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Multiple-turning-point problems and lattice multiscale singular perturbation
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It is shown how the single-turning-point singular-perturbation analysis of Bender and Sharp may
be extended to multiple-turning-point problems. The methodology presented emphasizes the impor-
tance of combining a function-moments analysis together with high-temperature lattice expansions
and associated Pade analysis. This approach has been previously developed by Handy for nonlinear
kink and soliton solutions and will be referred to as lattice multiscale singular-perturbation theory
(LMSPT). The formalism is developed in the context of one-dimensional polynomial potential sys-

tems and highlights recursive moment relations heretofore unappreciated in general. As such, for
these kinds of systems, the LMSPT approach offers an alternative to the conventional WKB
method; and is extendible to nonlinear systems.

I. GENERAL DISCUSSION

The seminal work by Bender et al. ' on the development
of a strong-coupling perturbative quantum field theory
fostered a new type of mathematical analysis for under-
standing many quantum and classical systems requiring
singular-perturbation analysis. The subsequent works by
Bender et al. , Handy, and Bender and Sharp pursued
these issues to varying degrees.

This work is a continuation of the general thesis advo-
cated by Handy, wherein it is argued that singular per-
turbation is intrinsically a Fourier-space problem. The
consequence of this general observation is that the
singular-perturbation character of a problem disappears
when it is represented in terms of an extensive set of
dynamical variables. The power moments (i.e., the Taylor
expansion coefficients of the Fourier transform) provide
such a representation.

There is an important class of problems which serve to
dramatize the preceding remarks. Specifically, we address
the Schrodinger equation for arbitrary polynomial poten-
tial, although the specific example treated will be the har-
monic quantum oscillator. An important aspect of this
endeavor is that we are able to extend the one-turning-
point results of Bender and Sharp to that of multiple
turning points.

It is evident that once a configuration-space problem
has been transformed into an extensive-dynamical-
variable representation space and solved therein, one must
be able to transform back to the original space. Consider-
ing our moments' perspective, we are obligated to address
the century-old problem of function-moments reconstruc-
tion. Although such issues are not completely under-
stood, recent work on the formulation of Polya-Fade ap-
proximants show them to be very relevant to our
multiple-turning-point problems. These are described in
Sec. IV.

Let us reconsider the harmonic-oscillator problem

—e f"+x P=Ef .

The singular-perturbation parameter is e—:A'/V'2m. An
explicit e-dependent perturbative expansion of this system
requires the conventional WKB representation,
g(x)=exp(S/e), where S(x) is assumed expandable in
powers of e Clear. ly, the e-analytic structure of g(x) is
not simple.

Let us now apply the integral operation J dxxt' on
both sides of (1.1). Denoting by )Lt(p):—I dxx~g(x) the
pth-order Hamburger power m.oment, one obtains the re-
cursive relation

p(p+2)=Ep(p)+~'p(p —1)p(p —2), p)0. (1.2)

For simplicity, we will limit our discussion to sym-
metric solutions only. The extension of the following
analysis to the antisymmetric case is immediate. Thus
p(p =odd)=0. It follows that only p(0) is required to
completely determine all moments; because of the arbi-
trary choice of normalization we may take p(0) = 1.

Relation (1.2) follows from (1.1) only for physical solu-
tions, since these decay exponentially and have finite mo-
ments. Nonetheless, (1.2) together with p(0)=1 admit
general moment solutions which are explicitly polynomial
analytic in e and E. In two recent works ' a powerful
energy-quantization technique, utilizing relations of the
type (1.2), has been developed. Excellent results were ob-
tained for various polynomial potentials, including that of
(1.1). In the present work, we will assume that the physi-
cal energy value, E, is given. Our interest is in wave-
function reconstruction.

Relation (1.2) is consistent with our general assertion
that a reformulation of singular-perturbation-type prob-
lems in terms of an extensive-dynamical-variables repre-
sentation will diminish or eliminate the "singular" nature
of the configuration-space problem. Specifically, the solu-
tions to (1.2), for fixed E, are trivial analytic functions of
e in contrast to that for the wave function
g(x) =exp(S/e).

