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Exact ground-state properties of the SU(2) Hamiltonian lattice gauge theory
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The SU(2) Hamiltonian lattice gauge theory is shown explicitly to be equivalent to a nonrelativis-
tic quantum many-body problem in S . By exploiting this equivalence, a many-body Monte Carlo
algorithm is devised to solve for its ground-state properties. To the extent that a trial wave function
consisting of a product of single-plaquette functions is a good approximation to the exact ground
state, the present Monte Carlo method is shown to be an efficient means of calculating the ground-
state energy with high precision.

I. INTRODUCTION

The Monte Carlo method' is currently an indispensable
numerical tool for investigating the nonperturbative prop-
erties of lattice gauge theories. Physical observables' such
as the string tension, the heavy-quark potential, the glue-
ball mass, and the deconfinement temperature are of
direct relevance for the studies of quark confinement, ha-
dronic spectroscopy, and ultrarelativistic heavy-ion col-
lisions. The Lagrangian formulation of lattice gauge
theories reduces the study of quantum field theories to
that of the statistical mechanics of Ising-type models on a
four-dimensional space-time lattice. In this approach, the
traditional tools of statistical mechanics, including order
parameters, renormalization-group transforrnations, duali-
ty arguments, and high-temperature series expansions pro-
vide powerful means of elucidating the global critical
behavior of these theories. Alternatively, lattice gauge
theories can be treated in the Hamiltonian formalism,
in which the quantum field theory is related to a quantum
many-body problem on a three-dimensional spatial lattice.
In this case, one is confronted with a familiar Schrodinger
eigenvalue problem.

From the perspective of Monte Carlo mlculations, there
are several advantages to the Hamiltonian formalism. In
this formulation, time remains continuous and time inter-
vals are merely parameters which can be extended indefi-
nitely, rather than acting as a priori constraints on the
temporal size of the lattice. Thus, for reasonably large
lattices, the number of degrees of freedom required for a
Hamiltonian calculation is significantly less than that for
a Lagrangian computation. Furthermore, many physical
observables are eigenvalues of a Hamiltonian. They there-
fore can be evaluated directly and their stationary proper-
ties as an eigenvalue can be exploited to reduce statistical
fluctuations. In contrast, the Lagrangian formalism re-
quires that physical observables such as the string tension
or heavy-quark potential be deduced indirectly from vari-
ous Wilson loops, with relatively large variances. More
importantly, Monte Carlo methods ' for sampling the
ground state of a many-body Hamiltonian allow approxi-
mate knowledge of the solution to be incorporated via a

trial function and only require the stochastic process to
deal with that portion of the problem which is not solv-
able analytimlly. To the extent that the trial function is a
reasonable approximation to the ground state, these
methods can be efficient means of calculating exact
ground-state properties. Thus, although Lagrangian
Monte Carlo computations are extensively performed at
present, the inherent numerical efficiency of the Hamil-
tonian approach deserves to be more widely appreciated.

The utility of using stochastic techniques developed for
quantum many-body systems to the study of Hamiltonian
lattice gauge theories was first demonstrated in Refs. 4
and 13 for the case of U(1). In Ref. 13, the Green's-
function Monte Carlo method was used, while Ref. 4
used guided random walks. In this work, we apply the
guided-random-walk algorithm of Ref. 4 to solve for the
ground state of the SU(2) lattice gauge theory.

The paper is organized as follows: In Sec. II, we show
that if the basic commutators of the theory are realized
via differential operators, then the SU(2) lattice gauge
theory is equivalent to a nonrelativistic quantum many-
body problem in S . The specific Monte Carlo algorithm
for sampling the ground state is described in Sec. III.
Section IV discusses the form of the trial wave function.
The variational calculation which fixes the parametriza-
tion of the trial function, the exact numerical results for
the ground-state energy, and the plaquette expectation
value are presented in Sec. V. To check finite-size effects,
variational calculations were also performed with the
discrete icosahedral subgroup of SU(2) for lattice sizes up
to 16' 16' 16. Conclusions and future applications for
evaluating other physical observables are discussed in Sec.
VI, while some technical details pertaining to the single-
plaquette Hamiltonian, cluster expansion, and the compu-
tation of the kinetic (i.e., "electric" ) energy are contained
in the Appendix.

II. SU(2) LATTICE GAUGE THEORY

In a three-dimensional simple cubic lattice with lattice
spacing a, the link connecting site ( n ~,a, n 2a, n 3a )

—=na
with site na +esca can be uniquely identified by the lattice
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vector n and the direction j. Denoting this combination
by a single link index I= (n,j), a triplet of dynamical vari-
ables A', defined on each link of the lattice, can be la-
beled Az'(n), or more simply, Al'. In the SU(2) lattice
gauge theory, each directed link is associated with an ele-
ment of SU(2) specified by Al'..

U+l=exp(+i 2 v Al'), (2.1)

2

H = g ,' EI'El'—+A,+[1—cos( , B~ )]-
8

P

(2.2)

where the plus or minus sign in U further specifies the
direction of the given link. For example, U I is associat-
ed with the link (n,j) pointing in the negative-j direction.
The r' are the usual Pauli matrices and a summation con-
vention has been adopted.

The SU(2) lattice Hamiltonian ' is given by

[E',U] = U—,r', (2.4)

thus identifying E' as either the left or right generator'
of SU(2).

From the point of view of the U's the A's at each link
are merely coordinates that parametrize the group mani-
fold of SU(2). Since

U= exp( i ,
'—r A—l')=cos( , p—) i—n 'v sin( —,p), (2.5)

with A'=pn ', n '=(sin8cosg, sin8sing, cos8), 0&p
&2m, 0&8&m., and 0&/&2m. , the set of polar coordi-
nates (p, 8,$) is another useful parametrization. In partic-
ular, we may label the elements of SU(2) interchangeably
as either U or (p, 8,$). In terms of (p, 8,$), the commuta-
tion relations (2.3) and (2.4) can be realized via differential
operators acting on the group manifold by requiring,
respectively.

where g is the coupling constant,

cos( —,
'
8~ ) = —,tr Uz,

A, =4/g, and Uz denotes the product of four U's corre-
sponding to a directed chain of four links around an ele-
mentary square or plaquette. The theory is quantized by
postulating, for each link, either

and

EL U= fL, +gL, +hg U= —,'v U

ERV= f~ ~ +gll ~g+Illl ~
U=Vz&.

