NJL Lagrangian. Tensor and higher couplings are
omitted since they correspond to higher mass excitations.
The plan of the paper is as follows: in Sec. II we present
the arguments for the NJL Lagrangian in the context of
QCD. Section III reviews the standard discussion of
spontaneous breakdown of chiral symmetry. Section IV
presents a discussion of current-algebra anomalies includ-
ing scalar, pseudoscalar, vector, and axial-vector mesons.
The Wess-Zumino term of current algebra is the phase of
the determinant of the Dirac operator in the presence of
these fields in the long-wavelength limit. The anomaly is
reflected in the noninvariance of this phase under local
chiral (gauge) transformations. The anomaly equation
expresses this fact as a linear equation in the configura-
tion space of the local chiral group. This equation is in-
tegrated along a path in this configuration space to obtain
the Wess-Zumino term. In Sec. V we present the long-
wavelength expansion of the modulus of the determinant
of the Dirac operator. By long wavelength we mean that
the typical space-time variation of the scalar, pseudosca-
lar, vector, and axial-vector fields entering the Dirac
operator is slow compared to the inverse mass of the fer-
mion in the broken-symmetry phase of the NJL theory.
Section VI is devoted to the large-N perturbative spec-
trum of the theory and in Sec. VII we discuss the possibil-
ity of soliton solutions to the nonlinear o. model which
contains all nonlinear four-dimensional operators involv-
ing the current l&(x)=i'&U(x)U (x). In Sec. VIII we
present arguments to identify these solitons with baryons.
We conclude in Sec. IX with remarks on the possibility of
a topological soliton in the Glashow-Salam-Weinberg
model as a result of the existence of heavy quarks. We
reserve the phenomenological implications of this work
for another publication.
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II. NAMBU —JONA-LASINIO LAGRANGIAN
AND QCD

We have mentioned that the theoretical framework to
discuss phenomenological Lagrangians is provided by the
Kadanoff-Wilson renormalization group. In the absence
of a calculation we present qualitative reasoning to
motivate the Nambu —Jona-Lasinio —type effective La-
grangian. Let us begin with four-dimensional QCD on a
hypercubical lattice. %'hen the lattice spacing is small
(large momentum cutoff) we assume that the theory is
described by Wilson's lattice action for gauge fields and
fermions. The color group is SU(N) and the flavor group
is U(n)XU(n) T.o obtain an effective Lagrangian at a
larger lattice spacing (smaller momentum cutoff) we have
to integrate out high momentum fluctuations of the gauge
and fermion fields. Now suppose that after a few itera-
tions we reach a lattice spacing of the size of the correla-
tion length of the gauge fields, i.e., the momentum cutoff
is approximately equal to the glueball mass. The lattice
action at this length scale will be more complicated than
the original Wilson action. Besides minimal terms of the
Wilson action, depending on the blocking procedure,
higher-order nonminimal terms will be included in the
pure gauge and fermion parts of the action. ' ' A possi-
ble parametrization of the action is

= 1 1 1S~ ——
q gtrv4t(P)+ QtrU6l+ gtrv6~

gp

+ gtr U6, +K(gltJ( 1 +yp) U
1

+ac, g (yr. v„'„y)(qr, v„'„y),
(x,y)

I,= [ l, y5, y„,y&y„, . . . I, (x,y ) extend over a few lattice
spacings.

Now let us focus on Green's functions of gauge-
invariant local chiral operators at this scale. An example
1s

W.'j(x) =gq„, (x)r.y„j(x) .

If we further restrict our attention to properties of these
Green's functions for distances much larger than the
correlation length of the gauge fields (which in this case is
one lattice spacing) we are effectively dealing with a
theory of fermions with contact interactions. The main
point in the aboUe reasoning is that the non-Abelian gauge
field deuelops a finite correlation length and the nonlinear
fermion theory only eualuates correlations of gauge
inuariant fermionic operators. With this understanding of
the model there is no conflict with local gauge invariance
of the underlying theory and also the question of quark
confinement. A similar though far simpler situation,
where a massive gauge field leads to a Fermi theory with
contact interactions, is the familiar Glashow-Salam-
Weinberg model. Here the gauge symmetry is realized in
the Higgs phase which is manifest in the unitary gauge.
For wavelengths much larger than the Compton wave-
length of the W boson the gauge theory is well approxi-
mated by the Fermi theory without violation of gauge in-
variance.

+L++R ]+
a=1, . . . , N are color indices; j, k =1, . . . , n are flavor
indices and the subscripts L and R refer to the left and
right chiral projections of the quarks. g& and g2 are con-
stants of mass dimension —1. We treat them as
phenomenological parameters. We denote the cutoff im-
plicit in (1) by A, which is much less than the glueball
mass.

