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Chiral anomaly, bosonization, and fractional charge
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We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through
the proper-time method and using Seeley s asymptotic expansion. With this method we compute

easily the chiral anomaly for v=4, 6 dimensions, discuss bosonization of some massless two-

dimensional models, and handle the problem of charge fractionization. In addition, we comment on

the general validity of Fujikawa s approach to regulate the Jacobian of chiral rotations with non-

Hermitian operators.

I. INTRODUCTION

Chiral anomalies have been playing a role of increasing
importance in the field theory of elementary particles
since their discovery some fifteen years ago. '

More recently Fujikawa developed a method which al-
lows one to study chiral anomalies in a path-integral ap-
proach, independently of perturbation theory. He ob-
served that the path-integral fermionic measure is not in-
variant under a chiral change of variables and that the
anomalous term comes from the Jacobian of the chiral ro-
tation.

Afterwards his method was employed to implement a
sort of path-integral version of the bosonization tech-
nique in two-dimensional models. Recently Schaposnik
showed' how Fujikawa's method can be implemented to
study the problem of charge fractionization"' in two-
dimensional models.

The method developed by Gamboa-Saravi,
Muschietti, Schaposnik, and Solomin to compute the
Jacobian of chiral rotations makes use of the zeta-
function regularization of functional determinants' and
the direct computation of Seeley's coefficients. ' It is the
purpose of this paper to use instead a method developed
by Alvarez' to compute determinants, by means of the
proper-time method and Seeley's asymptotic expansion, '

to study the chiral anomaly in space-time dimension
v=4, 6, bosonization of some massless two-dimensional
models, and charge fractionization.

There are some conveniences with this method, as fol-
lows.

(i) For normal Dirac-like operators the computed Jaco-
bian is directly identified with the regulated Jacobian of
Fujikawa.

(ii) The asymptotic expansions are tabulated for all
physically interesting examples we are considering.

The shortcoming of this method is that we cannot com-
pute the Jacobian of a theory for all non-normal Dirac-
like operators, as is done in Ref. 6, for example in the
physically important theory with a pseudovectorial cou-
pling, unless we are able to analytically continue this
operator for a legion where it is normal.

In the next section we present Alvarez's method for

computing determinants, give the Jacobian of chiral rota-
tions by this method, and briefly discuss its direct identifi-
cation with the regulated Jacobian of Fujikawa and possi-
ble consequences for the method developed by Fujikawa
when the Dirac-like operator is non-Hermitian. '

In Sec. III we compute easily the anomaly in v=4, 6
space-time dimensions for QCD. In Sec. IV we apply this
method to bosonization of the Schwinger model, the Thir-
ring model, and massless two-dimensional QCD. And, fi-
nally, in Sec. V we discuss the application of this method
for the fractionization of fermion number.

II. THE JACOBIAN OF THE CHIRAL
TRANSFORMATION

ry
1( =T)„e 7

(2)

with 4=@'A,„where A,, are the generators of the group
of interest, and r is a real parameter (0(r & 1).

The transformation (2) in the generating functional (1)
introduces a Jacobian as follows:

G = f D7)„Dri„J(r)exp —f ri„D„g„d"x

with

~~v+1+ r "~v+ l + (4)

We integrate over the fermionic fields in (1) and (3).
The result is formally the determinant of the Dirac opera-
tor:

G =detD =J(r) detD„

so we may obtain a formal expression for the Jacobian of

We start by considering the fermionic part of the gen-
erating functional of a Euclidean Dirac-like theory:

G = f DQDgexp —f QDPd"x
'I

and introduce a non-Abelian local chiral transformation
over the fermionic fields
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the transformation (2) in terms of functional deter-
minants:

ln detD„D„=4Tr[f exp( F—D„D, )] .
dr

(9)

ln J(r) =ln detD„o —lndetD„.

Tr exp —sD,D,
8$

E' s
(7)

with e an ultraviolet cutoff on the proper-time integra-
tion.

But the operator given in (4) has the useful property
thai"

The functional determinant in (6), as is well known,
diverges and must be regularized. In order to regularize
this determinant by the proper-time method we must con-
struct a square operator, DD, and provided that ln detD
is proportional to ln detD we have

ln detDr = ln detDr Dr =Tr lnDr D

In deriving this last formula (9) we are assuming that the
operators D, and D„satisfy

f ds Tr[D„fD„exp( sD„D—„)]
= f ds Tr[fD„D„exp( sD„—D„)) (10)

which is valid when D„ is a normal operator.
Now, since f is a matrix function, in order to compute

the functional trace in (9) we integrate over the diagonal
part of the heat kernel for D„D„. For this diagonal part
Seeley has shown' that there is an asymptotic small-e ex-
pansion given by

(x
~

exp( eD„D,—)
i

x ) —
i2 [ao(x)+@a i(x)

o (4~@)'

Cg D„=fD„+D,f (8)

+e a2(x)+ ]

with f =y„+&4&. Then differentiating (7) with respect to r
and using property (8) and the cyclic property of the func-
tional trace, we get'

with the coefficients of this expansion tabulated for physi-
cally interesting operators.

