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The lack of knowledge of relativistic distribution functions for interacting particles introduces un-

certainty into the cosmological interpretation of Doppler shifts, particularly for systems such as

quasars. Here we define an average Doppler shift, reducible to the nonrelativistic form in the ap-
propriate limit. However, even for the relativistic ideal situation (Juttner distribution), second-order
effects yield shift corrections after averaging. Such effects should be of interest for nuclear x-ray
and y-ray lines.

I. INTRODUCTION

In the majority of cases involving the Doppler shift in
astrophysics, the nonrelativistic formula is sufficient.
However, with systems such as quasistellar objects and
putative distant galaxies, effects at least of order (v/c)
are brought into play. While in the nonrelativistic case
the shift gives the center-of-mass velocity directly, this is
no longer the case relativistically. And, regardless of the
magnitude of the center-of-mass velocity in terms of
z =v/c, it is also important to consider the effect of a rel-
ativistic distribution in the "moving" frame of reference.

In regard to the interpretation of the red-shift data
there are discordant views. ' For systems that approach
nonrelativistic ideal situations there appears to be no
problem in extracting velocities for use in interpretation in
Hubble plots. ' For compact, relativistic systems it is not
clear what the appropriate distribution functions are,
especially in view of the lack of a relativistic statistical
mechanics of interacting particles. ' Although kinetic
equations that treat ( U/c) interaction effects are
known, the solutions to these highly nonlinear equa-
tions are unknown. Further, in regard to stability ques-
tions, there are Cerenkov poles appearing to this order.

Therefore, in this paper we restrict attention to cases
where the Jiittner (relativistic Maxwell-Boltzmann) distri-
bution and the completely degenerate Fermi-Dirac distri-
bution are used. This is sufficient to introduce modifica-
tions, which are herein described. That there is current
interest in ideal relativistic cases is evidenced, for exam-
ple, by the work of Karsch and Miller also, the exotic
"fireball" system consisting of quarks is presumed to be
asymptotically free, in the limit of small separations. Al-
though interacting relativistic systems are ultimately of
interest, it is known that even from the analysis of model
systems such as the Einstein-Hopf oscillator there are
marked differences between relativistic and nonrelativistic
situations.

Since broad spectral lines are possibly indicative of rela-
tivistic distributions, and since at least some quasars are
felt to have such distributions, we have included a calcula-
tion of the relativistic linewidth in the paper. Thus a
broad line occurring with a large Doppler shift might be
diagnostic.

In the present noninteracting case the differences be-
tween the relativistic and nonrelativistic examples are in-
tuitively due to the nonlinearity involving particles with
velocity components toward and away from the observer.
However, in the general, relativistic interacting situation,
where, for example, the center-of-mass definition is uncer-
tain due to a lack of knowledge of a relativistic statistical
mechanics of interacting particles, ' intuitive reasons may
fail us.

II. DOPPLER-SHiFT AVERAGE

For a source moving with P, =u/c relative to the ob-
server the relativistic Doppler shift is

p 2)1/2

1 P, k—
where k is a unit vector defining the line of sight from the
source'to the observer and vo is the rest frequency. If the
source is itself a constituent of a larger body whose
center-of-mass motion is described by p=v/c, and if rela-
tive to this system the source has pp =up/c, and

y = 1 —P, then relative to the observer,

pp+(y —1)(po p)/p'+yp
y(1+P, P)

Substituting (2) into (1) leads to

[(1—Po')(1 —P')]' '&o

1+Po P—cosO -„[(1+PpP) —(1—Pp )(1—P )]'

where

cosO -=
uk

PpcosO -+(y —1)PocosO cosO -+yPcosO-
Qok Qoc Uk

y[(1+Po'P) —(1 —Pp )(1—P )]

(4)

and 0 - indicates, for example, the angle between uo and
uok

k, etc. Assuming that the cases of interest here corre-
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follows. The limit

lim &v) = 1+
po~p 1+13

1/2

&p=&b, r (7)

retrieves the red- and blue-shift forms of (1), as required.
Since 13o——up/c =cp/E, (6) may be written as