The effective Lagrangian retains the global U(n) XU(n)
symmetry of the QCD Lagrangian corresponding to in-
dependent U(n) rotations of left and right fermions.
However in QCD the axial U(1) symmetry is broken by an
anomaly. ' To incorporate this, in a manner consistent
with the large-N expansion, we add to (1) the term

l»det(WR jWLak) I'
which manifestly breaks the axial U(l) symmetry. It can
be shown that it leads to a mass for the g meson propor-
tional to I/~X. In the limit of large N, which is of
present interest to us, (2) is unimportant compared to (1)
and hence we shall ignore it in the following discussion.

The NJL Lagrangian (1) can be recast in terms of color
gauge-invariant collective variables, M, M~, Lz, R&. M
is a complex scalar and L„and Rz are vector fields that
couple left and right fermions, respectively,

—l W = QLl WJL +JR l QWR +PLMltJR +ARM 0L

+i(ltJLE QL+ ltJRRQR )+

, tr(L '+R„') .
g2

Evaluating the Gaussian integral over the collective vari-
ables we can regain (1).

Under the chiral group U(n) XU(n), the quarks and the
collective variables transform as

ltL V l 0L A V2.ltJR

M~ V)MV2, (4)

where ( V&, V2) HU(n) X U(n). Here ( Vl, V2) is x indepen-
dent.

III. CHIRAL-SYMMETRY BREAKING

In this section we review the single most important fact
about the NJL Lagrangian, that chiral U(n) XU(n) sym-

With these remarks we write down the effective NJL
Lagrangian which evaluates gauge-invariant correlations
of purely fermionic operators for distances larger than the
correlation length of the gauge fields,

—l W Il Laj l 91il Laj +0R aj l QIQRa j
+gl (WLaj PRak )(PRPk PLPj )

2
.g2
l—

4 [(0L JyP~L-k)(eLpky PWLpJ)
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metry is spontaneously broken down to diagonal U(n).
The method uses the large-X limit. '

Integrating over the fermions in the path integral corre-
sponding to (3), we get the path integral entirely over the
collective fields

Z= ) exp XSdg

S,rr = ln detD — fd x trM "M

fd x tr(L„+R„),

M(x) =diag(A, „A,z, . . . , A,„), A,;real

Lp ——Rp ——0 .

For these the value of the effective action is
r

S ff(Af ~, A,„)=g Trln(il+iAk)
k

(8)

The minimum is reached at BS,ff/BR=0, when all the
eigenvalues are equal to H, say. The gap equation is

1 2H
l tl Dirac + . .—+

2ig+iH Ng )

(9)

Since (1) is a cutoff field theory,

1 .— &dk 1

i 9+iH (2~) k +H ~
(10)

Evaluating (10) the gap equation takes the form

A2 H 21n
Svr' H' -=0

Equation (11) has two mutually exclusive solutions:

(12)

or

H A 8m.
1 — ln 1+

A H2 XA g
(13)

The first solution (12) corresponds to the case of unbroken
chiral symmetry. The second solution corresponding to
broken chiral symmetry exists only if the coupling is
greater than a critical value

D„y (19 ——EPL—gPg—+lMPL+lM Pg )6 (x —y) .

In the limit of large N, (5) can be evaluated at the
minimum of Sd~. We look for translation-invariant solu-
tions

By considering gaussian fluctuations around M=O and
M=H in (5), it can be shown that for g~ )g~„ the solu-
tion M=O is unstable, whereas the solution M=H is
stable.

The above conclusion remains unchanged for a large
class of cutoff procedures, for example, one could use a
smooth cutoff in (10),

d4k —k /A

tr~jl ag X X 4lH
4iQ+H (2~)' k'+H' (15)

The detailed form of the gap equation (9) and the value of
H are now different. However, the value of the critical
coupling remains unchanged.

IV. CURRENT-ALGEBRA ANOMALIES
AND THE WESS-ZUMINO TERM

We now focus attention on the fermion part of the
functional integral (5) or equivalently on the determinant
of D in (6). Denoting the fermion integral by

Z, = f gdPdPexp J d'x g(Q EP, 8P,— —

+iM PL+iMPq)Q . (16)

We note that Z is formally invariant under local
U(n) )& U(n) gauge transformations:

pL ~QL pL, L„~ALL„QL+i8„OJQL, M +ALM, —
(17)

P~ ~f1~P~, R„~Q~RpA g +i BpQ g Q~, M ~MA g .

It is important to emphasize that local symmetry con-
siderations only apply to the fermion part of (5). The en-
tire integral (5) has only a global U(n) XU(n) symmetry
which as we have seen is spontaneously broken to diago-
nal U(n).

The local invariance of (18) is only formal. It is well
known that the currents corresponding to this symmetry
are not conserved due to the presence of anomalies. More
recently Fujikawa has shown that in general local phase
rotations of left and right chiral fermions do not leave the
fermion measure invariant, ' i.e., detD is multiplied by a
phase on making a local chiral rotation on the collective
fields unless fermion representations conspire to cancel
phases among themselves.