The zeroth-order limit of the relation (1.2) gives
p(o)(p +2) Ep(0)(p)
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p' '(p) = (x,P, if p =even (0,otherwise), (1.3a)

x,=~E . (1.3b)

g' '(x) = —,
' [5(x +x, )+5(x —x, )] . (1.4)

The configuration-space solution corresponding to (1.3) is

J—e g"+ g cjxj P=Eg,
j=1

p(p +J)= Ep(p)+ e'p (p —1)p(p —2)
J—1

cjp(P+j) .
j=1

(1.10)

This is the formal solution to the symbolic, zeroth-order,
configuration-space equation

x'y"'(x) =Ey"'(x) . (1.5)

The +x values correspond to the two "turning points. "
The work in Ref. 4 concerns itself with the monomial sys-
tem —e g"+xg=EQ; thus, only one turning point is in-
volved.

It is clear that for the harmonic-quantum-oscillator
problem, all of the power moments are known. As such,
one can proceed to the reconstruction phase of our pro-
gram in Sec. IV. In general this is not the case. There
will usually be a finite number of undetermined power
moments. It is the intent of the following discussion to
suggest one possible method of determining these missing
power moments. As an example, we once again turn to
the system (1.1).

Let us translate the harmonic-oscillator problem in (1.1)
by the amount x,. Thus for the system

where x~j is a turning-point root of V(x) =E. Clearly,
the configuration-space representation of (1.11) is

N
g' '(x)= g f~5(x —x,.j) . (1.12)

Now p(0), . . . , p(J —1) are required before all moments
may be generated. Clearly, they cannot all be zero; hence,
one of them may be normalized to unity. Thus there are
J—1 unknowns, for arbitrary E. These may be deter-
mined through the methods developed in the following
sections. It is to be stressed that any complicated e depen-
dence will be explicitly contained in the missing moments.
Despite this, we expect that any such possible complicated
e dependence will be far less so than that for the
configuration-space solution.

Finally, the zeroth-order solution to (1.10) takes on the
form

N
p' '(p)= g f, (x, , )

—e P"+(x +x, ) /=ED
the recursive moment relation is

p(p+2) = —2x,p(p+ I)+e'p(p —1)p(p —2), p

(1.6) The entire program consisting of using high-temper-
ature lattice expansion methods to recover the unknown
moments, and using some prescription for recovering the
wave-function solution is designated by lattice multiscale
singular-perturbation theory (LMSPT).

It is clear that p(0) and p(1) are now needed in order to
determine all other moments. In general, we cannot solve
our system by a simple translation [i.e., back to (1.1)]. As-
suming p(0) =1, how may we solve for p(1)? One possi-
bility is to find an appropriate lattice-space model for the
continuum system. Let us do so for the original problem
(1.1). In the following sections we will analyze in greater
detail the high-temperature lattice expansion for the sys-
tem

g(2)eg+(—aL) /=ED,

II. DEVELOPING A LATTICE-SPACE MODEL

Let us rewrite (1.1) as"

P"+(E ——,'x )/=0. (2.1)

g(2)
f+ „' a (Lo L)g=—fD (L~L—o) ~ (2.2a)

where

As is well known, the quantized energies correspond to
E=n+ —,, n =integer.

Consider the following lattice model:

a =lattice spacing,

5' 'Q=Q(L+1)+Q(L —1)—2$(L) .

(1.8) b, ' 'Q=Q(L +1)+P(L —1)—2$(L),
E:—,(aLo) (Lo ——an—integer),

(2.2b)

(2.2c)

By applying Pade analysis' to the lattice representation
for the continuum power moment, p(p)~a'+~
XgL~P(L), we can obtain the continuum-limit values
through analytic continuation, a~O. In this manner all
unknown moments may be obtained. It is important to
stress that E's quantization is not necessary. For arbi-
trary E one can determine the associated unknown mo-
ments.

The generalization of the preceding harmonic results
are immediate. Thus, for V(x) =g. , cjxJ (co can be in-
corporated into E; J =even)

L,Lp —1

D(L,Lo)—: + L —Lp+1 L —Lp —1
(2.2d)

f= (x, —:2~E ) .
12

(2.2e)

The last relation mill be motivated shortly; so too will the
necessity for D(L,Lo).

It will be noted that D(L,Lo) is defined on a set of
measure zero. Also, in the continuum limit
[a~O,Lo~oo, while E= , (aLo) is kept fixed], D( —)
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vanishes. D( )'s structure is consistent with our interest
in generating symmetric solutions. We will conjecture
that in the continuum limit, as specified, (2.2a) becomes
equivalent to the continuum system (2.1).