Integrating expression (9) over r from 0 to 1 we obtain
the Jacobian of interest, i.e., for r = 1,

lnJ(r =1)=—2 f dr f d x tr[y, +i@(x)(x iexp( eD,D„) ~x—)]
CP

(12)

with tr, r denoting the trace over y-Dirac and color matrices. (Notice that we do not use the perturbative evaluation of
the determinant. '

)
For the purpose of comparing this Jacobian with Fujikawa's regulated Jacobian we consider an Abelian local infi»-

tesimal chiral transformation. As the infinitesimal field @(x) appears directly in the integrand in (12), it is only neces-
sary to consider the e-independent term of the diagonal part of the heat kernel. Then, lntegratlng over r and expanding
over eigenfunctions of 8 we get Fujikawa's expression for the regulated Jacobian of an infinitesimal local chiral
transformation:

lnJ= —2 f d"x @(x)tr y5+ (x
~

A,„)exp( elk )(—Ak ~x) (13)

The expression (12) appears as a natural extension of
Fujikawa's method for computing the Jacobian of a local
finite chiral transformation.

However, in cases where the operator D is non-normal,
as we have seen, we must be careful that lndetD is pro-
portional to ln detD and that expression (10) be valid; this
puts forward some questions concerning the general valid-
ity of Fujikawa s method to regulate non-Hermitian
operators. '

As was said in the end of Sec. II, for the purpose of
computing the chiral anomaly it is only necessary to con-
sider the N-independent term of the diagonal of the heat
kernel in the Jacobian (12). For this case by a straightfor-
ward algebra we have

D'= —D„D„+X
with

III. CHIRAL ANOMALY IN FOUR
AND SIX DIMENSIONS

Let us consider the QCD Lagrangian in an arbitrary di-
mension with SU(X) gauge group:

(16)

„Fp„~F"+pi(9++)g . — (14)
Happily the coefficients of the asymptotic small-e ex-

pansion (11) are tabulated' with the values
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ao ——1,
a) ———X,

p 1 2 1 1 2~, = ——,x + „a„a—g„. „F—„.—F„„,a —x—,
(17)

Jacobian of this transformation and we are going now to
compute it by the method stated in Sec. II for some field
model theories in two dimensions.

A. Schwinger, model

a" = ——,', (a F„„)—„,ag„„a F„——,', a (F F„)
+ ,', F„„F—„.F.„,', a'—x—,', a'—x—'

,', (a—„x—)'

1 3 1 1X 3o XFpvFpv 6o FpvXFpv

3o Fp~p~ + 6o a+apFpv —
eo apFp a+ .

By the use of the well-known properties of y matrices we
obtain with (11), (12), and (17) in four and six dimensions,
respectively,

l
apjp S 2 trFpvFpv r

8~ c

(18)
1

p "( ppFppFpy»3(4~) ( 6 ~ ) 2 4 6

1
Ap ———epB N,

e

we obtain

(20)

, Fp +—yir[ig+e(1 r)A]g„.— (21)

We see explicitly in (21) that for r= 1 the fermion decou-
ples from the gauge field. In this case

(22)

The Lagrangian of the theory is

,'F„—+g(i&+ed )(Ii (19)

with y„=y&, A& ——3&, and I. y„ys ——e& y .
Performing the transformation (2) in this Lagrangian

and choosing the Lorentz gauge

which are the well-known values of the anomaly in four
and six dimensions. '

IV. APPLICATION TO TWO-DIMENSIONAL MODELS

with

Dp a„+ie——(r —1)Ap,

X"=—(1 r)a @y5 . —
(23)

It was shown in several works that by performing a
chiral change of variables in massless Dirac-like theory in
two dimensions we decouple at classical level the fermions
from other fields present.

The quantum aspect of this decoupling is given by the

(24)

and the generating functional after chiral rotation is

Then by (11), (12), (17), and (23) we get for the Jacobian
2

lnJ = — f d x ApAp2~

2

Z(8, 8)= f DgDpDA exp —f —4Fp + A„+pieig+fe ' 8+8e ' g d~x
2m-

(25)

with 8 and 8 the fermion sources and any Green's func-
tion can be obtained from this generating functional.

irri(x)+ ry~@(x)
( )

~( )
—

( )
irv((x)+ry5%(—x)

(28)B. Thirring model

This model is a purely fermionic model with Lagrang-
ian

~=Pi W 'g '(Pr, W)—'- (26)

but we can pass to an effective vector theory with generat-
ing functional as

A„(x)=—e„,a„e(x)+—a„~(x) .1 1

Analogously to what we have in the Schwinger model
the Jacobian relative to this change of variables (28) can
be computed by the method developed in Sec. II, and the
result is

Z= D D DA

+exp — l +g +—A d x (27)

f d x(apN)
1

(29)

We perform now the change of variables
Then the generating functional after the change of vari-

ables (28) is

Z(8,8)= f D@DyiDXDXexp —f d x
2

2g2 ~ P 2g2 P (30)
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with 0 and 0 fermion sources and again any Green's func-
tion can be obtained from Z .