I+P
"

1+no
(v) = ln Vp

2Pp I+/3 1 —Pp

moc [1+(p/moc) ]' +p/moc
2p [1+(p/mpc) ]' —p/mpc

where mp is the source rest mass. Next we must average
over the momentum magnitude. Since the phase average
1s

(v) =fvf(p)d pd x ff(p)d pd x,
we may continue with the averaging over the momentum
magnitude, where f (p) is given by the Jiittner distribution

f(p) =K exp I
—a[1+(p/mpc ) ]' (10)

and where a=mpc /kT; defining sinhB=p/moc and
normalizing,

(v) =
(mpc) K2(a)

X f ( v) exp I
—a[1+ (p/m pc) ]'~

)p dp

spond to motion such that v is parallel or antiparallel to
the line of sight, then

[(I—13')(1 P—o') ]'"vo
I+Po'P+y '[Pp P+(y I)—(Pp P+yP)]

Defining a = 1+@, b =f3p(1+P), the angle averaged result

[(1—l4')(1 —&')]'" a +b(v) =
2b

ln vp
a —b

So, in the event that kT «mpc and v/c «1, the usual
result is obtained, namely, the system has a Doppler effect
given by v=vp(1+z), where z =u/c [Eq. (13) also is writ-
ten explicitly to show effects of order a ']. On the other
hand, Eq. (12) indicates that if kT bmoc, the Doppler
shift is altered, with (v) -(a/2)ln(2/a)vb „where we
have used the relativistic form (7).

Looking at the completely degenerate state for the
Fermi-Dirac case, replace (11) by

&v&T=o

&b, r

e
6 sinhO coshO d6

sinh OF

3 (26Fcosh26p —sinh26F ),
4sinh OF

(14)

where BF defines the Fermi-limit parameter. In (14) the
normalization factor follows at T =0 since

eFf sinh 6 coshB d 6=sinh 6 /3 . (I &)
0

Note that sinhBF =pF/mpc =(h lmpc)(3n/8~)', and
sinhOF is of order unity for hydrogen with n —10 cm
density. The criterion for applying the completely degen-
erate case requires that the Fermi temperature is much
greater than stellar temperatures. Thus, typically, the ar-
gurnent may be applied to white dwarf stars, neutron
stars, or even denser media. Of course, the treatment as-
sumes the ideal relativistic case and so, as discussed ear-
lier, the lack of a quantum or classical relativistic statisti-
cal mechanics of interacting particles may severely delimit
the application. In addition the assumption of the general
form (1) does not necessarily lead uniquely to relativistic
transformations for the thermodynamic functions. '

These general qu~. stions are not considered here, however.

for a &~1. Thus we have the first-order result [note that
a ' corresponds in order to (u/c) ]

& &-(1+

n ~ cosh6+ sinh6
ln

2K2(a) p coshB —sinhB

)&e ' '" sinhOcoshOdOvb,

a 00

Oe "'" sinhOcoshOdO v,K2(a)

a n 2
(v)/vb, ~ + —ln ——

2 2 cx
(12)

This follows since K„(a)——,'(2/a)", Kp(a)-ln(2/a) for
«1.
The nondegenerate case has K„(a)-(vr/2)' e /a'

[aK[(a ) +Kp(a ) ]vbaKz a
In the expressions above, K„(a) is a modified Bessel func-
tion. In the high-temperature regime for e «1, it is ap-
parent that

III. LINEWIDTH CALCULATION

cos6 —Pcos9p = (17)

holds, where 8 is the angle between the line of sight and
velocity in the observer frame. Note also that the relativ-
istic situation requires that transverse as well as line-of-
sight motion contributes to the Doppler shift. [Recalling

Further, we investigate the relativistic implications for
the linewidth. Defining the function g(v), the number of
atoms emitting radiation in the center-of-mass frame in a
spectral range is

