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Particle in an external electromagnetic field.
II. The exact velocity in a constant and uniform field
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The purpose of this paper is to use Clifford algebraic techniques to solve for the relativistic veloci-
ty of a charged particle in constant electric and magnetic fields of arbitrary orientation. This prob-
lem already has standard methods of solution, but the application of the present method provides a
means of critically comparing previous work on this topic.

I. INTRODUCTION

This paper utilizes the Clifford algebra of differential
forms as developed by Kahler' and the author, and
which has very recently become the subject of consider-
able interest in physics. ' The present application is en-
tirely distinct from the work which deals with fermions
on a lattice, and illustrates a separate facet of this elegant
and powerful mathematical formalism.

We give an exact description for the relativistic motion
of a charged particle in constant, homogeneous electric
and magnetic fields of arbitrary orientation.

An explicit vector expression is derived for the case
when the particle is initially at rest. Any possible radia-
tion reaction is ignored. There are two standard, though
distinct, textbook solutions of the problem. ' "' More gen-
eral solutions which, as a group, follow more or less the
same philosophy are Refs. 17—22. These authors obtain
the relativistic velocity as a function of the proper time.
Some related, but distinct approaches are to be found in
Refs. 23—26. What has been lacking up until now in the
literature is a critical comparison of the various results
obtained for the same problem. We provide such a com-
parison here, and point out several discrepancies among
the solutions.

II. THE CLIFFORD ALGEBRA
OF DIFFERENTIAL FORMS

The geometrical basis of Minkowski spacetime consists
of 16 basis differential forms, written in terms of the basis
one-forms o."=dx" and the antisymmetric Grassmann
product as

I 1,crt', o"h cr, o'" h o h cr, co = cr ' h cr h cr h o

u =u"o."=u+u o. , u=u'o', i =1,2, 3

dx"u"=, r=(x„x"), u=yV,
d~ '

u =y=(1—iVi )

(2)

cr"vo'"=o" h o' = cr vo"—, p~v'

cr'vo'= —1, cr vo =1 (no sum) .
(4)

The general vee product between a basis p-form and a
basis q-form is defined in terms of the permutation group,
and is given in Refs. 4 and 5. For the purposes of this pa-
per, we need only a few specific vee products which are
recalled here. For example, some products between basis
forms of higher rank are

The electromagnetic field f is a tensor of type two,
which can be decomposed uniquely into its magnetic and
electric components. In the decomposition, the duality in
the three-dimensional spatial subspace of Minkowski
spacetime plays an important role, and is denoted by a
star with an index (3 for purely spatial components, 4 for
all spacetime components),

f= —,
' f""cr"6 o'= E 6 cr *B—,

3

(3)
E=E'o', E'=f', B'= —, e'J fJ" . —

By introducing the "vee product" between the basis
forms one defines an algebra of tensor types which per-
mits associative multiplication, division, exponentiation,
etc. Moreover, in this geometrical setting, representation
matrices are not needed hence never appear in the calcula-
tions. We define the vee product v among the basis one-
forms as follows

p&v&A, , p, v, A, =1,2, 3,4 . yves = 1, uvres = —1, x)vo =co = —o v'g4 4

For convenience, we label the spatial three-volume form
by g=o'5o. ho. . In general, one has tensors of type
zero (scalar), one (vector), two, three, and four, which are
linear combinations of the basis forms (1). For example,
the relativistic velocity u is a vector type defined as fol-
lows (sum over repeated indices):

cr'v(o'ho )= —o. , o'v(o ho. )=g,
(o' h cr )v(o' h cr ) =o h o. , etc

The vee products between the tensor types follow as a
consequence of the product on the basis forms. The fol-
lowing will be used in this paper; details may be obtained
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from Refs. 4 and 5 and references therein: forms for each distinct tensor type:

uvu =(u ) —(u u)=1,
qvB= —e B ==f =Ever +gvB,

3

covf = e f=Bvo. qv—E,
4

(6a)

(6b)

(6c)

a'=(a "o")'=a"(o")'=(a'")o",
f'= —,'(f" o"ho )'= , f" —(o"ho")'

, (f'"—)cr"ho." .