To proceed further we take up the important question
of the definition of the path integral (16), or equivalently
the definition of detD. In Euclidean space the operator D
is elliptic in the space of functions with the scalar product
(X, t/i) = fX (x)1i(x)d x The presenc. e of chiral cou-
plings imply that D is not self-adjoint. Hence its eigen-
values are complex. Further if we make the reasonable as-
sumption that Euclidean space is compactified to S4 by
identifying points at infinity, the operator D has discrete
eigenvalues,

28m+ gl &+ glc (14) e„=e "/e„
f

Further since all the eigenvalues of M are equal, the chiral
symmetry is broken from U(n) &&U(n) to diagonal U(n). ln detD =gine„= igh„+ —,

' gin
~
e„~ (18)

The determinant is then formally defined by the formula
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Since
~
e„~ are eigenvalues of the non-negative operator

D D, wehave

—gin ~
e„~ = —,Tr lnD D .

7l

We will denote the phase of detD by

h=gb, „=1m(lndetD) .

(19)

(20)

The sums in (19) and (20) are over an infinite number of
eigenvalues. In a cutoff field theory, these sums must be
cut off at n -A. A smooth cutoff procedure which main-
tains certain symmetry principles (depending on theory) is
desirable. Since we are modeling the strong interactions
and our effective Lagrangian evaluates gauge-invariant
fermion correlations of QCD at long distances, we have
no choice but to define detD to ensure the conservation of
vector currents. This is phenomenologically correct, and
recently Witten and Vafa have proved the conservation of
vector currents in QCD-type theories. ' For these reasons
we define (19) and (20) using the proper-time formulas of
Schwinger:

b = Im(ln detD) = ——,
' Im f Tre

1/A2 g

—TrlnD D= —TrlnD D= —— Tre1 $$
2 2 2 1/A2 s

(21)

(22)

It is always possible to go to this gauge by a local
transformation in U(n)XU(n). Following the Faddeev-
Popov (FP) method' we introduce the identity

b„(X)f+dQ dQ„5(Q MQ —X,)=1 (24)

into the integral in (5) and perform the change of vari-
ables M —+QzMQz ' to get

Z= fdL dR dQ, dQgdk, happ(A)exp( —XS,ff),

S,rr = —ln detD+ g fd x A.;
(25)

y4
g 2N

The choice of the operator D=iy5D is dictated by the
fact that ln detD = ( ln dety &D) and that ln detD
=(—,

' ln dety&DyqD) leads to the correct expression for the
free energy of the Dirac particle in the absence of external

fields. The factor i in D, ensures the convergence of (22).
6 is related to the Wess-Zumino term.

Our main aim in this section is to extract the gauge
dependence of lnz in (16). Since TrlnD D in (22) is
chiral gauge invariant this is equivalent to extracting the
gauge dependence of phase b, in (21). We begin by
separating the invariant and gauge degrees of freedom
from the fields Lz, R&, M by fixing an unitary-type
gauge on the scalar field M(x):

M(x)=A(x) =diag(A, ,(x),A2(x), . . . , A,„(x)), A, ; )0 .

(23)

D=i & E—Pg g—Pg+i Qg AQgPg+iQgAQgPg,

h„(X,)=+[A,;(x)—A, (x)]
(26)

The amount of gauge that is fixed depends on the struc-
ture of the matrix A, which is a dynamical question. In
the last section we saw that the large-N saddle point cor-
responds to A, =H in (13). (The lnb, zp does not contribute
to the saddle point since it is subleading order in 1/N. )

This means that the gauge condition (23) is left invariant
by gauge transformations [(Vz, Vz ) H U(n) X U(n)] for
which Vr ——Vz. We denote this set by diagU(n) T.he
gauge is fixed only up to diagU(n) and we have separated
the gauge degree of freedom belonging to the coset
U(n)XU(n)/diagU(n). L& and R& are invariants under
gauge transformaiions.

An important consequence of the above is that in the
broken-symmetry phase, we can write (25) in terms of a
single unitary matrix U=Az Qz ', which represents the
pionic collective mode. In particular the differential
operator (26) becomes

D =i e) EPz —go+i—H( U"Pz+ UP~ ) . (27)

To calculate the phase (21) we consider the rotated opera-
tor

D =i 9 EP~ g—P~ +iH —(Q U Pg + UQtPg ),
(28)

R( )=QRQt+iBQQt, Q(x)=e'"'"'

and establish a differential equation for the phase of D(
Noting that D'"'=(P~+P~Q)D'"="(P~+P~Q '),
under small variations Q —+A+50, we have

5D(")= ,' [5QQ-',D(")-] ,
'

[ y, 5—Q—Q ',D(")-j, (29)

the first is a vector variation, the second an axial-vector
variation. Our regularization preserves vector sym-
metries, hence the first variation does not contribute to
the variation of the phase 6 and we have

5[5(Q)]= —Im Tr(y$5QQ 'e (30)

The evaluation of the trace in {30) is long and tedious.
The main steps are relegated to Appendix A. Here we
present the result which agrees with Bardeen's calcula-
tion 20& 2 1

5[id,(Q)]=fd x tr~(i5QQ 'B),
(31)

1

8m
2[ Pv+

', i(Pva '+ AFva—+—W'Pv) 3W'] . —

In {31)we have used the notation of differential forms

F=F& dx& 5dx, F =FAF,

F~——dV+i V2+iA2, Fz ——dA+E'AV+i VA,

V= ,'(L+R(")), ~= ,'-(L —R(")) . -
V and A are vector and axial-vector fields, respectively.