C. Two-dimensional @CD

We consider now the QCD Lagrangian in two dimen-
sions with the SU(N) gauge group:

,'F„,—,F," +g(i'd+A)P . (31)

We choose the decoupling gauge ' introduced by
Gamboa-Saravi, Schaposnik, Solomin, and Roskies; in
this gauge the field A„reads

—r ~4&(x) —r&4(x)=ie e (32)

(33)

with @(x) taking values in the Lie algebra of SU(N).
Performing the non-Abelian local chiral transformation

(2) the Lagrangian becomes

W=P(i9+ge ' )P. (38)

In order to compute the fermionic current we define the
generating functional

Z [s]= f DIP exp —f g(i e)+g+ ge '
)P d x

with the source term s„ for the bilinear form Pyzf.
We perform now the chiral rotation

r

P(x) =exp y~ r—g(—x),'2

(39)

for fractionization from the Jacobian of this transforma-
tion.

We are going now to show that the method described in
Sec. II is also suitable to obtain charge fractionization in
the models studied in Ref. 10.

Let us consider the two-dimensional model of massless
fermions interacting with the external soliton field g. The
Lagrangian is'

Again, for r=1 the fermion decouples from 2&. Follow-
ing Ref. 15 we define a vector V& and a pseudovector Pz
by g(x) =ri(x) exp —y5 r

2

(40)

y5(" &)+ @5[" )+ r (34)

with V& ——V&,k, and Pz ——Pz, @5',
The square of the Dirac operator D, is given as usual:

where r is a real parameter varying from 0 to 1. The
Jacobian relative to this transformation can be now com-
puted by the method developed in Sec. II

D„=—( a~+ A q ) — eq,y 5F~—,2

with

F,"„=a„a"„—a,w„"+[~„",~".],
A p

= Vp + l Ep~/5P~

(36)

InJ= f dr f d x tr[y~g(x
~

exp( eD„) ~x—)]0 r
with

D„=i&+@+ y„e~ a'—g+ge

(41)

(42)

The Jacobian relative to the chiral transformation (2)
can be computed by using (11), (12), (17), and the property
(8) with the result

For an operator of the form

a'+ p„a„+Q— (43)

lnJ = — f d x —,
'

tr(A A)
2'7l Cf

1—f dr tr (g'g "y5@)
0 cy

(37)

with p„and Q matrix valued functions, following the
standard steps~~ it is easy to tabulate the diagonal part of
the asymptotic expansion, the result is

which is the same result found in Refs. 7 and 21. The
first term is the non-Abelian extension of the Schwinger
mechanism, and the second can be shown to correspond
to the two-dimensional analog of the Wess-Zumino func-
tional.

(x
~

e ' ~x) — [I—e[Q —,'(2a„P„P„P„)—]—
+O(e )] . (44)

Then computing D„and using (41), (43), and (44) we

V. FRACTIONIZATION OF THE FERMION
NUMBER

get

lnJ = f d x[——,'ga g —2s,e„„a„g
Recently' Schaposnik developed a method to study the

charge fractionization"' for fermions in a soliton field.
The method consists in introducing a current source term
in the generating functional and by performing a chiral
change of variables to obtain directly the term responsible

+g (1—cosh2$)] . (45)

Now, in terms of the new variables the generating func-
tional is
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Z[s]=exp f d x[—,' —gt) g —2s„ea„c}ag+g (1—cosh2$)] f D71Dg exp —f g(iB+g+'ct+g)gd x
4n

(46)

with a&
——

2 e&„t)Q. Then differentiating with respect to

s& and turning off s at the end we get
1

Jp —— Epvt)4 .
2~ (50)

1 BZ 1

P S=O

with

j„= lndet(i&+ct+g) .
6

5a„

(47)

(48)

Thus we see that for a soliton field g' we get the fractioni-
zation of the fermion number from the Jacobian of the
chiral transformation.

We could make this analysis for a non-Abelian exten-
sion of the Lagrangian (38) and to other two-dimensional
models finding the well-known results' ' on charge
fractionization.

Considering a slowly varying g field it may be shown
that"

j„=e&,c)„const X +higher-order terms in t) g
a'g 2

g

(49)

Then up to leading order in derivatives of g we obtain
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