(10)

uvf = —uXB —u E—(u E)o.

+cov[uXE —u B—(u B)o ],
fvu =uXB+u "E+(u E)o.

+cov[uXE —u B—(u.B)o ],
fvf =(E E)—(B.B)—2'(E B) .

(6d)

(6e)

(6f)

In this paper we will always use a prime to denote the
second part of (10). For example, for an electric field vec-
tor, E'= (E")cr', where E" are the usual Lorentz-
transformed components of the electric field. The
primed electromagnetic field f is decomposed as in (3)
and (6b), using the Lorentz-transformed field components

These rules should give an idea of how the algebra
works in practice. There is a point, however, which is
likely to lead to confusion. For purely spatial vector
types, the vee product is still defined in the Minkowski
metric, so that, for example (E=E'cr', B=B'cr'),

EvB= —(E B)—gv(EXB),
(7)

EvE= —(E E)= E'E' . —

This is necessary in order to have the proper embedding
of the three-dimensional space into four-dimensional
space-time. One has the same multiplication rules for a
purely spatial vector type as for the spatial part of a
space-time vector type. The key point to remember is that
there is a unique product in the Clifford algebra, and that
is v. What are traditionally thought of as "products"
such as (a.b), (aXb)', (a, b) are merely particular com-
binations of scalar components in this context.

In the description of relativistic motion, the automor-
phisms of tensor types are of importance. They are spa-
tia1 rotations, Lorentz boosts, and duality rotations. The
first two are described in a way similar to the standard
matrix realization. For instance, the spatial rotation of
any tensor type a counterclockwise about a direction 0 by
an angle

~

8
~

is (a caret denotes a unit vector)

a' = R (8)vava ( —8),
R(8) =exp( ——,

' gv8)

f=Ever +gvB,
f'=E'vc-r +gvB '

= (E")o'vo +qvo J(B'J ) .

We now describe the physical setting of the problem.
The equation of motion of a charged particle in an elec-
tromagnetic field can be written as a commutator in the
vee algebra in terms of the proper time ~ as follows (m is
the mass, and q is the charge): '

(12)

The scalar component equation derived from Eq. (12) is
what is commonly used as a starting point for the solu-
tion, namely, du "/dr=(q/2m)f "u„. In that case, how-
ever, the geometrical information of (12) is lost, and the
solution is constrained along each component of u. In
contrast, a general solution can be obtained directly from
(12) which maintains the vectorial generality since it is an
intrinsic solution in the vee algebra. For an e1ectromag-
netic field with no space or time dependence, one has the
following general solution [see also Ref. 20, Eq. (2.3a);
note, however, that the corresponding expression has a
sign misprint in the exponential]:

=cos —qv8 sin
2 2

(8) u(r)=exp f vu(0)vexp — f2m 2m
(13)

The Lorentz boost of a tensor type a in the direction b
by boost parameter b ~, where the frame velocity V sat-
isfies

~

V
~

=tanh
~
b, is

cc"=& (b)vavL( —b),
I-(b) =exp( ——,bvo. ) (9)

=cosh —bvo sinh
2 2

The transformations in the algebra described by Eqs. (8)
and (9) are transformations of the basis forms (1). The
process defines a rearrangement of the basis forms which
can be written as a combination of the original forms.
This gives the transformation in either of two possible

This is the complete solution, written as an automorphism
of the initial velocity u(0). Expression (13) is intrinsically
Lorentz covariant, and contains a Lorentz boost coupled
with a spatial rotation which act on the initial velocity. It
is the object of this paper to separate the rotation from the
boost —and doing this in a way which does not lose the in-
teraction terms is a mathematically nontrivial matter. '