In order to integrate the anomaly equation (31) it is
convenient to write (31) in a form that expresses the
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right-hand side of (31) as the divergence of a current.
This is done using Bardeen's identity:

f d x tr/(i5QQ 'B)= 5—[iC, (L,R(n))]

We define the differential operator &, =iud, 5/5r)i, in the
configuration space of the collective field U(x). Then
(34) reads

V, (b+C, )= trt, d[R )dR( )+ ,'i(—R(n)) ]

+ fd x tr/[i5QQ 'G(R ( ) )],
(32)

=trt. G(R '"') . (36)

where

Ci(L,R) = fd x trI i [R,L](dL +dR)
48~

+RL +R L —, LRLR—I

and (33)

G(R)= d[R dR+(i/2)R ] .
24~

The differential equation (31) can now be recast in the
form

Equation (36) says that in the presence of fermions
"Gauss's law" is modified by the anomaly term in (36).

The crucial point in integrating (36) is that in the
right-hand side of (36) the collective mode Q makes expli-
cit appearance separated from the invariant coordinates
R. This enables us to separate the purely longitudinal
part of (36):

&~(b, +C&)=trt, [G(R ) —G(0 )]+trt, G(0( )) .

(37)

G (0 ) stands for the anomaly term (33) evaluated when

Rp ——0:

5(i b, +iCi ) = fd x trI[i5QQ 'G (R )] . (34) G(0( ))=— (i dQQ ')1

48~
(38)

Using the parametrization Q=e'", we can write
5AA '=e'"+ "'e '". The group law is defined by the
equation e' e'~=e' ' '~'. Hence we have to first order in
5q,

The remaining part can be rewritten as

trt, [G(R ) —G(0 ))]=—&,C2(R;i dQQ ') .

(39)

i5QQ '= t, ub(rt)5'",—ui', = X(a, —g)
C)A'

(35)
I

Under the variation Q~e' "Q, 5(iQ 'dQ)
'd5r)Q. Using this (39) can easily be integrated

to get

C2(R;i dQQ ')= — d x trI (R ) i dQQ '+(i dQQ ') R + —,(idQQ ')R (i dQQ ')R1

48m

+i(i dQQ ')(R( )dR( )+dR( R( )I .
I

(40)

So finally we come to the nontrivial differential equation

~,(&+C, +C, )=—,trt, (i dQQ ')1

48~
(41)

As was originally pointed out by Witten (41) cannot be
integrated in four dimensions. Following our method'
we will integrate it along a path in the configuration space
of the collective field Q. The Wess-Zumino consistency
condition which is a zero-curvature condition assures us
that the solution is path independent. We parametrize the
path by its length. The line element in configuration
space is given by

(ds) = fd"x tr(idQQ ') (42)

The tangent vector at the point s along the path is given
by

r, (s) =i trt, Q
dO
ds

hence the projection of the derivative &, along the
tangent r, (s) at s is given by

ds ds
(43)

The differential equation becomes

(b+C, +C,)=,fd'x QQ —' (dQQ —')4.
ds 48~ ds

(44)

r( ) —r(0)

, f ds'f d xtr, Q ' (dQQ ') . (45)

Let the point s =0 correspond to the configuration
Q(x, 0)= 1 and the end point s correspond to
Q(x,s) = U(x). Now (44) can be integrated between these
two points:
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A simple rescaling of s enables us to write (45) as

I (x =1)—I (x =0)= f dx f d x tr QQ ' (dQQ ')l '
g d

48~2 o s' ds

where Q(x,x5 ——0)= 1 and Q(x, xq ——1)= U(x). A more symmetrical form of (46) is

1(x =1)—1(x =0)= f,dX;„I tr(a, QQ-'a, QQ-'a„QQ-'a, QQ-'a QQ-'),1

240~

(46)

(47)

=i[C)(L;R( ) —C)(L;R)]+iC2(R( );idUU ')

+,f dX(dQQ ')'. (48)

Equation (48) gives a formula for the difference between
the phase of two determinants, one corresponding to
Q(x) = 1 and the other Q(x) = U(x).

