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In a recent paper, Thorne and Hartle have derived laws of motion and precession for black holes

and other bodies. Using two different methods, higher-order corrections to those laws are derived

here: a time change of the body's mass-energy due to coupling of the time derivatives of the body's

quadrupole moments to the external curvature; a force due to coupling of the time derivatives of the
body's quadrupole moments to the external curvature and coupling of the body's quadrupole mo-

ments to the gradient of the external curvature; and a torque due to coupling of the body's octopole
moments to the gradient of the external curvature.

I. INTRODUCTION AND SUMMARY

Recently, Thorne and Hartle' have derived laws of
motion and precession for black holes and other bodies.
Their analysis characterizes the body of interest by three
parameters: M=(mass), L=(size), and T=(time scale
for changes of multipole moments); and it characterizes
the external universe, through which the body moves, by
three other parameters: A'=(radius of curvature along
body's world line), W=(inhomogeneity scale of curva-
ture), and u = (time scale for changes in curvature).
Their analysis relies on the approximations that the body's
moments change slowly and the body is well isolated:

Eqs. (TH, 1.9)]. Here P, WI, Jrj", and P'J" are the
body's momentum, spin, and mass and current quadru-
pole moments; e,b is the flat-space Levi-Civita tensor
(used to form vector cross products); and 8' and A "are
the electric and magnetic parts of the Riemann curvature
tensor of the external universe. Summation over repeated
indices (which are always spatial, i =1,2, 3) is assumed;
and indices on the rnultipole moments are raised and
lowered with the three-dimensional flat metric (Kronecker
delta). Thorne and Hartle also discuss at some length the
procedure for converting these laws of motion into equa-
tions of motion for any given situation satisfying Eqs. (1).

The purpose of this paper is to derive all corrections to
the laws of motion and precession (2) with magnitudes

T»L &M, A'))L, W)&L, W ))L, (1)

and on the assumption that there is negligible gravitating
matter in a "buffer region" L «r « W surrounding the
body. The external universe's curvature in the buffer re-

gion is then nearly constant and satisfies the vacuum Ein-
stein equation. Thorne and Hartle set up in this buffer re-

gion a coordinate system which is as nearly Lorentz as the
spacetime curvature permits, and in which the body is at
rest at time t =0; and in this "local asymptotic rest frame
of the body" they compute the effects of the external
universe on the body's motion.

The resulting Thorne-Hartle laws of motion and preces-
sion, written in terms of components in the body's local
asymptotic rest frame, take the following form to leading
order in the small dimensionless parameters L/T, L/A,
L/W, and L /u, and a similar set of parameters with L
replaced by M
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[Eqs. (1.9) of Thorne and Hartle, ' denoted henceforth as
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b
Here overdots denote time derivatives. Jj'—:dJr' /dt;
W,b, and W,b, are the body's mass octopole and current
octopole moments; and 8',b, and A,b, are the electric-
type and magnetic-type octopole moments of the external
universe's curvature, i.e., they characterize the spatial gra-
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dient of that curvature. ' Thorne and Hartle' discuss,
but do not derive, the most important of the above correc-
tions [both terms in (4a), which are the leading nonzero
contributions to dM/dt; and the first term in (4b), which
in many realistic situations will dominate over the lower-
order term (2b) and thus will be the leading contribution
to dP'/dt]

The interpretation of the laws of motion (2) and (4) in-
volves a number of subtleties which are discussed by
Thorne and Hartle. One of these subtleties is crucial for
our derivation, so we review it here: The nonlinear in-
teraction of the body's curvature and the external curva-
ture cause the body's mass M, momentum P', and spin
W' to be slightly ambiguous, i.e., to be uncertain by
amounts

b, M-ML /A, b,P'-ML /&, hW'-M L/A

(5)

[Eq. (TH, 1.8)]. This means that we can obtain physically
meaningful changes of M, P', and W' by integrating the
laws of motion (2) and (4) only if we integrate over a time
long enough that the changes exceed the uncertainties (5).
Correspondingly, dM/dt, dP'/dt, and dW'/dt are actual-
ly ambiguous. Any set of formulas that give the same
time-integrated changes to within the uncertainties of Eq.
(5) are just as good as Eqs. (2) and (4). This means, in
particular, that one can add to dM/dt [Eqs. (2a) and (4a)]
any multiple of (d/dt)( ti', bW' ) or (d/dt)(A, bW' ), and
can add to dP'/dt [Eqs. (2b) and (4b)] any multiple of
(d/dt)(e', b 8"cW ') or (d/dt)(e', bA', W ') or equiv--

alently, one can replace the terms in Eqs. (4a) and (4b) in-
volving time derivatives by averages, ( ), of those terms
over a few internal time scales, (few) && T [cf. Eq.
(TH, 1.15)].