III. THE METHOD OF SOLUTION

The key to obtaining an exact solution to the problem is
to Lorentz transform the arbitrary electromagnetic field f
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to a frame where the electric and magnetic fields are
parallel. This is an elementary exercise. One may boost
an electromagnetic field f in the EX8 direction using a
particular boost vector a to obtain

exp ~f' =exp E—'vcr + ~rivB'
2 2 2

=exp —E'vo v exp —gvB'
2 2

E'=E cosh
I
a

I

— sinh
I
a

IExBI

B(E 8)+
IE

8'=8 cosh
I
a

I

— sinh
I
a

I

I
E

I

'
IExB

E(E 8) sinhlal,ExB

1 2IExBI ExBa= —, arctanh IEI'+ I BI'

(14b)

(14c)

=)L( —gE')vR( —(8'), g=q r/m . (15)

The separation is exact because the two terms on the
right-hand side of (15) commute (this follows since E' is
parallel to 8'). Now recall a well-known result for the ex-
ponential of an element A, where U is any operator.
This result is usually given for a matrix product, but is
equally valid for tensor types in the vee product.

Theorem l:
exp( U 'vAvtL')='U 'vexp(A)vt) .

Using Theorem 1 gives a decomposition of the ex-
ponential of the original electromagnetic field by applying
the inverse Lorentz transformation taking f' into f,

f= lL '(a)vf'v)L(a), 1. ( —a) = IL '(a),

- exp f =1 ( —a—)v exp f' v)L (a) .
2 2

The whole point of performing this transformation is
that the separation of the exponential of the primed field
f is trivial, in sharp contrast to the separation of the orig-
inal (unprimed) field (see Refs. 21 and 22). From this
point on, we adopt the normalized proper time (= qualm,

The relativistic velocity can now be written as a multi-
ple transformation of the initial velocity of the particle
u(0), after using (13), {15), (17), and the commutation of
the two terms in (15),

u(g)=exp ~f vu(0)vexp — f2 2

=L ( —a)vL( —(E')vR( —$8')vL(a)vu (0)vL( —a)vR($8')v&((E')vL(a) . (18)

This expression (18) may be evaluated directly to give a vector form for the relativistic velocity of a particle with arbi-
trary initial velocity. It is, however, rather tedious to do so explicitly, and so we restrict ourselves to discussing an im-
portant special case—the relativistic velocity of a particle starting from rest. The initial velocity is then simply
u (0)=o, and we may utilize the algebraic rules in order to simplify the result. Recall some identities from Ref. 22; the
objects a and p are any tensor types.

Theorem 2:

avP=/3va - - exp(P)va=avexp(/3),

av p = —pva -- -- exp( p)va =av exp( —p),
exp(P) v exp( —P) =exp( /3)v exp(P) = 1 . —

(19a)

{19b)

(19c)

One should note that o commutes with rjvo in the rotation operator (8) for any vector 8, and that o. anticommutes
with avo in the boost operator (9) for any vector a. Therefore, moving o. to the right of expression (18) by applying
Theorem 2 results in

u (g) =L ( —a)v K. ( —$E')vR ( —$8')v L(2a)v& (QB')v L ( —gE')v L( a)vcr— (20)

The core of this expression is a spatial rotation by $8 of the boost operator I.(2a). This is easily written down from
the formulas given in Ref. 22 and by moving another cr which comes from L (2a) to the right. Since a is orthogonal to
B', this rotation is in a plane normal to EXB,

R ( —$8')v L(2a)va ($8') =cosh
I
a

I

—sinh
I
a

I
(a cosg8' —8 'x a singB')vo {21)
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u(g) =&1 cosh
I
a

I

—A2 sinh
I
a

I

A1 ——tL ( —a)v tL ( —2$E ')vtL. ( —a)vo

(22a)

(22b)
&2=)L ( —a)vt. ( —gE')v(acosgB' —B'Xasin/8')

Putting (21) back into (20) and again using the vee alge-
bra rules gives the relativistic velocity as two parts, in
which we label AI and Az for convenience,

(E') = IE'I = &0,
K+KI

2

K —Ki(8')'= B'
I

'= & 0,

~(E') +(8') =~, (E')2 —(8')2=&,
E'B' = —'K

2 2

(26)

v L (gE')v tL (a) .