We now note that the vector field R( ) is invariant
under the local right transformation R ~R and
U~a ' U. Hence we would expect that
ImlndetD[Q=U]=Imlndet(il EPL —g—( )+iH) is
also invariant under local right transformations and hence
cannot contribute to all but the first term on the right-
hand side since these vary under R ~R ~ and
U~a 'U. In Appendix 8 we sketch the proof that in
the long-wavelength approximation in fact

I

i b (L,R, U) = —,(Im ln detD( =')+Im ln detD ( ='))

where dX,JkI is the volume element of a five-dimensional
disk with space-time 5 as its boundary.

Now I =b +C) +C2. Hence using the definitions (28),
(32), and (38) and noting that C2( U = 1)=0 we get the re-
sult

(ImlndetD( =') —ImlndetD( = l)

ImlndetD[Q= U]=0. By the long-wavelength limit we
mean for wavelengths much larger than 1 /H, a calcula-
tion which assumes that we are in the broken phase where
H —(gP). Hence in the long-wavelength approximation
the phase of in det[iQ —EPI. gP~—+iH( U PL+ UP~ )] is
given by

ImlndetD( =')= i[C, (L;R(U)) —C)(L;R)]

+iC2(R( l;i dU U ')+,f dr(dQQ-))'.
240~

(49)

Hence

Equation (49) can be written symmetrically in L and R by
noting that the entire calculation could have been repeated
for the left rotated operator D =i e1 E( )P~ —gP~—
+iH(U V PI + VUP~). Then the analog of (49) is

ImlndetD =')=i[C)(L;R)—C)(L;R)]

+ C, (L( '); dUU-')

+ 2 f dX(Q 'dQ)

= —[C)(L(;R)+C)(L;R( ) —2C)(L;R)]+—[C2(L(;i dU U ')+C2(R i dU U ')]

+ fdX(dQQ ')'.
240m.

(50)

We note that if L =R =0, (50) agrees with our previous
result.

V. LONG-WAVELENGTH EXPANSION
OF THE MODULUS OF THE DETERMINANT

Now that we have extracted the phase of the deter-
minant we proceed to evaluate ln

~

detD
~

which was de-

fined in Eq. (22),

Introducing the vector and axial-vector fields

L+R~ ~ L —R'V=
2

'
2

)=i9—F' —Ay5+iH .

U~Then with definition O=(D( ) )D(U), (51) becomes

(53)

ln
~

detD
~

= , Tr 1nD tD = ——,
'— Tre

1/A~ S
(51)

In (51) D =i/ EPI gP~+iH(U—PL+—UPg). However
since DD is anomaly free, we work with the gauge-
rotated operator:

D =(Pg+PL U)D(PI +Pg U )

=i Q EPI —g ( )Pz +iH—,

1 dnet
~

D~= —
~ f, Tre (54)

The operator 0 can be treated as a quantum-mechanical
operator O=O(P&, X&) with Pz ——iB„and Xz ——x&. In
the plane-wave basis the trace in (54) can be written as

d4k
Tre —o(, ) fd4x d4+ (x

~

so(P+k, x)
~

)—
(2vr )'

R~ ~= URU '+iBUU
(52)

Equation (54) can now be expanded as
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f s
e H —f d4X d4+ f e

—k ( e
—(O(p+k, ") k— H—]

~ ~ )
1/p2 (2~)"

(56)

This formula gives a systematic expansion in powers of 1/H. Details are given in Appendix C. The final expression in-
volving operators up to dimension four is

Nln
~

detD
~

= N f—d x trf [ d~[ , (F&—)+ , (F„",—) +4H A„+(a&H) +(H H)—]

+d2i[A„,A ]F„+d3A„(H H—)+d~(a„A +i[V„,A ])

+d5(A„) +d6[Aq, A, ] ] .

The fields are defined as

F„'.=a„v. a.v„+i[v„,v.]+i[A„,A„], F„',=a„A„—a.A„+i[ v„, A, )+i[A„, v, ] .

The coefficients are given by
4 8 4d) =F )~ d~= —4FO, d3=4F

&

—8FO, d4= —
3 Fo d5 = —

3 (2FO —F] ) d6= —
3 (Fo+F])

(57)

(58)

where

F 1 ~ds, 1 1 ~, H
1677 x s '

1677 16m x
e ', Fo —— 2e, F] ——

2
dsse ', x=

2A

As expected (58) is invariant under vector gauge transformations: V~QVQ '+iaAA ', A —+AAQ '. Axial-vector
transformations are not a symmetry of (58). This is because the long-wavelength expansion is performed in the broken-
symmetry phase with respect to the mass H-(gP).