If we accept the preceding conjecture, then it must also
be that the following system approaches (2.1) in its respec-
tive continuum limit:

3
b, ' 'Q+ , af(L—O L)—p= D(L,Lp) .

Q Qf
(2.3)

The basic difference between (2.3) and (2.2) is that af is
kept fixed at some small value, while L, o is some large in-
teger satisfying E =

4 (afL()) . The a variable will define
the high-temperature expansion parameter Q . Our goal
will be to perform a lattice high-temperature expansion
and continue the (2.3) theory from the regime where
a =small to af, afterward, all af ~0.

The principal reason for adopting (2.3) is that it will
lead to the elimination of all explicit "Lo" dependences.
In addition, the fact that the eventual lattice high-
temperature expansion will involve (1/a )6( )g as the
only perturbative term mirnics the nature of the e expan-
sion in (1.2).

I.et us now assume that the lattice field for (2.3) is ex-
pandable at every lattice space point I. according to

p(L)= g, g' )(L;af) .
1

(2.4)
u=0

The beauty of (2.3) is that the lattice turning points
L =Lo do not complicate the recursive generation of
f( '. Indeed, at such turning points we have from (2.3)

ical determination of the lattice power moments
[a'+~QLrg(L)] is the fact that the lattice support space
for each g(")(L;af) is bounded and increases with w;

Specifically, for all orders satisfying w &Lo —2, the lattice
support set, 5, consists of two disjoint subsets,

D(L)=5-
i
—5i )

. (2.9b)

Because we are generating symmetric solutions, we only
need P' '(L;af ) for L &0, or equivalently L & Lo. —
Furthermore, we may assume that Lo is very large, while
w & 8' (&L, o —2. Accordingly, for such orders

'(0'a ) =0
The structure of (2.9) shows that upon rescaling as

S„'-'= IL t
L:L ——(+L()),—(w+1) &L &w+1I . (2.g)

If I z is very large, then for all practical purposes only at
comparably large expansion orders will the above sets in-
tersect. We assume that the lower orders contain suffi-
cient information to solve the system. This assumption is
supported by the fact that as af approaches the continu-
um limit (and thus L0~ ao ) the configurations
g( )(L;af ) will become more and more L dependent, for-
getting their dependence on I.o. This can be seen from
(2.6a), which may be written

b, ( 'g( "—(f/af )D (L )5~ ()y(w)(L +L.a
L(V E+ ,Laf)—

L & Lo, L&—0 (2.9a)

[for L =0 use (2.6b)]

b, ( )g(+Lo) =0 . (2.5) p' '(L;af)= afp' '(Lo+—L;af), (2.10)

Away from these lattice turning points, the recursive gen-
eration of (2.4) becomes

( )
b' 'f' " (f!af)D(L,L—p)5~0

Q' '(L;af ) =
—,af(L —L() )

the af «0 limit for the left-hand-side expression becomes

b, ( )f ' "(L;0)—fD(L)5 ()

L E

while from (2.5) we generate

L &Lo, (2.6a)
(L&O,L & —L()),

f, (w)(0. 0) [f (N)( 1.Q) +Q (Ill)( 1.Q)]

(2.11a)

(2.11b)

P' '(+Lo', af)
=

2 [p (+Lp+ I;af )+Q (+L()—I;af )] . (2.6b)

We shall examine (2.11) in the following section.
Considering all that has been stated, we may define the

lattice power moments

It is clear that D( )'s presence is necessary; if it were
absent then f( '=0. The factor f is determined from the
requirement that the system [i.e., the zeroth-order version
of (2.3)]

p(p;(if ) =
2a'+)' g L~P(L), p =even

0, @=odd.
(2.12)

4af(LD L)g = D(L Lp) L—QLp (2.7a)
Qf

g(2)y(0)( +L ) 0 (2.7b)

yield in the continuum limit f af ~O,L() +co, —
E—

4 (QfL0 ) ] exactly the same power moments as the
zeroth-order continuum theory [Eq. (1.3a) with
x,=2v E]. This calculation is straightforward and yields
relation (2.2e).

One very important property that will allow the numer-

In view of the fact that (t)( ), for L &0, is nonzero on a
finite set centered at Lo, it is clear that (2.12) implicitly
has an Lo dependence. This fact can complicate any at-
tempt at directly continuing (2.12) into the continuum.
For this reason, it becomes convenient to work with "rela-
tive moments, " as derived below:

)M(p =even;af ) =2a '+i' g (Lo+L )rf(LO+L ), (2.13)
L= —Lo
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p(p =even;af )

=2 '+P 8 P, I,P-P LP LO+I. (2.14)

P

p(p =even) =2 g 8 (z~)x, p„(p) .
p=0

(3.1)

p=O L= —Lo

=2 8 pp xp pp p;af
p=O

[8(~&) =binomial coefficients] .