The two terms AI and 22 can be straightforwardly
evaluated using Lorentz transformations and Theorem 2,
with the identity [avo, b]=2(a b)o . The results are as
follows:

A1 ——E' sinhgE'+ a sinh
I
a

I
cosh''

+o. cosh
I

a
I
cosh'',

A2 ——acosh
I
a cosgB' —B')&asin(8'

+o sinh a
I

cosgB'.

The relativistic velocity u(g) (22a) can therefore be
written in vector form, using (23) and separating the spa-
tial and time parts:

The vector product which appears in (24a) is rewritten
along E and B as follows, from (14):

I
B

I

'cosh
I
a

I

IExB
I

—sinh
I
a

I

(E B)—B cosh
I

a
IE~B (27)

u(g) = (E' sinh—(E'+8' sin(B')

+ (8' sinhgE' —E' sin(8—')
K

Substituting everything back into the solution (24) and
simplifying gives the most convenient form for the rela-
tivistic velocity,

u(g) =E', cosh
I
a, sinhgE'

+ —,a(cosh'' —cosgB')sinh2
I
a

I

sin 8'+B'Xa, sinh
I
a

I
(24a)

+ (cosh(E' —cos(8'), ~&0,EXB

u (g) = —,
' (cosh''+ cosgB')

+ (cosh'' —cosgB'),IE
I

'+
I
B I'

2K

(28a)

u (g) = —,
' cosh''(cosh2

I

a
I
+ 1)

——, cosgB'(cosh2
I

a
I

—1) . (24b)

The final step is to eliminate the direction of the paral-
lel vector fields E' and B' from (24a) in order to write the
solution in terms of the directions of the original fields E
and B. For this, the following algebraic identities involv-
ing the Lorentz invariants K& and Kz, and the duality rota-
tion invariant K, are useful:

~&0 . (28b)

The various constants in the solution are given by Eqs.
(25a) and (26). The variable g is a normalized proper time
/=qualm, where r is the proper time, q is the charge, and
m is the mass.

In the above form, the solution is an infinite series of
even powers of E' and B'. This is an exact expression for
the relativistic velocity of a charged particle in a constant,
homogeneous electromagnetic field, starting from rest.

IV. COMPARISON WITH OTHER WORK

K= [(K )2+(K )2]1/2
(25a)

I
E

I

'+
I
B

I

' —~
2K

I
E

I

'+
I
B

I

'+&
2K

1/2

1/2

(25b)

sinh2
I
a

I

=2 IEXB
I cosh2

I
a

I

= I
E I'+

I
B I'

K K

Using the identities (25) in (14), one sees that the
squares of the primed vector fields are simply

In this section we look at other solutions of this prob-
lem and compare them both to our result and to each oth-
er. There are important differences arising from the in-
equivalence of the methods used which have never, to our
knowledge, been pointed out. For convenience in compar-
ing the results of Refs. 17—20, we have listed the relevant
parameters which figure in the solution in Table I.

One of the standard methods of obtaining the result is
presented in Refs. 18 and 19. It is a solution of the 4X4
system of linear ordinary differential equations which is
the Minkowski force in component form. The four eigen-
values of the electromagnetic field turn out to be exactly
the scalar combinations E' and B' defined in the previous
section —and this is the point of contact between the vari-
ous methods,
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TABLE I. Different notations for the solution parameters.