VI. THE PERTURBATIVE SPECTRUM

Now that we have completed our calculations let us collect our results. The effective action at long wavelengths
(k «1/H) turns out to be

NS, ff iNb, (L,R, U—)+N ln detD
~

—
2 f trH

2 f tr(—V& +A„),
Ng & Ng2

(59)

where b. is the Wess-Zumino term given by (50) and ln
~

detD is given by (58).
The spectrum of this effective action can be analyzed in the large-X limit. Let us first consider the perturbative spec-

trum which consists of small oscillations around the classical broken symmetric configuration: U=1, L„=R„=O,
H =H. The Wess-Zumino term is irrelevant for this problem since it only provides the anomalous vertices. We analyze
the quadratic part of the real part of the action:

r

S ff —fd xtr (a&v —a V&) + (a„A —a A„) +d, (a&o ) +4H d~o'

+ 4H'd, (A„+ ,' a„~)'+, (—A„'+v„') (60)

In (60) we have used the definitions A =(L —R)/2, V=(L +R)/2, cr=H(x) H, and U=e' =1+—iver In (60) the. re is
a mixing between the axial-vector field A& and B&~. To diagonalize the quadratic form we define the linear combination

1+2H ~d &Ng2
Ap ——Ap + Bpm. , 2 (61)

Then (60) becomes

—S,ff —— d x tr ' (a„v„—a„v„)'+,v„'+ '
(a„A.—a,A„)'+2d, aA„'

H+ d) (a„cr) +4H o. + (a„vr)
1+2H d&Ng2

(62)
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The fields V& and Az are to be identified with the vector
and axial-vector mesons, with masses

where stable time-independent soliton solutions can exist.
The details will be presented elsewhere.

my —— , m- = +6H2= 3 2= 3 —
2 (63) VIII. BARYONS ARE SOLITONS

leading to the relation

m- —my ——6H2 2= 2
A

(64)

The field o. is that of a neutral meson with mass
m =4H . ~ is the pion and the coefficient of (B&~) is
to be identified with the pion-decay constant

NH di

1+2H d)Ng2
(65)

VII. SOLITONS

—S,ff ——fd"x tr 4H d, (l„) +3d4(B&l&) + (lz )

We now comment on the possibility of soliton solutions
of the effective Lagrangian (57). A simple possibility is to
set the vector and axial-vector fields to zero: V&

——A& ——0,
and the density field H(x)=H. The resulting effective
Lagrangian is that of the nonlinear o. model with higher-
order terms:

is a color-singlet baryon number operator. We have
suppressed the flavor and Dirac indices. Since baryon
number, being a vector symmetry, is conserved the state
J(x)

~

0) has a nonzero overlap with a baryon state. Also,
because P; are anticommuting

J(x)=pi(x) . .
t/) N( x),

B(x)=(f;(x) P~(x)Q~(0) . . $((0)) . (69)

The QCD considerations which led us to the NJL-type ef-
fective Lagrangian apply as well for (69). Introducing
auxiliary variables and integrating over the fermions, we

get

In this section we would like to identify the large-N sol-
itons of the effective action (66) with baryons. Consider
the two-point function

B(x)=(J(x)J (0)), (68)

where

J(x)= e;, . . . ; g;, (x) . . 1l; (x)
1

where

B(x)=—f [6(x;M,L,R)] exp(XS,ff),
1

7

(70)

l„=i0„UU

The second term with the coefficient d3 contributes to the
inverse pion propagator: 4H d I k —3d3k . However,
since we are restricted to slowly varying functions for
which k «H, the second term proportional to k is
neglected. This elementary perturbative argument could
be carried over to the soliton sector by minimizing (66) in
the class of slowly varying functions where we can neglect
the term d3(B„lz) and the relevant effective action is

Seff —fd x tr 4H d& (lq )+ [l„,l~][l„l~]
16

(67)

where G(x, O;g) is the Green's function corresponding to
the operator D„~ in (6). [G (x,O;g)] is color gauge invari-
ant and a symbolic notation for the product of quark
propagators in presence of the fields g' with appropriate
Dirac and flavor indices. For large x the ln of the
Green's functions will go like e t~~ ~ ~. Let us now as-
sume that in the limit of large X, B(x;0) is evaluated by
the saddle-point equation,

5S,rf —5m
I
x

I
=0 (71)

Since for large
~

x
~

we expect S,rr and m to be bounded,
the variational equation (71) implies 5S,ff =0 and 5m =0.
Hence baryons are solitons of the mesonic effective action
S.

The baryon current is defined in terms of the left and
right variations of lnZ@. Z~ was defined in (16):

The signs of the coefficients in (67) are important. First,
the energy density should be positive, second, if a stable,
time-independent soliton solution is to exist, the contribu-
tions to the energy from the four-derivative terms (G4,
say) should also be positive. The coefficients occurring in
(67) are functions of x =H /A . We find that
(d4 —d6)/16 is positive for all x, d& is negative for the
range x =0—1.1 and positive for x & 1.1. We have nu-

merically checked that for a wide range of slowly varying
configurations the energy density is positive for all x. 64,
however, can be negative when d& is negative. Thus there
is a range of x where d»0 and hence 64 is positive

B„=—tr(J„+J„),P

Jp ——l pypPI g'l= — 1nZy,
5Lp

5
lnZg .