(2.15)

IJ,„(p;af ) =a '+i' g L ~p(LD+L ) (2.16)

Utilizing the lattice high-temperature expansion
g(L)=g(1/a ) P' ', the relative moments have their
corresponding lattice high-temperature expansion: g(2)

g+ 4af[(Lp —L)(2LD)]Q= D(L) .
a af

(3.2)

Note that up to any given order p, there are 1+p/2 even

moments and 1+p relative moments. Clearly, knowledge
of the left-hand side does not allow for a unique set of rel-

ative moments, to any finite order. Because of this, once
our lattice theory has given us adequate values for the

p, 's, we must use them to calculate the p's.
It is easy to see that the system corresponding to (2.11)

is given by the lattice model

1=a'+i' g 3 C„(p;w;af),
W=O

(2.17)

Utilizing 2V E =afLQ, where E is the energy for the har-
monic quantum oscillator, the continuum version of (3.2)
becomes

where the numerically calculable coefficients are
vE xg—=O. (3.3)

C„(p;w;af ) =— g L g' '(L;af ) .
LeS{+}

(2.18)
Accordingly, the corresponding recursive moment expres-
sion involves the relative moments

In the following section we will work with C,(p;w;af)
which is defined similarly to (2.18) but using P' '(L;af ).

III. FORMING PADE APPROXIMANTS
FOR THE CONTINUUM LIMIT

It is clear from (2.15) that in order to obtain the contin-
uum moments, p(p =even), we must obtain the relative
moinents p, „(p;af ) satisfying

~& p„(p + 1)=p (p —1)p, (p —2) . (3.4)

We can see that p„(l)=p„(2)=p„(4)=0; while
p„(3)/p„(0)=2/~E. Indeed, p„(p&multiple of 3)=0.

It is found numerically that the lattice high-

temperature coefficients, C„(p;w;0) —=g L ~P' '(L;af
=0) are consistent with the above. That is, for p&multi-
ple of 3 we find that C„(p;w;0)=0 if p —3w &0. What
this means is that the corresponding moment is given by

a '+p
p, (p;af =0)=

af
a C(p; w;af ——0)+

0&W &P/3 p/3+wQ ao

a C(p;w;0) (3.5)

For those p&multiple of 3 we find that all of the C's of the rightmost sum are zero; whereas the finite left-hand sum has
an a/ dependence which makes the entire sum vanish in the continuum limit (a =af and af —+0). The same seems to
be true for the case p=multiple of "3." We say "seems" because we have only verified things up to order p=4. For the
case p=O and 3 we find that the only nonvanishing term (af~0) is C(p;p/3;0); the latter takes on the values —,

' and

I/v E for p=O and 3, respectively. Thus all is consistent with (3.4), particularly when we compare moment ratios.
The main conclusion from the above is that the seemingly insignificant denominator expression , Laf in (2.9a) is—very

important and needs to be incorporated if the quadratic nature of the harmonic-oscillator problem is to be taken into ac-
count. What this means is that the lowest-order corrections to the various coefficients are needed:

C,(p;w;af) =C„(p;w;0)+afC'„"(p;w)+af C „' '(p;w)+ (3.6)

With regard to the first term in this expansion, it should be noted that the system (2.11) alternates between being sym-
metric and antisyminetric with the evenness or oddness of the expansion order, w, respectively [i.e.,
g' '( L)=sgng' '(L), where—sgn= 1,—1, if w =even, odd]. Because of this one finds that C„(p;w;0}=0, if
p+w =odd.

It has been found numerically that the most stable analysis is obtained if one works with the ratios p, (p)/p„(0). The
coefficients of such an expansion are readily obtainable from a straightforward linear analysis similar to that typically
used in obtaining the Pade coefficients for a given expansion, '0

p(p) w

p,,(0) g a R (p;w;af )+O((a ) '} (3.7)

We explicitly examin~ the numerical behavior of the various coefficients in (3.7) for p= 1, 2, 3, and 4. The upper lim
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it on the expansion was taken to be of the order W =45. It was ascertained that the lowest-order corrections behave as
follows:

For p= 2 and 3,

afR"'(p;w) if w =even,
R(p;w;af) — 5p 35~ J+ '

2 (~)af R' '(p;w) if w =odd.