This paper

«, =
I
E

I

' —
I

B
I

'
K2 ——2(E.B)
«=[(«)) +(«2) ]'~

1/2
K+ K1EI

2
1/2

K —K1

q wE'

m

B'= q~B
Pl

Taub
(Ref. 17)

a
2b

2 +4b 2
)
1/2

Hellwig
(Ref. 18)

Bacry et al.
(Ref. 19)

(g2+ (y2)1/2

Hestenes
(Ref. 20)

a' —p'
2ap

p, «2) 0

—p, «2&0

pl, r,«2) 0

—pkr, «, &0

Itzykson
and Zuber
(Ref. 16)

0
Il2

( 2)1/2

det(f" —kg"")=0 ~k = +E', +iB' . (29) initial velocity for simplicity [Ref. 17, Eq. (2.19)]

The general solution follows as a linear combination of
exponentials of the eigenvalues, with parameter g=qrlm
(Refs. 18 and 19),

u(g) =C& cosh''+ C2 sinhgE'

+C3 cosgB + C4 slngB (30)

Here C~, C2, C3, and C4 follow from the four eigen-
vectors of the matrix f, which are derivable as combina-
tions of the electric and magnetic field components, and
the components of the initial velocity. These are not ex-
plicitly evaluated in Refs. 18 and 19. Expression (30) is in
complete agreement with our result —the difference being
that we obtained the vector components directly from the
algebraic formalism.

More in the same line with our method is the method
of Ref. 16. There, a smaller Clifford algebra is used, and
the explicit solution is written down for the case of
orthogonal fields E.B=O when a particle starts from rest
[Ref. 16, Eq. (1-61)]. There is complete agreement be-
tween that result and (28) with «z ——0, «=«&, B'=0,
E'=~~, .

Our solution also agrees with the standard solution for
orthogonal fields obtained via a Lorentz transformation to
a frame where the electric field vanishes. See, for exam-
ple, Ref. 29, p. 469, where the solution discussed in Ref.
15 is worked out explicitly. The case of orthogonal fields
is also the subject of Ref. 30, where another exact method
is developed in order to calculate the instantaneous
gyrofrequency.

The solution of Taub' is obtained in a slightly different
manner from that of other authors. ' ' He uses an alge-
braic method similar to ours, although he does not employ
the Clifford algebra. The eigenvalues (29) arise purely
algebraically from separating the electromagnetic field
into two parts. Reference 17 gives an explicit expression
for the velocity which is, however, distinct from ours. We
recall it here, translated into our language, and using zero

uT, „b(g)= (E' sinh—(E'+B'singB')

(B' sinhgE' —E' singB')
K

+ (cosh'' cosgB')—,
EXB

2 2
4 K) K2

u T,„b (g) = (cosh(E'+cos(B')+
2K K

(31)

uH„, (g) =—(E'sinhgE' —B' singB')

+ (B' sinh(E'+E' —singB')

+ (cosh'' —cosgB'),EXB
K

uH„, (g) = —,(cosh''+cosgB')

+ (cosh'' —cos(B') .I
E

I

'+
I
&

I

'
2K

This expression is almost identical to Eq. (28), except

(cosh'' —cosgB') .
2K

This expression (31) is distinct from ours (28). The
discrepancy is due to a serious algebraic error in going
from Eq. (2.18) to Eq. (2.19) in Ref. 17. Otherwise, the
method of Ref. 17 indeed gives the correct result.

The method followed by Hestenes is extremely close
to ours, since he uses the Clifford algebra in four dimen-
sions. The procedure of Ref. 20 is also very similar to
that of Ref. 17. There are, however, some crucial sign
differences in the equations as printed in Ref. 20, giving a
different result. We recall u(g) for a particle starting
from rest, from Eq. (2.27) of Ref. 20,
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for two signs in the E and B terms. These signs do not
affect the initial conditions, nor the correct reduction to
the orthogonal and parallel field cases. Nevertheless,
these signs are misprints, as the result of Hestenes should
in fact agree entirely with ours.

There remains the comparison of our exact result (28)
with the exponential expansion given in Refs. 21 and 22.
We expand (28) to fourth order in g to obtain

f 2 3 K2 4

u(()=gE+ ' ExB+ ~,E+ 8 + ~,EXB,
3! 2 4!

(33)
2 4

'(0) =1+
I
E

I
'+, (

I

E
I

'—
I
Ex 8

I

') .