Bp

(2.6)

(2.7)

or

[E',v]= —,'ev (2.3) By comparing the coefficients of the r's on both sides of
(2.6) and (2.7) the f's, g's, and h's can be determined to
give

E = i 2 sin8c—os/ +(cot—p cos8 cosP+sinP) +1 ~ ~ a 1 a
2

BP BO

E = , i 2 sin—8sing +(cot —,p cos8 sing+ cosP) +8 1 8

P ae

+cot8 cosP —cot —,p
sing 8
sinO

cosp 8+cot8 sing+ cot —,p sin8 8

(2.8)

(2.9)

E =
2 l 2COSO3 1 B

BP
—cotTp sin8 + (2.10)

where the upper (lower) sign is for El'I (EI'). One can check directly that they satisfy the defining Lie algebras of SU(2):

[El.»EL] = —lEobcEI »'
[Ell Ell ]=+l&.b, Ell .

They are not independent of each other but are related by

eE,'=(VHV ')E,' . -
If a rotation matrix R'"( U) is defined via

eR "(V) = VHV-'

(2.11)

(2.12)

(2.13)

(2.14)

then (2.13) reads

EL =R' (U)Ell . (2.15)

In the case where the SU(2) group manifold is parametrized by Euler angles, the corresponding expressions for EL lI can
be found in Ref. 14.

The Casimir operator E'E', which appears in the Hamiltonian, is by virtue of (2.15) the same for. either EI' or El'l ..

E E =El'EI'=Eg Eg =—, 4sin ( ~p) + . sin8 + z z

r1 8 . 2 i 8 1 8 . i) 1 8
(2.16)

4sin2( —' il) BP BP sini9 88 BI9 sin~8 QP~
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which is simply the Laplace-Beltrami operator —5 on S
with metric

3$ [Et'.J.(n) E—t'tl(n e,—)]+=0. (2.20)

dsz=dp +4sin ( —,'p)(d8 +sin 8dp ). (2.17) For weak coupling, corresponding to the continuum limit,

By scaling out the lattice spacing a via H~g H/a,
one obtains a dimensionless Hamiltonian in the form

H = ——,
' g b,~+Kg[1 c—os( ,'Bz—)].

I P

R'b(U) = —,tr(r'Ur U ')

gab+ggbaA c+. . .

and (2.20) reduces to

(2.21)

In this case, one can regard (2.18) as describing a quantum
system of nonrelativistic particles in S, each labeled by,
l=(n, j) with "coordinate" (pt, 8~,$t), interacting with
each other through a sum of four-body potentials
VIpt, 8~,$t] =A,g [1—cos( 28&)].—From this perspec-
tive, the dynamics takes place entirely in the group mani-
fold and the underlying lattice structure serves merely to
identify the participants of each four-body interaction. In
the extreme limit of A, =O, the eigenfunctions of H are
simply products of individual link states, gt l

UI &, where
&jmm'

j Ut & =D (pt, 8t,pt) are the well-known com-
plete set of states' of SU(2), labeled by the eigenvalues of
—5 [=j(j+1)],EL (= m), and ER (=rn')

The Hamiltonian (2.18) commutes with time-
independent gauge transformations parametrized by an
arbitrary function co'(n):

3

A[co'(n)]=exp ig co'(n) g [ELJ(n) ERJ(n e—)]—
(2.19)

The effect of this is to multiply each U on the posi-
tive direction links of n on the left by S(n)
=exp[+ i 2 v aP(n)] and each U on the negative direction
links of n on the right by S '(n). The net results is to
shift U3(n)~UJ'(n)=S(n)UJ(n)S '(n+ej), which is the
correct gauge transformation. Hence eigenstates of H are
degenerate with respect to these transformations. For a
given eigenvalue of H, one can always choose a gauge in-
variant eigenstate 4 such that 0+1 Ut j = %I Ut J. In this
case, 4 is annihilated by all of the generators of (2.19),

(VJEJ'+ge' 'AJ EJ') II=0, (2.22)

where E' can either be EL or E~. Consequently, only
gauge invariant eigenstates of H, which obey the above
generalization of Gauss's law for a Yang-Mills theory, are
physical. Equations (2.18) and (2.20) imply that the SU(2)
lattice gauge theory is equivalent to a quantum many-
body problem in S with the novel symmetry requirement
of gauge invariance.

III. GUIDED RANDOM WALKS

To derive the algorithm, one evolves directly the product
@

l
%p& by inserting in (3.1) complete sets of states in the

form 1=f dx@ '(x)
l
x& &x

l
@(x),

Monte Carlo methods for calculating ground-state
properties of many-body systems are essentially stochastic
means by which physical observables are evaluated as
multidimensional integrals. The method of guided ran-
dom walks is a specific stochastic algorithm for sampling
the ground state wave function via a discretized path in-
tegral. In this section, we show how the algorithm is ac-
tually implemented to study the SU(2) lattice gauge
theory; more detailed discussions of the method can be
found in Refs. 4—12.