For p=2 and 4,

R(P;;~f)=[R(p;w)+0]+af R' '(p;w), w =even,

R(p ~;&f)=ufR'"(p;~), if to =odd .

Inserting each of the above expansions into (3.7) we obtain the following:

For p= j and 3,

(3.8)

(3.9a)

(3.9b)

p„(0)
2~ 5p3 +afE

a R'"(p;w) +af g a ' R' '(p;w)
w =even w =odd

L

(3.10)

For p=2 and 4,

PrP
w =even0

=a~ g a [R(p;m)+of R' ~(p;w)]+af g a "R' '(p;w)
w =odd

(3.11)

It will be recognized that the generic form for all of the series expressions appearing in (3.10) and (3.11) take on the
form (after setting af =a) a~+„a S(w), where q is some integer. It is clear that because q is not generally a multi-

ple of 3 we cannot use Pade approximants for such expressions; however, we may do so for the cubed expression

W 8'
a ~ g a [S(w)] =a ~ g a S3(w)+O((a ) +') (3.12)

w=0

T

g a "N(g)
3q &=0=a B —35D (g)

b=o

+0((g —3)W+1) (3.13)

((a ) )C„(p;0;0)a~-
C,(0;0;0)+a C„(0;1;0)+.

(3.14)

in accordance with the remarks made in the context of

%"e require that both T+B =w and q+B —T=O. We
then take N(T)!D(B) as an estimate of the continuum
limit for the cube of the original series. Because the S(w)
may be small, it is best to numerically normalize the origi-
nal series by working with S(w*)a~ g a
X[S(w)/S(w*)], where w is of the order of W/2. This
is the basic technique used in estimating all of the various
series expressions appearing in (3.10) and (3.11).

It is important to note that although the use of Pade
analysis can be very effective, there are some potential pit-
falls. In particular, the series expression in (3.11) corre-
sponding to a~g,„,„a "R (p;w) can be ignored,
despite the fact that according to (3.9a) each of the coeffi-
cients is nonzero. The simple reason for this is that this
series really corresponds to the ratio of two series of the
orm

I

(3.5). If we assume that the denominator expression in
(3.14) represents some finite value [being the expansion
for the 0th-order moment of (3.3)] then the constant na-
ture of the numerator requires that the subsequent multi-
plication by a~= ' yield zero in the continuum limit.
Thus the proper way to Fade approximate the cited series
in (3.11) is to require that the relation for the Fade degrees
in (3.13) satisfy q+B —T =q(&0). Clearly, the above
may also be true for some of the other series expressions
in (3.10) and (3.11). From our numerical experiments this
seems particularly true for the w =even series in (3.10);
we should also ignore it because its Pade approximant (ac-
cording to q+B —T =0), although numerically stable,
leads to inconsistencies with certain relative moment rela-
tions to be derived.

In the tables we give the various Pade-generated se-
quences corresponding to the various R'" and R' ' series
in (3.10) and (3.11). The results correspond to taking
W~45, and Lo ——10" [i.e., E = , (afLO) ]. That is,—we

numerically estimated R ' ", for instance, by taking
R (p;w;af )/af, for the appropriate p and w values, and
af sufficiently small. Note, numerical error propagation



31 MULTIPLE-TURNING-POINT PROBLEMS AND LATTICE. . . 3173

may be of concern in our scheme, so af cannot be too
small.

In general one proceeds to determine the total moments
from the relative moments in accordance with the ap-
propriate counterpart to (3.1). This relation deserves fur-

ther explanation. Note that we have emphasjzed its valid-
ity for p =even only. The reason for this is that because
of the double support structure for f' '(L;af), as ex-
plained in the context of (2.8), the more complete lattice
expression for all the moments, even and odd, becomes

p(p)=a'+~QLi'ga P' '(L'a )
L m

=a '+~ g B(z }( afL—o )i' i' g L i'g' '( Lo+—L;af ) +g 8 (z)(afL 0 )" ~ g L ~g' '(L0+L;af )
P L P L

(3.15)

(3.16)

erties, we find that the p(p) do have the additional prop-
erty of satisfying

p(p =odd) =0=+B(~&)(x,) ~p(p) .
P

(3.19)

We can say even more about p s. Because Y(x) satisfies

Y"+(E——,'(x+x, ) }Y=O, (3.20)

the moments p, (p) obey a recursive relation of the form

—,p, (p+2)=p(p —1)p(p 2) vE—p, (p—+1) . (3.21)

We also know from (3.19) that for p = 1

(3.22)p(1)= —x,p(0) .