Mp

Therefore the baryon current can be written as

1 6 6
5Lp 5Rp

(72)

(73)
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Now Inz~=lndetD=N( , T—rlnD D+ib, ), and the real

part defined by (22) is invariant under vector gauge
transformations, hence (73) becomes

5 5
8& ———itr + (74)

The baryon current depends only on the variations of
the phase of the determinant and in general is a compli-
cated function of the fields J&, R&, and U. However in
the limit of very long wavelengths when the massive vec-
tor and axial-vector particles decouple from the effective
Lagrangian, we can consider the fields L& and R& in (16)
as infinitesimal sources and the formula for the baryon
current becomes "

5 5

6Lp 5Rp L =A=0
(75)

In this long-wavelength limit the only contribution to (75)
is from the five-dimensional term in (50),

B„=— e„„e tr(B,UU 'deUU '8 UU '),1

24m
(76)

8&, as is well known, is a topological current and its
charge, the integral baryon number

1 fdx e; ktr(a, UU-'a, UU-'a„UU-')
24m

is a topological invariant.

and does depend upon the details of the coefficients (66).
A soliton solution to (66) in an appropriate range of pa-
rameters has been borne out by numerical calculations.

There is another theory to which the type of analysis
we have presented can be applied. "' In the electroweak
theory of Glashow, Salam, and Weinberg, if we integrate
out the heavy top and bottom generation, then in the
very-long-wavelength limit, when only the longitudinal
modes of the vector bosons are dominant we can expect a
nonlinear chiral model which may be able to support soli-
ton solutions. We mention that these considerations are
quite different from those of Gipson who has considered
such solitons in the electroweak theory resulting from a
strongly coupled Higgs sector.

Tote added. While this work was in progress, we re-
ceived the following papers which have also discussed the
non-Abelian anomaly with vector mesons: (a) O. Kay-
makcalan, S. Rajeev, and J. Schechter, Phys. Rev. D 30,
594 (1984); H. Gomm, O. Kaymakcalan, and J. Schechter,
ibid 30, 23.45 (1984). (b) N. K. Pak and P. Rossi, CERN
Report No. Th. 3831 (unpublished). (c) H. Kawai and S.
H. H. Tye, Cornell report (unpublished).

References (a) and (b) use the trial and error method of
Witten. They have also emphasized the importance of the
conservation of vector currents to obtain the correct form
of the Wess-Zumino term Ref. erence (c) integrates the
anomaly equation along a path in configuration space.
We mention that this procedure was previously employed
in Ref. 10.

IX. CONCLUSION ACKNOWLEDGMENTS

In this paper we have presented a qualitative picture of
the emergence of the chiral model from QCD using the
Nambu —Jona-Lasinio —type effective Lagrangian as an
intermediate step. Our calculations involved a detailed
derivation of the anomalous Wess-Zumino term of current
algebra, including vector, axial-vector, and pseudoscalar
mesons. We have also calculated the effective Lagrangian
for these particles at low energies. The coefficients d;
(58), of the effective Lagrangians (57) and (66), unlike the
anomaly coefficients, are not universal. However it is
likely that the Lagrangian of the form (57) and (66) would
emerge from a more detailed renormalization-group treat-
ment of the underlying gauge theory.

We emphasize that (66) is a more realistic description
of chiral dynamics than the Skyrme model. Also the ex-
istence of soliton solutions in the chiral model (66) is by
no means obvious (since all coefficients are not positive)

I

We thank W. Bardeen, R. Dashen, T. Eguchi, J. Kogut,
Y. Nambu, L. K. Pandit, M. Peskin, B. Sakita, J. Schoen-
feld, S. Shenker, V. Singh, H. Sugawara, and L. Yaffe for
comments and criticisms during the course of this work.
One of us (S.W.) would like to acknowledge the hospitali-
ty of the National Laboratory for High Energy Physics,
Japan (KEK), where part of this work was done.

APPENDIX A

Here we outline the main steps in the calculation of the
variation of the phase of the fermionic determinant:

5(b ) = —Im Try55QQ 'e

where

D (+)(P,x)=y~[J' gPg g( )Pg+i—H(QU—Pr + UQ Pg)]

=y5(j' —P gyg+iM Pr +iMPR—),
V= ,'(r. +Z(")), ~= ,'-(r. —~(")), M=Un'. —

P and X are operators in the space of spinors with the inner product (P,X)=fd x Pt(x)g(x), P& i dldX", and-—
Xz ——x&. Following Fujikawa we evaluate the trace in the plane-wave basis:

—1 —D 2/A2
4—Im TrMIQ 'yqe = —Im f ~ (k

~

tr6QQ 'y5e "
~
k)

(2m)
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(tr is over Dirac and flavor indices)

f d'k
(2m. )"

= —Imf "",
(2'�)

fd4 d4 (
~

5fIII—1 ~k D—/A —'k

f d x d y(x
~

try55AA 'e ' + '"' ~y)