The ground state
l

%o& can be evolved from any initial
trial state

l
4& not orthogonal to

l
4p& by the evolution

operator e

l
+o&= lim e " 'l4&= lim e

t~ao b,t~O
%At~ oo

(3.1)

e(x)% p(x) = &x
l
e

l
uo&

= f dxz dxp&xl4e " '4 'lx~&

x&xx
I

+e-"'H '@ 'lxx i). &xilc'e "' '~' 'lxo&&xol@l@& (3.2)

where x= [ Ut] denotes an entire lattice configuration,
l

x& =gt l Ut &, dx=+tdUt, and dU=(16m )

)&4sin ( —,'p)dpsin8d8dg. For an infinitesimal time step bt,

&x'
l
@e " "4 '

l
x&=g & U/

l
@exp( ——,b, tEI'Et')4& '

l
U~&e

' '"' +O(ht ) (3.3)

The matrix element & U
l
@exp( ——,b, tE'E')&0 '

l
U& can be evaluated by expanding the exponential in powers of ht,

commuting all angular momentum operators E' to the left of all coordinate operators in each term, and reexponentiat-
ing. For a detailed discussion of the procedure, see Ref. 15. Denoting this operator ordering by N I I, one finds

@exp( —2htE'E')4& '=N[expI —, bt[E'E' 2E'(E'N)P —'
(+'E'EN—)P ']+ , bt E'E (E"E'In@)—]+O(bt)},

(3.4)
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where parentheses enclosing E' mean explicit derivatives on N. In practice, the quadratic form E'E (E"E'In@) can
usually be replaced by the dominant diagonal approximation ' E'E"(E E'1n+)=E'E'( —,E"E 1n@), thus yielding

&
x'

I
C e "'" "@ '

I
x & =g & Ut'

I
N [exp( —~~~t Et')exp[«Et'«t'»C') ] j I

U &

I

Xexp[bt[E @—'HN(x)] j+O(bt ) (3.5)

=p( x', x)w( x)+O(ht ) (3.6)

with b, t =b t( 1 ——,
' htE'E'I n@).

The guided-random-walks algorithm evaluates the discretized path integral (3.2) stochastically as follows: An ensem-
ble of lattice configurations [ xp j is initially generated according to the distribution 4 (xp) = &xp I

4
I
4) using, for exam-

ple, the Metropolis' method. At the kth time step, the next ensemble I xk+ i j is evolved from [ x'k j according to the ma-
trix element p(xk+i, xk)w(xk). This is accomplished by replicating each xk configuration w(xk)
=e xp[bt [E —4& 'H@(x'k)] j times, treating the fractional part of w(xk) as a probability, and generating a configura-
tion xk+i from each resulting xk with transition probability p(xk+i, xk). The replication process effectively duplicates
each configuration xk stochastically N; =integer[w(x'k)+g] times, where g is a uniform random number in [0,1). If
N~ ——0, then the corresponding configuration is deleted from the ensemble. Since E"s are the generators of rotation and
E'E' is the Casimir operator, ' '
&

U'
I
N I exp( ——,

' b tE' E')e xp[ —iE'(ib tE'In@)] j I
U)

= &
U'

I
exp( —' ~~&'E')

I Ud U & = & U'( Ud U) '
I
exp( —' ~~~'E')

l

I &

—(2rrgt) i~ e~ ~ y exp[ 2(g$/2+27pti)~/g~]
sin(b, s/2)

(3.7)

lim ~(2irht) ~ exp( bs /2b, t), —
At~0

where Ud ——exp[i —, (rib, tE'1 @n)] and bs is the distance
between U' and Ud U. Hence, each link variable U' in

xk+1 can be updated from the corresponding U in xk,
with the required transition probability (3.7) by setting

U'=AUUd U, (3.8)

where AU is a SU(2) group element Gaussian distributed
in distance from the identity with zero mean and variance
&M ) =b,t. The effect of multiplying U by b, U and Ud
is to translate the position (p, 0,$) by a Gaussian random
walk plus a drift step guided by the trial function. In the
limit of large number of time steps and small step size,
this procedure will evolve, according to (3.2), to an ensem-
ble of lattice configurations with distribution @(x)%'p(x).

Once the ensemble has evolved long enough to reach
the stationary distribution @(x)'Pp(x), the ground-state
energy Ep can be determined as that value of E in (3.2)
which keeps the ensemble population stable in successive
time steps. Alternatively, Eo can be calculated directly
from the ensemble configurations via

&He
I
ep) = lim —g 4 'HN(x') . (3.9)&eIe, ) . .n,

The value of Eo determined by these two methods is re-
ferred to as the normalization (E&) and trial (ET ) energy,
respectively. Their agreement in the limit of At~0 is a
necessary consistency test of the entire Monte Carlo algo-
rithm.

The evaluation of the ground-state energy via (3.9) fully
exploits the fact that Eo is an eigenvalue of H. If N were

I

the exact ground state, (3.9) would yield Ep exactly with
zero variance, independent of the statistical fluctuations
or systematic errors in the ensemble configuration. In
practice, significant variance reduction can be achieved
with any reasonable trial functions.

For evaluating the ground-state expectation value of
operators other than the Hamiltonian, a simple perturba-
tive estimate is most convenient,

& W) =— =2 +O((e,—C )')& 0,
I

6'
I
e, ) & e

I

6'
I
e, )

%p %p

=2—g P(x') ——g W(xp) .
i=1 i=1

(3.10)

In this case, the variance cannot be made zero even if N
were exact and, in general, the variance associated with
the expectation value of an arbitrary operator is greater
than that of the Hamiltonian.

Finally, since V&FJ commutes with the individual ki-
netic and potential energy terms of H, one can readily
show that, by applying 0 to (3.2), which defines the
guided-random-walk algorithm, the resulting wave func-
tion II is gauge invariant at any time step, if the trial
function N is gauge invariant.

IV. THE TRIAL FUNCTION

To devise a reasonable trial function for guiding the
random walks, it is useful to examine two limiting cases
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where the ground state is known exactly.
In the strong-coupling limit of g~ oo, corresponding to

X~O, the ground-state wave function and energy of the
lattice Hamiltonian can be obtained perturbatively in
powers of A, :

%o——1+—', A, icos( —,'8&)+.O(A, )

=+ exp[ —', A, cos( ,
'

8—&)]+0 ( A. ),
P

co=EO/)A=X ——,A, +0(A, ),

(4.1)

(4.2)

(4.3)

where X=3L, is the number of plaquettes (or links) in an
L, -site lattice. Thus, the strong-coupling lattice ground
state is dominated by independent plaquette excitations
and has the form of a product of single-plaquette func-
tions.