In addition, from (3.18) p(0)=p(0)&0. Because of this
and (3.22), clearly p(1)/p, (0)= 2~E. Th—is is very dif-
ferent from the relative-moment solutions provided by the
lattice model (2.2) and the subsequent Pade analysis; al-
though these do yield a reasonable set of relative-moment
solutions to (3.1), as we shall now see.

The lattice model (2.2) and subsequent Pade analysis
yield the results quoted in &he tables. Notice that neither
of the entries in Table I, corresponding to the results for
p„(1)/p, (0), are of a negative nature; nor of the magni-
tude of the solution p(1)/p(0), quoted above. In order to
assess the extent of agreement between (2.2) and the
known moments, (1.2), we explicitly rewrite things in nor-
malized form:

(3.18)

For p =even, the expressions p, (p) = ,' f dx —x&Y(x)are a
solution to (3.1). Note that while p(p =odd) =0, as deter-
mined by (3.16), and also the relative-moment solutions to
(3.1) are not required to have any additional special prop- (3.23)p(0) =2p„(0),

Because of the implicit assumption that P' '( L;af—)
'(L;af ), we have that P' '( Lo L;a—f)—=P' '(Lo+L;af ). Because of this (3.16) becomes

p(p =odd) =0 and p(p =even) =Eq. (3.1). We have noted
in the context of the discussion pertaining to (3.1) that for
every [I+(p =even)/2] even-order moments, p+ 1 rela-
tive moments must be determined. Clearly this specific
situation implies a nonuniqueness between specifying the
total moments and determining a set of relative moments
that satisfy (3.1). The specific lattice model chosen, and
the subsequent Pade analysis, serve to choose a specific set
of relative moments satisfying (3.1). Nonetheless, we can
find a continuum model whose moments correspond to
the relative moments (modulo a factor of 2) satisfying
(3.1) also. This latter set of relative moments do not cor-
respond to the relative-moment solutions provided by the
specific lattice model (2.2) and its subsequent Pade
analysis.

For purposes of comparison, we discuss the simple con-
tinuum model mentioned above. Simply translate the har-
monic oscillator by x,. Denote the new solution (translat-
ed) by Y(x)=f(x,+x). Clearly, for both even and odd p

p(p) =f dx(x, +x)i'Y(x) (3.17)

=QB(~z)( x) i' f dxxM(x) .
P

TABLE I. Pade results for even and odd series expansion for
p, (p= 1)/p„(0) of Eq. (3.10), E =4.5, 1.0 ——9999.

TABLE II. Fade results for even and odd series expansion
for p, (p=2)/p„(0) of Eq. (3.11), E =4.5, 1.0 ——9999.

(w =even)

8.672 x 10-'
8.235 X 10
8.147X 10-'
7.893x 10-'
7.961x 10
7.583x 10-'
7.901X 10-'
6.346X10 2

7.877 x 10
7.648X10 '

1.275 x
1.602 X
1 578X
1.600x
1.534X
1.521 X
1.522 X
1.521 x
1 574X
1.520 x

10
10
10
10
10
10
10
10
10
10

( w =odd) ( w =even)

5.234 x 10-'
—6.548 x 10-'

7.342 x10-'
—7.495 x 10

6.385x 10
-5.807 x 10-'

3.404 X 10-'
—3.268 x 10-'
—3.005 x 10-'
—6.634x 10

( w =odd)

—1.082 x 10-'
—1 359X 10
—1.339x 10
—1.358 X 10-'
—1.302 X 10
—1.307 X 10-'
—1.305 x 10
—1.306X 10
—1.307x 10-'
—1.304x 10
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TABLE III. Pade results for even and odd series expansion
for p, (p=3)/p, (0) of Eq. (3.10), E =4.S 1.0=9999.

TABLE IV. Pade results for even and odd series expansion
for p, (p=4)/p, (0) of Eq. (3.11), E =4.5 Lp=9999.