This is precisely the result of Refs. 21 and 22, except
that the fourth-order term in u(g) is new here. Therefore,
the exact expression (28) indeed sums the infinite series
obtained for the solution in Refs. 21 and 22. This is a
confirmation of the general method introduced in Refs. 21
and 22 for calculating the relativistic velocity. A purely
heuristic derivation of most of the terms in (33) is dis-
cussed in the Appendix, which is independent of any par-
ticular method of solution. Expansion of (32) implies ac-
celeration along, instead of around, a magnetic field line.
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APPENDIX AN APPROXIMATE ITERATIVE
SOLUTION

We include here an iterative approximation, which,
even though it is not rigorous, illustrates the physical
solution while avoiding entirely the formal aspects of the
above methods. We integrate the Lorentz force, first
without a magnetic field, then repeatedly with a magnetic
field, substituting each time the resulting velocity. For
simplicity we treat factors of y=(1 —

I

V
I

)
'~ as con-

stants in the integration. To first order, assuming the par-
ticle starts from rest, one has

du
dg

=yE - u=yE(, u=yV, g=qr/m . (A 1)

Substitute u from (A 1) into the full Lorentz force and
integrate, again treating y as a constant in the integrand:

dll
d

=yE+ux 8=yE+yEX Bg

V. CONCLUSION
~ u =yEg+ y EX Bg /2 . (A2)

This paper has provided an explicit, mathematically
rigorous solution for the velocity of a charged particle in a
constant electromagnetic field. The solution is known in
general form, ' ' but the explicit expressions given in the
literature' ' disagree with each other, and also with our
solution. A critical comparison of these results has not, to
the best of our knowledge, been made previously. Such a
comparison has perhaps been felt unnecessary, since both
results, Refs. 17 and 20, correctly reduce to the well-
known special case of orthogonal fields. Yet the correct
explicit generalization to nonorthogonal fields has
remained problematic.

We were able to clarify the physical correspondence of
each distinct general result by providing an independent
solution. Our approach was logically complementary: On
the one hand, we employed the powerful mathematica1
formalism of the Clifford algebra in order to obtain the
explicit solution as a consequence of the Lorentz group.
On the other hand, we also give a physically intuitive ap-
proximate series solution, in the Appendix. This second
result agrees remarkably well with the formal result, even
though the derivation is heuristic and highly nonrigorous.

A critical comparison between the results of Refs.
17—22 and our result underlined the agreement with the
general case in Refs. 18, 19, 21, and 22 and the special
orthogonal case in Refs. 15, 16, 29, and 30, and the
disagreement with the distinct general results of Refs. 17
and 20. In conclusion, we have tried to clear up the con-
fusion created by having several distinct published solu-
tions to the same problem, and also to track down errors
that may be responsible for these differences.

In this way one may obtain higher-order terms. Of
course, these terms are of decreasing value because of the
approximation, yet they indicate the structure of the solu-
tion. Integrate once more:

d
=yE+ y [EX8(+(EX 8) X Bg /2]

(A3)~ u=yEg+yEXBg /2+y(EXB)XBg /3! .

A fourth integration gives u to fourth order, as follows:

u=y[E(+EXBg /2+[(E B)B—
I

8
I

E]g /3!

—IBI EXB( /4!I . (A4)

2

= 1+
I

E
I
'+, (9

I

E
I

' —
I
Ex 8

I

') .
2

(A5)

Now we can substitute y from (A5) into (A4) to obtain
the relativistic velocity explicitly:

2 3

u=gE+ EXB+, [(3
I
E

I

—
I

8
I

)E+(E B)8]
2

, (6I El' —
I
8 I')ExB. (A6)

These expressions (A6) and (A5) are in very good agree-
ment with the expansion of the exact result (33), consider-
ing the heuristic nature of the above derivation.

The factor of y is handled by taking V=u/y from
(A4) and calculating y by expanding

~'=y=(1 —Ivl') '"=1+
2 Ivl'+ 8 lvl'
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