In the weak-coupling limit of g~O, and hence k~ oo,
the lattice Hamiltonian can be rewritten in terms of the
scaled variables A ~

=MA, A~', and expanded in a power
series in A, . This procedure yields a leading kinetic en-

ergy term which is the ordinary flat-space Laplacian and
a leading potential term which is quadratic in the scaled
plaquette variable Bz ——~A,

~
Bg ~, where, to leading order

in A. ', Bz is just the lattice of A~'. In the limit, the Ham-
iltonian reduces to that of a triplet of free U(1) gauge
fields on the lattice. The ground-state energy per pla-
quette is given by

eo ———', Col A, +O(A. ), (4.4)

and the corresponding ground-state wave function is a
multivariate Gaussian function of the Bz's with relatively
weak off-diagonal terms:

+o exp ———v A, g g —,
' BJ'(n)I'(n —n') —,

' BJ(n')

(4.5)

where j sums over the three plaquettes at each site n and
where the constants Co and I (0), depending on the size of
the lattice, have values 0.7479, 0.7934, 0.7958, 0.7959, and
0.3562, 0.4281, 0.4509, and 0.4552, respectively for L =2,
4, 10, and 50. Thus, if one were to approximate O'D in this
limit by retaining only the dominant diagonal terms, one

I

would again obtain a product of single-plaquette func-
tions.

These considerations suggest that a reasonable trial
function for guiding the random walks for all values of A.

is a gauge-invariant, product function of the form

+= ?If(8~» (4.6)

f(8)=exp
j=1/2, 1, . . .

aJXJ [cos( —,
' 8)] (4.8)

where XJ[cos( —,
' 8)] are the complete set of class functions

of SU(2):

XJ [cos( —,8)]=sin 82j+1
2

sin( —,
' 8), (4 9)

and simply determine the coefficients aj variationally by
an exact Monte Carlo evaluation of (4.7).

The variational calculation is performed by averaging
'H@ over an ensemble of lattice configurations gen-

erated according to @ /&@
~

@) by the Metropolis'
method. The explicit form for N 'H4 used is

where f(8) can be determined variationally by minimiz-
ing the energy functional

1 &+~He&
(4.7)x &e~e&

For a given Hamiltonian and a "Jastrow-type" trial
function of the form (4.6), the determination of the op-
timal single-plaquette functin f is a standard problem in
variational many-body theory. ' ' For example, in the
case of a two-dimensional lattice, one can readily show
that the optimal choice for f is the ground state of the
single-plaquette Hamiltonian

40 ~e 2 (8 /4, —4A, ) /sin( 8 /2 ),
where se~ is a Mathieu function (see the Appendix). In
the physical case of a three-dimensional lattice, although
the optimal choice for f is not known, a cluster expansion
of (4.7) suggests that, in the strong-coupling limit, the op-
timal f must be =go. (Perhaps the application of hyper-
netted chain methods' ' in the present context will shed
light on this problem. ) In this work we find it expedient
to parametrize f(8) in the form

'H@= ——,
' g g pa&X~[cos( —,8&)] i' cos( , Bz) +2+ g—j(j+1)ajXJ[cos( , Bz)] +A —g[1—cos( , B~)], —

P J P

(4.10)

where 7J denotes derivative with respect to its argument.
The evaluation of the electric or kinetic energy, particu-
larly the first term on the right-hand side of (4.10), is less
formidable than it appears, and is discussed in detail in
the Appendix. It is worth recalling that, to the extent
that N is a good approximation to the exact ground state,

'HN will be close to being a zero-variance estimator of
the ground-state energy. Thus although it is possible to
eliminate the complicated first term on the RHS of (4.10)

by use of the Jackson-Feenberg form of the kinetic energy
(see the Appendix), this will in general result in greater
variance for evaluating the ground-state energy and is
therefore undesirable from the point of view of doing
Monte Carlo calculations.

Since the ground state has the form (4.2) in the strong-
coupling limit, we begin the variational calculation by
keeping only the first, X~~q, term in the expansion (4.8).
The adequacy of this trial function was then checked by
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including the next, 7&, term in the minimization process.
It is found that, even in the fairly weak-coupling region of
A,=3, the resulting improvement in energy is slight. Since
there is a tradeoff between the quality of the trial function
and the ease with which it can be generated for guiding
the random walks, we conclude that, in the present case, a
simple one-parameter trial function of the form

f(B~)=exp[a cos( ,'Bz)—], (4.11)

which has been considered previously by many au-
thors, ' is also adequate for our purpose. More impor-
tantly, as a byproduct of our exact calculation we are able
to assess the extent to which a trial function of the prod-
uct form (4.6), with f given by (4.11), is a good approxi-
mation to the true ground state.

From our discussions of the strong- and weak-coupling
limits, we can expect

and

a= —', A, , for A, ~&1

a=21 (0)v A, , for A, &&1 .

(4.12)

(4.13)

V. RESULTS

U=cos( —,
'
p) —iPn 'sin( ,' p) =x iPx'—, —(5.1)

where x x +x'x'=1, and identify the product of two
SU(2) matrices as quarternion multiplication:

U(x) U(y)=(x y —x'y') iv (x y'—+y x'+e' 'x y') .

(5.2)

In this representation the trace of Uz is just 2x, and it is
unnecessary to compute the "spatial" part xz. To gen-
erate a Gaussian-distributed quarternion around the iden-
tity element with zero mean and variance o. ~0, we sim-
ply generated three normal random variants A', A, A,
with zero mean, variance o. , and set

In the actual calculation, we represent each element of
SU(2) by a quarternion x&=(x,x'),

quette is plotted as triangles in Fig. 3. On the scale of
these figures, the statistical errors are much too small to
be shown and the size of the plotting symbols is exag-
gerated for visibility. The numerical values of a, the vari-
ational ground-state energy, and the plaquette expectation
value (cos( ,' B~—)), are presented in Tables I and II.

Since the latt ce used is only 4, it is of interest to assess
the effect of finite lattice sizes. For this purpose we per-
formed variational calculations using the discrete
icosahedral subgroup of SU(2) for lattice sizes up to 16 .
The resulting variational energies at A, =0.6, 1,0, 1.6, and
2.5 for a 16 lattice are plotted as crosses on Fig. 3. The
numerical values for the ground-state energy and the pla-
quette expectation value for three lattice sizes 4, 8, and
16, are presented in Table III. The effect of finite lattice
size on the variational calculation is thus demonstrably
small.