V()

, , p(v)dv
v0(1+pcos80)/(1 —p )

he 2e "'" sinh BcoshBdB, (16)
2K2(a)

where we have used (10) and a velocity "cone" is defined
(see the analogous nonrelativistic derivation in Gill' ).
Note that, as in (1), the transformation
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1+.P cosOo

( 1 p2)1/2
J

ap e
—a/(1 —P )'/

2vocosOvK2 (a )
(18)

the classic Ives-Stillwell' experiment in which transverse
(v/c) effects first were measured, there were problems
with the diffuseness of lines, which were overcome by ex-
perimental design. In the event of a relativistic astrophys-
ical distribution, discrete line effects may be masked by
overlapping relativistic line broadening. ]

Since coshe= 1/(1 —Po )'/ in (16), and differentiat-
ing' with respect to p, we get

Solving for p in terms of v, using (17),

—vo cos80 —v [1—(vo/v) sin Oo]'/

v +vo cos Oo

also, then

1

( 1 p2)1/2

R +R 'cos Op

[1+cos Oo —2cosOv(1 —R 'sin 80)'/ ]'

where R =(v/vo) . From (18) it then follows that

—1 2 1/2 2—CX R (1—R 'sin Oo)'/ +cos80
g(v) =

2 v~2( a)cos80 R +cos I9p
exp

(R +R 'cos 80)

[1+cos 80—2cos80(1 —R 'sin Oo)' ]'/

and for 0=Op ——n,
2 2

CX V —Vp
g(v) = exp2v~2(a)

a(v +vo )

2VVp
(20)

cosmological origin, "' it may be that better knowledge of
the relativistic distribution (interacting particles) can help
explain the discrepant effects.

In the case for which a »1 (nonrelativistic limit)

a3/2 2
1/2

g(v) = — e
2vp '

/T

3/2

2 2 2
V —Vp

e
v +vo

—a(v —va ) /2vvo a
2

'e

2&C

Vp

Pl p mpU /kT
U e

2~k T (21)

where v=vo(1+v/c) has been used.
Then, for the longitudinal example, the exponential in

(20) leads to a half-width given by

vp

2 ln2 2n
a 1n2

(22)

For the limiting cases

ZLv 2 (ln2) '
)) 1

vp A

Av 41n2=2+, CL (( 1
vp A

(23a)

(23b)

These results indicate a narrowing of the Doppler width
in the nonrelativistic case and a broadening tendency in
the extreme relativistic case. Of course, the broadening is
dictated, in the general case, by the exponential in (19).
Other pressure broadening effects are not addressed here;
they may be more important in extremely condensed
matter. The expressions above assume that the Doppler
broadening predominates.

If it is true, as Bahcall' points out, that quasar absorp-
tion lines that are broad originate in the quasar material,
then (22) may lead to non-negligible corrections to (7).
Recal1ing the opinion that "not all red-shifts are of

CONCLUSION

Among the consequences of these relations it is clear
that, within the limitations outlined, a broad line, with
typical width given by (22), might not have its correct
relativistic shift of origin completely reflected by use of
(7), since, according to (11), there is a modification of the
longitudina1 shift. For quasirelativistic situations, the
narrower width would be compared with the shift formula
(13), where a correction of order a ' (a»1) would fol-
low. In addition a completely degenerate system would
have a corrected shift given by (14); ' for the width it is
possible that (22) may not be applicable in extremely con-
densed matter.

In the general case given by (11), it is clear that the
Doppler shift will be modified to the extent that the longi-
tudinal form (7) no longer can be expected to strictly hold.
This illustrates the potential importance of the distribu-
tion function in changing the Doppler-shift expressions.

Nuclear spectral lines have apparently not yet been ob-
served to any extent —but it follows that the relativistic
distributions with temperatures exceeding 10' K could be
important here. Also, as noted earlier, although the
Jiittner distribution is an idealized case, it may be (some-
what paradoxically) important in an extremely dense
quark gas.
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