= —Imfd xdy x try55QQ 1 — +4 4 Tl T2

2~W4
(A2)

where

T f e
—k /A [D 2(P+k x) k2]n

(2m)

Dropping terms O(l/A ) implies that we drop operators of dimension &4. Thus we can get contributions only from
Tf T2 T3, and T4 ~ After performing the trace operation and taking only the purely imaginary part, we are left with
only the "minimal" terms proportional to e& ~. It is convenient to work with the operators d@ ——P„—V& and A&, since
these transform covariantly under vector gauge transformations. In terms of these

D (P+k,x) k= d—„d„+2k„d„+[A„,d„]y5 Aq—A„+i [yf Ay5+—lg', M tPL+MP~]

+M M PL +M MP~+ ,
'
[y„,yv—]d„d„+ [yp, yv]I A~, dv I +y5[y„,yv]A„kv

2

1

2 [7 jl&yv] p v (A3)

Computing the T; s is tedious but straightforward algebra. The k integrals reduce to Gaussians and can be easily done.
Finally we obtain

T1 ——T4 ——0,

~4 31+6
T2 T3 —2trf( dpd„d dp+ ,

'
[A~d, +d—qA ][A dp+ d A p] —', A„d,d A p

— ,
' d„d„A A—p—

1 1

3 ApAvdadp 3 ApAvAaAp)epvap (A4)

From this we can easily get our final answer

—Im Try5MII 'e = fd x trf[iMQ '8(x)] . (A5)

B (x) is Bardeen's anomaly.
It is important to note that at the level of phenomenological Lagrangians, where the ultraviolet cutoff is finite, it is

justified to drop O(1/A ) terms in the anomaly Eq. (A2), because we are assuming that the background fields are slowly
varying over this scale.

APPENDIX 8

We will now proceed to carry out the long-wavelength expansion of the phase of the determinant of D ( = ) and show

that it is indeed zero. The long-wavelength expansion was explained in the text. We have

Im ln detD t = = ——,Im e
1/A2 S

2
1 dS H 2s 4 4 s — s= ——,Im e ' dxdy x 1 — T1+ T2 —. y

1/A2 S A2 21A4
(Bl)

where

d kT„=fe-"" [D( l("+k x)—k' —8']"
(2m. )

The operator D (p+k, x)—k has been written down in Appendix A. After a lot of algebra on similar lines to the cal-
culation in Appendix A, we get
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T] ——0,
2

T2 ——2trf (ddAd —dddA —Addd —dAdd +dAAA —AdAA +AAdA —AAAd),
2!A

$
Tq ————,trf (ddAd —2dddA +.2Addd —dAdd +4dA A A —5AddA +- 5AAdA —4AA Ad ),

31A6

4

T4 ——4trf (dAAA —AdAA +AAdA —AAAd),
4!W'

where

+1+2+3+4=epvap lIJ+2%3a+4p .

It can now be easily verified that
2 3 4

T2 — Tq+ T& ——trf I [[d,d], [A,d]]+[[d,A], [A,A]] I =0 .
4

(B2)

(B3)

APPENDIX C

The long-wavelength expansion of the real part of the ln of the fermionic determinant has already been described in
the text. We now describe the salient features of the calculation. We have

ds
lndetD D= ——,Tr —sD D

1/A2 s

where

ds —H2s d k —sk2 s= —TTr e ' e ' tr x 1 —ST&+ T2 —. - y
1/A s (2~) 21

(Cl)

T„=D D(p+k, x) k H— —

After the algebra we will be left with integrals of the following type:

1 ~ ds H2, , d k
nl e 's" k e

n1 ~/A~ s (2')4
All the integrals we need (n & 5, l & 3) can be written up to a constant as one of the following three integrals:

f e ', Fo —— 2e ", F, = f se 'ds, x=H /A
16m & s

'
16~

'
16~

Here we digress to remark that if we had regularized the determinant in the following way,

(C2)

(C3)

lndetD D= ——,Tr g sD D
1/A~ S

(C4)

where g (y) is any smooth function which vanishes at y = oo along with its derivatives, the only difference in the calcula-
tion is that F ], Fo, and F& are modified to

F 1 ~ds 1 00

g (s), Fo ——
2 f ds g'(s), F& —— f ds sg "(s) .

16m " s 16m ~ 16m
(C5)

The operator D D(P+k, x ) is given by

D tD(P+k, x)= k +H +2d„k„2A„k„y5+(d„d„—+A„A„) (A~d„+d~Aq)y~ —iy„BqH—

+2iHA&y&y5+(H H) — y&y gz — yzy —y—~F&—P P~ 2 P (C6)

We have taken H(x) to be a multiple of the unit matrix, d& P& —Vz. After a te——dious calculation we finally get the re-
sult quoted in Sec. V. Also (C5) indicates that the coefficients d; are not universal.
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