With 4& thus defined by a(A, ), the exact Monte Carlo
calculation with trial function guidance proceeds as out-
lined in Sec. III: For a chosen value of b, t, an ensemble of
Np lattice configurations is first generated according to

and successive generations of ensembles are then
evolved by replications and guided random walks. To
determine the normalization energy E&, the constant E in
the replication factor w (x) is adjusted after each time step
to stabilize the average configuration population in each
generation at the initial value of Nz. (For a discussion of
the potential bias that can result from too frequent an ad-
justment of E, see Ref. 4.) From our previous experience
with U(1) calculations, we use N~ = 10, although a smaller
value may also be adequate. In a typical run of 2000 to
8000 time steps (depending on the value of A. ), after dis-
carding the first few hundred generations which have not
equilibrated to the stationary distribution, observables are
again averaged over blocks of 50 time steps ( =500 config-
urations to assure statistical independence. The computa-
tion is then repeated for successively smaller values of b t
using the equilibrated configurations from the previous b.t
calculation as a starting point. The resulting time step

2.0-

x"= (cos( —,
'
p), (A '/p)sin( —,

'
p) ), (5.3)

where p =A A'. It is likely that a direct and more effi-
cient means of sampling such a quarternion is possible.
We did not explore this question in detail.

The trial function parameter a is fixed by minimizing
the variational energy (4.7) computed stochastically by
averaging N 'H@ over a sequence of lattice configura-
tions generated according to N by the Metropolis'
method. The number of lattice configurations sampled
ranges from —10 for A. (1 to —10 for A, )2. In all
cases the statistical error is computed from block averages
of 100 configurations. Typically, as a function of A., the
energy is calculated for six values of a and a parabola is
fitted to obtain the minimum energy and the optimal n.
For the case of a 4 lattice, the optimal a thus obtained as
a function A, is shown in Fig. 1 and is in good agreement
with the expected strong- and weak-coupling behavior
(4.12) and (4.13). The resulting variational energy per pla-

1.5-

1.0-

0.5-

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 1. The optimal trial function parameter o. as deter-
mined by a Monte Carlo variational calculation as a function of
the coupling constant A, for a 4' lattice. The solid curves are the
expected strong- and weak-coupling behaviors. The statistical
error in u is smaller than the size of the plotting symbols C'see

Table E).
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TABLE I. Numerical values for the trial function parameter a, the variational energy c„„,the exact
ground-state energy co, and the cubic spline fit to the exact energy cf„at 16 selected values of A, . Statist-
ical errors are enclosed in parentheses.

~var

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.4
1.6
1.8
2.0
2.5
3.0

0.197(1}
0.262{1)
0.326{1}
0.393(2)
0.453(2)
0.516(4)
0.583(4)
0.646{3)
0.699(3)
0.763(4)
0.893(8)
0.996(5)
1.091(7)
1.186(7)
1.38S(5)
1.554(5)

0.285 10(001)
0.373 65(001)
0.459 03(002)
0.541 36(002)
0.620 73(004)
0.697 27(006)
0.770 79(005)
0.841 71(007)
0.909 89(008)
0.975 60(010)
1.099 13(020)
1.213 05(023)
1.31875(020)
1.416 88(028)
1.636 15(033)
1.825 86(070)

0.285 10(006)
0.373 56(011)
0.458 72(006)
0.540 50(009)
0.61943(011)
0.695 27(013)
0.767 42(022)
0.835 81(028)
0.902 31(032)
0.966 82(042)
1.083 57(064)
1.188 09(058)
1.283 21(083)
1.378 65(102)
1.576 50(079)
1.764 00(112)

0.285 12
0.373 56
0.458 70
D.S40SS
0.61944
0.695 16
0.767 34
0.836 30
0.902 55
0.965 95
1.083 02
1.18806
1.283 60
1.372 41
1.576 28
1.765 06

size dependence of E~/N and ET/N (N =31. ) for three
selected values of I, is displayed in Fig. 2. The solid lines
are linear least-square fits to the data. The convergence of
E~/N and ET/N as b,t~0 is particularly evident. The
systematic trend from A, =0.8 to A. =3.0 also clearly
demonstrates the fact that in the region where N is a good
approximation to 'Pp, both statistical errors and errors of
At extrapolation are simultaneously reduced. In the final
analysis, we combine the statistics of Ez and ET by fit-
ting both sets of data with two straight lines having a
common intercept at Et=0. The ground-state energies
thus obtained are reported in Table I. Such a high level of
precision is difficult to attain in a conventional Monte
Carlo calculation without a trial function.

TABLE II. Numerical values for the plaquette expectation
value (cos( 2 8~)) at 16 selected values of A. evaluated by using

the variational trial function, (cos)„„the perturbative estimate
(3.10), (cos)~„, and by differentiating the fitted ground-state
energy, (cos)d'ff Statistical errors are enclosed in parentheses.

In Fig. 3, the exact ground-state energy is plotted as
solid circles. In the strong-coupling regime of A, «1.0,
the variational and exact energies are in excellent agree-
ment with each other and with the strong-coupling expan-
sion. In the weak-coupling regime of A, &&1.0, the exact
energy is significantly lower than the variational results.
Moreover, in this region, the exact energy is well
described by the weak-coupling expansion

sp ———,Cp~k, —Ci —C2/v A, , (5.4)

where Cp is as defined in the last section and where Ci
and C2, though in principle calculable, are more easily
determined from the data: Ci =0.24 and C2 -0.09.
This, together with the result for the plaquette expectation
value, to be described shortly, convincingly demonstrate
that the proposed stochastic algorithm is capable of con-
verging to the proper ground state by generating plaquette
correlations that were initially absent in the trial function.

