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Radiative corrections to classical particle motion in a magnetic field
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The classical behavior of a charged particle moving in a magnetic field is derived by the WKB ap-
proxirnation and wave-packet method from the Klan-Gordon equation with the Schwinger radiative
term. The lifetime of the wave-packet state is calculated for a constant magnetic field.

I. INTRODUCTION

The problem of the influence of bremsstrahlung on a
particle moving in an electromagnetic field has been a
subject of interest for many years. ' The natural ap-
proach to solve this problem is to derive an equation of
motion involving the bremsstrahlung, and the Lorentz-
Dirac equation is generally considered as the most accept-
able solution of the problem. It was obtained on the basis
of classical electrodynamics by decomposing the energy-
momentum tensor of the retarded self-field into a sum
that renormalizes mass and a term that gives radiation re-
action.

A theoretical rederivation of this equation based on an
absorber mechanism was provided by %wheeler and Feyn-
man. Nevertheless, the Lorentz-Dirac equation derived

by the different methods has certain imperfections which
need special discussion and approaches not involved in
theory. The difficulties are as follows: (a) The Lorentz-
Dirac equation involves the derivative of acceleration and
it needs an extra condition in addition to the Newtonian
initial condition to determine the motion. (b) It gives
runaway solutions which can be avoided only by introduc-
ing a preacceleration. (c) In certain eases it implies that
the external energy supplied to the particle goes only into
kinetic energy and radiation is created from an accelera-
tion self-energy which becomes more and more negative. ' '

The purpose of the present paper is not the rederivation
of the Lorentz-Dirac equation without imperfections but
to derive by combination of the WKB approximation and
wave-packet method the classical behavior of a charged
radiating particle from the Klein-Gordon equation with
the Schwinger radiative term. Our problem is related to
the method of Censor who has considered the quantum-
mechanical problem of motion of particles in a dissipative
system using a wave-packet and eikonal representation of
the wave function. "

The-natural idea which is presented in Censor's article
and which is accepted in our article is the stipulation that
the group velocity must be a real quantity in a dissipative
system using a wave-packet and eikonal representation of
the wave function. "
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3& is the electromagnetic potential, q is the charge ma-
trix, P is the two-component wave function, and the radia-
tive term 5m is the following mathematical object
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where C.T. are the contact terms defined in Refs. 12 and
13.

The eigenvalues of the operator (S) have been calculated
for a constant magnetic field by Tsai' to give (the C.T.
are involved)

II. FORMULATION OF THE PROBLEM
AND SOLUTION

ln2+ '"'

Our starting point is the Klein-'Gordon equation with
the Schwinger mass operator or, in other words, with a ra-
diative term and

h =1;n =0, 1,2, . . .
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where the formula (15) is in agreement with the formula
(69) in Ref. 14.

To get further information we use the obvious approxi-
mation

BHH =H(p) + .(P—P(())) +.
Bp

In order to find some information about the classical
motion of the particle we replace the operator 5m in Eq.
(1) by its eigenvalues and use the well-known fact that the
classical limit of the quantum-mechanical equations can
be obtained by the WKB approximation of the wave func-
tion

=H(p) + v (P—P(p))+ (16)

where we have used the Hamilton equation v = BH /BP, v
being the velocity of the particle with momentum P.
Then, after insertion of Eq. (16) into Eq. (12) we have
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It is known that the zero-order approximation
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generates the Hamilton-Jacobi equation
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Now we construct the wave-packet solution of Eq. (1)
by P integration of Eq. (10) with the exponent (17). We
find

(P"~eA")(P„+eA„)+m +5m =0
with (eq)'= —e where the latter incorporates the charge
assignment of particle with charge e, P"=d&S is the gen-
eralized momentum. However, the expression m +5m
in the Hamilton-Jacobi equation is a complex number and
it therefore makes the Hamiltonian-Jacobi equation mean-
ingless in the classical sense.

To overcome this obstacle in order to get the classical
information about the particle motion we will combine
the zero-order &KB approximation

(i/h)[S(o) H(o)t+ P (O)' x ]
(I) =ape

X dPg(P)e
(i/h)( x —v t)-( P —P (0)) (18)

where g(P) is the suitable weight function which forms
the envelope of the wave packet G(P(0), x vt), —

(19)

The function P in Eq. (18) describes a wave packet with
a carrier wave
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or using the Hamilton-Jacobi equations P =()S/() x,
—H =BS/dt, we have

S=S(p)+P x —Ht, (12)

where P is the generalized momentum of the particle, H
is its energy, and obviously for ~5m

~
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with the wave-packet method.
In the sufficiently small space-time interval we obvious-

ly can write'

BS BSS=S(p) + x+'-' +a- +
a
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and an envelope G(P(p), x —vt) which moves at constant
velocity according to the law x= vt in the small space-
time interval.

We identify the motion of the envelope with the classi-
cal motion of the particle moving at velocity v. But at
this stage of the investigation, ' v is the complex quantity
and therefore it does not mean it is the physical velocity.
To avoid this obstacle in order to get the physically mean-
ingful description of reality we stipulate the transforma-
tion

P(p)~P(p) +l E'

where e is to be determined to be valid,
H(A =0)=(p +m +5m )'~ =E+ +——, (13)
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where E= —(p +I )'~ for bound states.

After insertion of Eq. (13) into Eq. (12) and then Eq.
(12) into Eq. (10) we get

Imv=0.
Using

v(P(Q)+i@,m +5m )

(21)

(p)wKB ~pe (14)

which means that the particle with the complex mass is in
the quasistationary state which decays according to decay-
ing law exp[(A/2Eh)t] with the decay rate
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the requirement (21), the following equation for e:
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Then, instead of Eq. (22} we have
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The quantity I is here interpreted as a lifetime of a
wave packet moving at velocity v in a magnetic field on
the orbit corresponding to the quantum number n.

The last formula can be easily interpreted in such a way
that the radiation of a charged particle moving in an elec-
tromagnetic field changes its mass not only in the quan-
tum theory but also in the classical limit.

The transformation (20) leads to the transformation
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which necessitates the time dependence of the wave func-
tion in the form

where
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and it may be easy to specify the quantity I using the ob-
vious relations

III. DISCUSSION

The radiation of the accelerated particle of nonzero
charge is the key to understanding certain phenomena in
modern astrophysics, e.g., pulsars, particle physics, and
the key for tuning particle accelerators.

We have seen that by representing the motion of the
particle by the wave packet, which corresponds to the
solution of the Klein-Crordon equation with the
Schwinger radiative term, the particle state is quasista-
tionary with the decay rate (31). The result (31) is not in
contradiction with the relation (15) because the decay rate
(15) corresponds to the quasistationary state of the wave
function P~o~wKB

——aoexp[(ilh)S], while the decay rate
(31) corresponds to the quasistationary state of the wave
packet, or in other words to another real situation.

The derived results in the present paper suggest the
classical picture of motion of the particle undergoing radi-
ation reaction. In the very small space-time interval a
particle with mass (m +tc)' is moving at velocity v and
it remains at this velocity only for time 1", I being the de-
cay rate of wave packet (31), and after time I the particle
changes its velocity. The change of the velocity is caused
by the complex mass of the particle which corresponds to
the influence of radiation of the particle on'the particle
motion.
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