( w =even)

3.033x 10-'
1.714x 10
1.361x 10-'
1.739X10 ~

8.339X10 2

8.266 x 10
8.346X10 2

8.457 x 10-'
8.4SO x 10-'
8.564 x 10-'

{w =odd)

—9.547x10 '
—8.640 x 10-'
—8.691 X 10-'
—8.332x 10
—7.690X10 '
—8.745 X 10
—8.223 x 10-'

1.497x 10-'
—8.650X 10-'

(w =even)

2.409 x 10
2.588 x 10
2.597x10-'
2.484x10-'
2.598x 10
2.724X 10
2.599X 10
1.410x10-'
3.032x10-'

(w =odd)

7.958 x 10-'
7.254 x 10
7.299x 10
7.146x 10
6.914X 10-'
6.998 X 10-'
6.965x 10-'
6.970x 10
6.967X 10-'

2p, (0)
=x,z+2x,p, „(1)+p„(2),

= x,~+4x, p, „(1)+6x,p„(2)
2p„(0)

+4x,p„(3)+p,„(4),

(3.24)

(3.25)

and

2x,p, „(1)+p,„(2)=0 (3.26)

or

4x, p,„(1)+6x,p„(2}+4x,p„(3)+p,,(4)=8, (3.27a)

16Ep„(2)+4x,p, „(3)+p,„(4)=8 . (3.27b)

p, —:p„()/p„(0). From (1.2), the normalized moments
corresponding to the left-hand side of (3.24) and (3.25)
are, respectively, x, =4E and x +8. From this it is
clear that we require

We proceed to show the extent to which the data in the
tables is consistent with the various relations (3.26} and
(3.27}. Looking at (3.26) we note that for some inexplic-
able reason the even-column entries in Tables I and V are
inconsistent with (3.26) if we take into account the data in
Tables II and VI, respectively. As an example, if we take
the typical limit of Table I to be p, (1)=0.0152 (odd-
column Table I); and p, (2)= —0. 130 (ignoring the erratic
nature of the even column in Table II, due to possible er-
ror propagation) we have 4&4.5(0.0152) + ( —0.130)
=0.1289—0.130. This is in reasonable agreement with
(3.26). The corresponding analysis for E = 10.5 is
4v'10. 5(0.0041) + (—0.056) =0.053—0.056. This is also
in reasonable agreement with (3.26); furthermore, the last
entry in Table VI's odd column is indicative of even better
agreement.

Using the odd column of Table II (VI), and the even
and odd columns of Tables III and IV (VII and VIII) the
result of verifying (3.27b) for E =4.5(10.5) is

16&& 4.5( —0.130)+8v'4. 5(0.9428 —0.082+0.0085 ) + (0.7+ 0.26) =6.35,
16X 10.5( —0.056)+8v'10. 5(0.6172—0.0183+0.0031)+(0.225+0.048) =6.47 .

(3.28)

(3.29)

Although the above fall short of the theoretical answer 8,
this may be due to the fact that the expansions in question
[(3.10) and (3.11)] are only analyzed to lowest order. Of
course numerical accuracy may be a significant factor.
Despite the above, bearing in mind the known values for

I

the moments on the left-hand side of (3.24} and (3.25), the
above results yield reasonably accurate values for the mo-
ments in question. This is particularly true for (3.24), in
light of the very good agreement with relation (3.26).

TABLE V. Fade results for even and odd series expansion
for p, (p=1)/p„(0) of Eq. (3.10), E =10.S, I.o ——9999.

TABLE VI. Fade results for even and odd series expansion
for p„(p=2)/p, (0) of Eq. (3.11), E =10.5, Lo ——9999.

( w =even)

4.280x10 2

4.064 x 10-'
4.021x 10-'
3.896X 10
3.929 X 10-'
3.868X10 ~

3.903 X 10-'
3.897x 10-'
3.903x 10-'
3.878 x 10-'

(w =odd)

3.579x 10-'
4.493 x 10
4.428 X 10
4.491 X 10-'
4.318x 10
4.320X 10
4.177X10 '
4.286 X 10
4.104X 10
4.097x 10-'

(w =even)

1-281x 10
—1.601 x 10-'

1.791 x 10-'
—1.822 x 10-'

1.557 X 10-'
—1.454 X 10-'
—1.012x 10
—2.036x10-'
—1.911x10-'
—2.075 x 10-'

(w =odd)

—4.638x 10-'
—5.824 X 10
—5.740 X 10-'
—5.820X 10-'
—5.580x 10
—5.600x10-'
—5.594 X 10-'
—5.599X 10-'
—5.594 X 10-'
—5.347 X 10-'
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TABLE VII. Pade resUlts for even and odd series expansion
for p, (p=3)/p„{0) of Eq. (3.10), E =10.5, Lo ——9999.