As a more sensitive probe of the ground-state wave

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.4
1.6
1.8
2.0
2.5
3.0

(cos)„„
0.098 2(04)
0.129 6(04)
0.159 7(04)
0.1924(04)
0.220 2(04)
0.248 5(05)
0.278 6(06)
0.305 8(06}
0.331 6(06)
0.357 0{07)
0.407 4(07)
0.452 8(08)
0.490 5(08)
o.s2s 8(»)
0.591 5{05)
0.638 5(05)

(cos )p~~

0.096 6(44)
0.1306(46)
0.165 1(25)
0.192 6(29)
0.229 0(23)
0.251 3(26)
0.293 4(31)
0.326 0{33)
0.348 2(29)
0.374 0(35)
0.440 8{35)
0.485 4(30)
0.549 1(36)
0.565 5(35)
0.636 6{20)
0.665 6(25)

( COS ) d&ff

0.0994
0.1319
0.1655
0.1965
0.2262
0.2605
0.2952
0.3243
0.3511
0.3819
0.4464
0.5009
0.5413
0.5687
0.6119
0.6277

(cos)„„L 3
&var

0.6

1.0

1.6

43

83

16
43

8
16
43
83

16
43

8
16

0.541 30(010)
o.s4135(oos)
D.S4136(002)
0.841 69(028)
0.841 79(010)
0.841 66(007)
1.212 03(102)
1.213 90(036)
1.213 74(018)
1.635 79(241)
1.636 97(063)
1.636 24(033)

0.192 50(109)
0.192 68(053)
0.19247(020)
0.305 43(105)
0.305 38(038)
0.305 69(026)
0.451 44(155)
0.451 52(056)
0.451 01(031)
0.591 64(178)
0.590 91(051)
0.590 64(024)

TABLE III. The variational ground-state energy and pla-
quette expectation value calculated with the discrete icosahedral
subgroup of SU(2) as a function of lattice size at four selected
values of A.. Statistical errors are enclosed in parentheses.
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1.770

II

1.760
1.195

E„

8.=3.0

E

2.0-

't 5

1.0-

0 5.

1.185
0.709

=1.6
0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIG. 3. The ground-state energy per plaquette as a function
of the coupling constant A, . The triangles and the solid circles
denote, respectively, the variational and the exact Monte Carlo
results for a 4 lattice. The crosses are variational results calcu-
lated using the discrete icosahedral subgroup of SU(2) for a 16'
lattice. The expected strong- and weak-coupling behaviors are
as indicated. The constant Co in the weak-coupling limit was
derived but the constants C& and C2 were simply obtained by
fitting the exact energies at A, ) 1.4.

0.695

0.690

0.080.060.040.020.00

FIG. 2. The calculated ground-state energy per plaquette for
a 4 lattice at selected values of A, as a function of time step size
At. The normalization and the trial energies are indicated by
the solid squares and the solid circles, respectively. The straight
lines are linear least-squares fits to the data.

ly in good agreement with each other. In both the strong-
and the weak-coupling limit the data are well described by
just the leading term in the corresponding expansion. In
particular, it should be noted that (cos( 2B&)) persists —in
its weak-coupling behavior all the way down to A, =1.7
and then rather sharply changes over to its strong-
coupling form. Such a crossover behavior, in retrospect,
is also evident in the ground-state energy. This suggests
that it is the ground state itself that is rapidly changing
over to the strong-coupling hmit at a rather modest cou-
pling of g /4n =(2vrV'A. ) '=0. 12. Since we have yet to
calculate physical observables, we are not in a position to
identify this as the onset of confinement. Nevertheless, it
should be noted that the occurrence of a crossover at this
particular coupling is consistent with a similar
phenomenon seen in Lagrangian calculations. '

function, it is useful to consider the plaquette operator
cos( —,Bz). Its expectation can either be obtained via the
perturbative estimate, (3.10), or by relating it to the
derivative of the ground-state energy:

dEp

dA.
(5.5)

(cos( —,8~)) =—
(VD gcosI , B~l WD)—1 1

X 4p~%o

The expectation values (cos( 2B~)) calculate—d according
to (3.10) as a function of A, are given numerically in Table
II and are plotted as solid circles on Fig. 4. In this case,
since the variance no longer diminishes in proportion to
(4o—@), as in the case of the Hamiltonian, both statisti-
cal errors and errors of extrapolation are substantial, even
in the strong-coupling limit. In comparison, the variance
associated with the Hamiltonian in this limit is smaller by
at least an order of magnitude. To calculate the derivative
of Eo, we first smooth out the ground-state energy by per-
forming a weighted least-square fit to the data with cubic
splines. The resulting fitted values are displayed in Table
I. With the exception of the data point at A, =2.0 (for
which we have no explanation) the fit is generally within
one standard derivation of the exact ground-state energy.
The plaquette expectation value obtained by differentiat-
ing the cubic splines are given in Table II and are plotted
as a dashed curve in Fig. 4. The values of (cos( 2B~))—
determined by these two independent methods are general-

1.0-

0.8-

(cos)

0.6-

0.4-

0.2-

0.0
0.5 1.0 2,0 2.5 3.0

FICx 4. The ex. pectation value (cos( 28~)) as a function of
the coupling constant k. The solid dots denote Monte Carlo re-
sults using the perturbative estimate (3.10). The dashed curve is
obtained by differentiating the ground-state energy as explained
in the text. The dotted curve is an interpolation of the varia-
tional results.
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For comparison, the variational results for (cos( —,'Bz) )
are plotted (after interpolation) as a dotted curve in Fig. 4.
Its only deficiency is that it smoothed out the sharp cross-
over.

This entire calculation required approximately 80 hours
on the FPS-164 array processor at the Oak Ridge Nation-
al Laboratory.

VI. CONCLUSIONS AND FUTURE PROSPECTS

In this work we have explicitly shown that the SU(2)
Hamiltonian lattice gauge theory is equivalent to a nonre-
lativistic quantum many-body problem and have devised a
specific Monte Carlo algorithm for sampling its ground
state. To the extent that the guiding trial function formed
by a product of single-plaquette functions is a reasonable
approximation to the exact ground state, the guided-
random-walk algorithm was shown to be an efficient
means of calculating the ground-state energy. Our results
for the plaquette expectation value also suggest that the
ground state changes sharply from its weak-coupling
behavior to that of the strong coupling at A, = 1.7, which is
consistent with a similar phenomenon observed in La-
grangian calculations.

The identification of a Hamiltonian lattice gauge theory
as a many-body problem holds for any SU(X) gauge
group and provides a new perspective for the study of
lattice gauge theories. For example, the well-known Bijl-
Feynman variational method for studying low-lying col-
lective excitations of a many-particle system can now be
applied to the study of the glueball spectrum. This ap-
proach has the advantage of dealing with the Hamiltonian
operator directly rather than e ', which is used in the
Lagrangian variational calculation. We are currently in-
vestigating the mass gap in SU(2) from this perspective.

This identification also invites us to explore other
many-body techniques for the study of lattice gauge
theory. As we have outlined in the Appendix, much of
the existing variational many-body machinery probably
has analogs in variational lattice gaug'e theory. Although
we have shown that the variational calculation with trial
function (4.11) tends to smooth out the sharp crossover, it
remains possible that a more refined variational study can
remedy this deficiency. In any case, a systematic develop-
ment of a "hypernetted surfaces" approach to lattice
gauge theory would be very interesting and would measur-
ably expand the scope of many-body theory.

The present Hamiltonian approach is equally suited to
the study of other physical observables such as the quark-
quark potential. The potential is presumably directly cal-
culable by placing two sources at different lattice sites. In
the present formalism, there is no temperature effect due
to a finite temporal lattice size and no need to evaluate
large Wilson loops.

We have found the use of discrete subgroups very valu-
able in doing variational calculations. The use of a group
table in place of quarternion multiplication enables us to
check finite-size effects in lattices as large as 16 on a
VAX 11/780 computer. It would be extremely interesting
to develop a discrete Monte Carlo algorithm for sampling
the exact ground state. In the guided-random-walk algo-
rithm, the drift step generated by the trial function inevit-

ably falls "between the cracks" of the icosahedral sub-
group; one must therefore decide which of the nearby
group elements to use. We have yet to devise a satisfacto-
ry resolution to this problem.

Finally, the guided-random-walk algorithm, as outlined
in this work, is directly applicable to the case of SU(3)
with only straightforward numerical complications.

Note added in proof. After submission of this paper we
learned of the recent work of Heys and Stump on
Green's-function Monte Carlo calculations on the SU(2)
and U(l) lattice gauge theories. Conclusions reached in
that paper are very similar to those found in ours.
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1. Single-plaquette Hamiltonian

The single-plaquette Hamiltonian is given by
4

h = g , E~'E~'+A, [l—cos( , Bz—)], —
1=1

where cos( 2 B~ ) = —, tr U&,

(Al)

U~ = U) U2 U3 U4 ——cos( 2 B~ ) —in zr'sin( ,
'
Bz ), —

(A2)

and where

E('U( = Tr'U(5( (,
E('U( '= —U(

' , r 5( p —.

To solve the eigenvalue problem

hg=eg,

(A3)

(A4)

(A5)

let g=g(B&). Since E~' are first-order differential opera-
tors,

APPENDIX

In this appendix, we discuss three topics of related in-
terest: the single-plaquette Hamiltonian, a variational
cluster expansion, and the evaluation of the kinetic ener-

gy. The single-plaquette Hamiltonian is exactly solvable
in terms of Mathieu functions. Its solution illustrates
many technical manipulations which are important for
the study of the full lattice. The cluster expansion pro-
vides a systematic basis for studying lattice gauge theories
variationally. In this brief appendix we seek to demon-
strate that many of the standard techniques of nonrela-
tivistic many-body theory' ' might be fruitfully applied
in this new context. Finally, the evaluation of the kinetic
energy in its original form is essential for variance reduc-
tion and the technical discussion is aimed at those who
wish to pursue this calculation further.
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Eicos( ,' Bp—)= —,
' tr( ,' H—Up),

—sin( , B—p) ,
'

E—;Bp———i —,
'

n p sin( —,Bp ),
and therefore

E;8 =in' .

I 2 5 4F0=A, —6 A, + 432 A +
—2" 32~

A, «1
A, ))1 .

(A14)

(A1S)
(A6)

The corresponding ground state

(A13) as the Mathieu function se2(Bp/4, —4A, ) with en-
ergy

Similarly for E&,

E$8p —— in—p .

In the case of E2,

E2cos( , Bp) =——,tr(U& —,
' r U2U3 U4 ')

(A7)
go ——se2(Bp /4A, )/sin( ,' Bp )—

has the expansion

@0——1+ —[2cos( , Bp)]+—[4cos( , Bp)——1]+.

= —,
' tr( —,'r Ui 'UpUi),

=-E28p =i [R' (Ui)n p],
(A8)

=expI ——,'~A. ( ,'Bp) ], —A,&&1 .

A, « 1 (A16)

(A17)

where R' (Ui)n p is the unit vector n p rotated by an
amount p! in the direction (8!,$&). Likewise for E3,

E38p — i [R—'
( U4 )n p ]

Furthermore, with no sum over l,

E!'E!'cos( , Bp ) = —,
'

—tr(—,
' r' —,

' PUp ),
——cos( —8 )(E!'8 )(E!'8 ) ——sin( —,8 )E!'E!'8

(A9)

(A 10)

=—cos( —8 )
3
4 2 P

~E!'E!'Bp= —cot( ,'Bp) . —

Hence, it follows that, for each l,

EP E!'P(Bp ) =P"(Bp )(E!'Bp)(EP Bp ) +0 (Bp )EP E!'Bp,

P"(Bp ) —co—t( ,' Bp )g'(Bp ), —

The single-plaquette Hamiltonian is analytically solv-
able in terms of Mathieu functions for the general case of
a U(N) gauge group. The corresponding "radial" wave
function is likewise completely antisymmetric in its argu-
ments and may be regarded as the ground state of a
N-fermion problem. The interested reader can consult
Ref. 27.

2. Cluster expansion

This section generalizes the discussion in Ref. 4 for the
case of U(1) to SU(2). It should be clear from the follow-
ing that the extension to the case of SU(N) is straightfor-
ward.