TABLE VIII. Pade results for even and odd series expansion
for p„(p=4)/p„(0} of Eq. (3.11), E = 10.5 I.p =9999.

(w =even) ( w =odd) ( w =even) {w =odd)

1.129x 10
6.380x 10-'
5.065 x 10-'
6.462 x 10
3.151x 10-'
2.928 X 10-'
3.490x 10-'
3.054 x 10-'
3.253 x 10-'
3.382 x 10

—2.064 x 10
—1.851x 10-'
—1.862 X 10-'
—1.836x 10
—1.834x10 '
—1.837x 10-'
—1.526 x 10
—1.858 x 10
—1.820 X 10-'

4.424 x
4.756 x
4.777 x
4.750 x
4.814x
4.809 X
4.790x
4.792 x
4.702 x

10
10
10
10
10
10
10
10
10

2.571 x 10
2.344 x 10-'
2.358x 10-'
2.309x10-'
2.234X10-'
2.260 x 10-'
2.249 X 10-'
2.255 x 10-'
2.252 x 10-'

IV. POLYA-PADE RECONSTRUCTION

The general problem of reconstructing a function from
its moinents is a difficult one in which attention to possi-
ble questions of nonuniqueness should be paid. Although
much is known for the reconstruction of functions which
define nondecreasing Stieltjes measures, ' such may not be
the general situation, as in the harmonic-oscillator prob-
lem. In a recent work we have formulated an intuitively
appealing reconstruction program which appears adequate
for an approximate reconstruction of multiple-turning-
point problems, particularly within domains centered
about the various turning points. We present a succinct
description of the basic formalism, and refer the reader to
the cited reference for more details.

Assuming the quantized energy E is known ' and a
sufficient number of moments are also known, the Fourier
transform of the wave function becomes

g(k) = I dx e ' g(x)
&2m

(4.1)

P

v'2m o p t
(4.2)

For definiteness, we will outline the Polya-Fade program
for the two-turning-point-problem harmonic oscillator.
We want to define a "Polya-Pade" representation as given
below:

g(k) = g, )M(p)
2m.

() p! (4.3)

1

&2n-

R(+) R( —)

exp( ikx,'+'—
) g ( )

+exp( ikx,' ')—
P~~+~ —ik —P~-' (xr ' —= +x, ) . (4 4)

It should be noted that the summations in (4.4) correspond to the partial-fraction decomposition of a corresponding Pade
approximant of numerator and denominator degrees T and B, respectively. We symbolize this by

=I T;B;—ikI .
Rg

(4.5)—ik —Pg

The importance of this fact will be stressed shortly.
The motivation for attempting to define such a representation as (4.4) stems from the simple nature of its inverse

Fourier-transform expression, which takes on the form of a discrete generalized Laplace representation about each of the
respective turning points:

approx(x) = '

y(+)R (+)
( g(+)P(+))

if S'+') O

y( —)R(+) ( g(+)p(+))
gg gg

if a(+) &0

—Xg Rg exp( —b, Pg )
(+) (-) ( —)

if a'-'~O
+ X(-)R„(-)exp( —a(-)P(-))

if a'-'~O

(4 6)

X' +—'—:summation over those terms for which Re(P~) +&0, 6( +—'=x —x',+—' .

It is p«ve»n the cited work on Polya-Pade approximants that the choice of degrees B and T in (4.5) determine the
maximum order of continuous derivatives for (4.6), including at the turning points. Specifically, if B —T =2+N, then
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Comparing (4.10) with (4.4) and (4.5) it is clear that the
series expressions in (4.10) are expanded in k and subse-
quently Pade analyzed.

We have commented on the significance of the append-
ed data and the above formalism, already. In closing, we
state the observation that the extent of the variation of the
poles, Bd—', about the respective turning points seems to
correspond to the extent of the domain, centered about
x„ for which satisfactory agreement between the actual
solution and (4.6) is noted. The curves correspond to the
implementation of a Polya-Pade ansatz based on the actu-
al moments for the harmonic oscillator. The wave func-

tions are normalized by p(0) = 1, so

2( n/2 —1)( y2 ) t

n =even.
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