In evaluating the energy functional (4.7), the kinetic en-

ergy can either be evaluated directly,

c —,'EIEI' ~

sin ( —,'Bp) g(Bp),
sin ( —,Bp ) ~Bp dBp

(A 1 1)

and (A5) reduces to

=—'g f dx[«!'»@')«!'»+)+«!E!»+')]@'(x»
I

(A18)

sin ( ,'Bp) f(Bp—)
or by commuting operators,
= —(0

i
(E!'@)(E!'@)

i
0), to give

(oieE,'E,'c io)

+A.[1 cos( ,
'
Bp )—]g(Bp )=EP—(Bp) . (A12)

This radial equation can be solved in the usual manner by
setting f(Bp) =R (Bp )/sin( —,Bp), thus yielding

—,
' EI'EI

= 2i g f dxf —(E!in@)(E!in@)]@2(x) . (A19)

—2 +A.[1—cos( 28p)] R =(s+ 2 )R, (A13)
p

which is a form of the Mathieu equation. A more circu-
itous derivation of (A13) was previously given in Ref. 26.

Since $0(Bp ) must be symmetric in its argument,
periodic with period 4m. , and nonsingular everywhere,
Ro(Bp ) must be antisymmetric with period 4', and vanish
at Bp ——0. This uniquely identifies the ground state of

I

The average of these two yield the Jackson-Feenberg form
of the kinetic energy:

For a trial function of the product form (4.6), the use of
(A20) allows us to express the energy functional concisely

eff]=f dUpG(Bp) —, sin ( ,'Bp) lnf+A[1 ——cos(—,'Bp)]
sin ( —,'Bp) ~Bp

(A21)
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where Up ——U~ U2 U3 'U4 ' is a particular plaquette formed by the four links U~ to U4, , where

G(B )=f (B ) f dU dU g f (B ),p p (A22)

and is normalized via

f dU(dU2dU3dU4G(Bp)= f dUpG(Bp)=1,

and where the normalized, invariant group measure is given by

(A23)

dU=d(U'U)=d(UU')= 4sin ( —,'p)dpsinOd8dg .
16m

A useful technique for evaluating G (Bp ) is to develop a cluster expansion' in power of the bond function

b (Bp ) =f'(Bp ) —1 (A24)

Such an expansion is clearly reasonable in the strong-coupling limit where f is expected to be close to one and higher
powers of b are correspondingly small. Substituting (A24) in (A22) yields

G( p)=f (Bp) f dU5 . . dUtq 1+g b(Bq)+. g b(Bq)b(Bk)+ g b(Bq)b(Bk)b(Bt, )+
q&p q&k&p q&k&h@p

(A25)

We shall refer to an integrated link variable U; (5 &i &N)
in a product of bond functions as "exposed, " if it occurs
only once in the product. By extension, a bond function is
also exposed if it contains at least one exposed link. Due
to the invariance of group integration, any exposed bond
can be immediately integrated via its exposed link to yield
a constant. To prevent exposure, a link must be shared by
at least two bonds. One can picture this requirement as
simply the joining of each bond's plaquette at an edge. A
product of bonds can therefore escape exposure only if its
plaquettes form one or more closed surfaces. Hence, in
the expansion (A25), all contributions to G (Bp ) which are
not simply proportional to f (Bp ) are those corresponding
to connected, closed surfaces surrounding the plaquette
Up.

In the case of a two-dimensional lattice, if no boundary
conditions are prescribed, then there are no closed sur-
faces. In this case, exposure is unavoidable and the entire
expansion in (A25) simply collapses against the denomina-
tor ( 4&

I
N ) to yield

1G(Bp)= (f I f)f (Bp)

exactly. Substituting this back into (A21) gives

(f Ib lf &Ef]= (f I f)

(A26)

(A27)

where h is the single-plaquette Hamiltonian given by
(A12). Hence, in two dimensions, the product trial func-
tion of the form (4.6) is optimized by taking f to be the
ground state of the single-plaquette Hamiltonian.

In three dimensions, the first nontrivial term in the ex-
pansion (A25) is a product of five bonds, whose pla-
quettes, together with Up, for a closed cubic surface with
unit volume. The next contribution is a product of nine
bonds forming a rectangular surface with 2 units of
volume, and so on. Since the cluster expansion for G (Bp )

begins at such a high order, in the strong-coupling limit,
it is a reasonable approximation to retain only the zero-
order contribution. In this case G(Bp) is proportional to
f (Bp) and the normalization requirement (A23) would
again lead us to (A26) and (A27). Hence, one can expect
that in the strong-coupling limit, the optimal choice for f
must also be the ground state of the single-plaquette
Hamiltonian.

To characterize the optimal product trial function in
three dimensions more completely, one must develop tech-
niques for enumerating, classifying, and summing all pos-
sible closed surface contributions in a lattice. This very
interesting problem is beyond the scope of the present pa-
per.

3. Evaluating the kinetic energy

In Monte Carlo calculations, as argued in Sec. IV, it is
important to evaluate the kinetic energy directly as given
by (A18). This entails the evaluation of the nonlocal first
term on the right-hand side of (A18). For a trial function
of the general form (4.8), this is given by

—,
' g (Et'in@)(EPln@)

I

2

ga, XJ [cos( ,' Bp )] iEI'cos(—',Bp)—
I I j

(A28)

By representing each SU(2) element as a quarternion,
U=x iq x', as—advocated in Sec. V, the effect of iEf
on cos( —,'Bp) is just

iEt'cos( ,'Bp)= —,'xpt if lHp, —

=0 otherwise;
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where, depending on the relative position of / in the pla-
quette p, as shown in part 1 of this appendix,

a a a
Xp ) = —Xp 4 =Xp

x,', =R "(U, )x,',
x~ 3 ———R'"( U4)x~,

where

R'"( U)y" =(x'x' x'x'—)y'

+2(x'E'"y'x'+x'y'x') .

Hence,

—,
' g(Et'in&I)(Et'in@) = ——,g g ga&XJ. xz t

I I p&l j
(A29)

This can be evaluated by preparing a "link accumulator"
array with dimension equal to three times the number of
links in the lattice. As one sweeps through the lattice
evaluating plaquette variables, each xp can be appropri-
ately rotated, multiplied, and stored additively into the
four slots in the accumulator associated with each
plaquette's four links. At the end of the sweep, the sum
of the squares of each array element in the accumulator
then directly gives the right-hand side of (A29).
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