The remainder of this paper consists of two derivations
of the corrections (4) to the laws of motion and preces-
sion. The first derivation, based on the techniques of
Thorne and Hartle, is given in Sec. II. This derivation is
valid for any body, including a black hole, that satisfies
the constraints of Eqs. (1). The second derivation, given
in Sec. III, is restricted to the special case of an arbitrary

body with absolutely negligible self-gravity. It serves as a
check of the first derivation and provides additional in-
sight into the physical origins of the energy changes (4a),
forces (4b), and torques (4c).

II. DERIVATION FOR AN ARBITRARY BODY

We begin our derivation from the standard formulas

( g)t ~—d Si,
P = — ( g)t'~—d SJ,
W = —f ( g)e'Jkx—jt"'d Si,

(6a)

(6b)

(6c)

where t" is the Landau-Lifshitz pseudotensor and the
surface integral is over a closed two-surface in the buffer
region. (See Thorne and Hartle' for a discussion of the
applicability of these formulas to this problem. ) In these
formulas, one could equally well use some other energy-
momentum pseudotensor, provided it participates in con-
servation laws of the type discussed in Sec. 20.3 of
MTW. In that case, the time changes could be different
from those in Eqs. (4), but the differences could only be as
great as the uncertainties discussed in Sec. I.

Since we are only interested in the nonlinear couplings
between the external universe and the body moving
through it, the metric we will use is the sum of that for a
single body and that for the external universe, with the
spatial origin attached at time t=0 to the world line of
the center of the body. To further simplify the calcula-
tion, we notice that only those coupling terms with the
same temporal and spatial transformation properties as
the left-hand side of Eqs. (6) can appear and survive the
surface integral. Take M as an example. Under time re-
versal, M~ —M; under a spatial reflection, M~M. At
the order ML /A T and ML /A' u [no scalar can be
constructed if T (or u ) is replaced by W or A], the
transformation properties of the only possible terms are
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abTherefore only 8',bJc, 8',b Jc', A,bP', and A,bW' will appear in the final answer (for a more detailed discussion,

see Thorne and Hartle, ' Sec. III E):
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Our task now reduces to the calculation of these p s. The linearized, truncated, and trace-reversed metric perturbation
needed for this calculation is (see Thorne for the metric of the central body; see Zhang for the metric of the external
universe)

a b
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Inserting Eqs. (8) into MTW (Ref. 4) Eq. (20.22) with
g" =g" —h", and keeping only those terms that will
contribute to the final answer, we obtain

16m( g) t "=——3"~2 —12'"+4m",qH'g

a, b
—2A, I, a fI 'b~

16m( g)t« =4g'g—~+H'H~ 8A 'gJ'—
(9a)

+ —,5'J(8g. A —4g —H ), (9b)

where g is the gravitational acceleration and H is the
gravitational analog of the magnetic field (three-
dimensional notation is used here):

g= —VP, H=V&(A . (10)

In Eq. (9b) the A terms are needed only for the calcula-
~ 1

tion of P.
Now we can insert the necessary parts of Eqs. (8) into

Eqs. (9a) and (9b) separately, and perform the surface in-
tegrations in Eqs. (6). The results, after dropping negligi-
ble total time derivative terms, are Eqs. (4) above. Be-
cause in this derivation we only need the metric in the
buffer region where it is linearized, the results are valid
for any body, including a black hole, provided that the
conditions of Eq. (1) are satisfied.

III. DERIVATION FOR A TEST BODY

In this section, another derivation of Eqs. (4) will be
presented. The basic idea is local energy-momentum con-
servation. The purpose of doing this is twofold. First, it
can serve as a check of the previous derivation. Second,
in the derivation of Sec. II the physical meanings were al-
most buried in the complicated, though straightforward,
algebra; and the physics may be much clearer in this cal-
culation.

Our derivation will be restricted to a body that has to-
tally negligible self-gravity and is made of "normal" ma-
terial, for which

~

T'
~

&&T in the body's center-of-
mass frame. The mass, momentum, and spin of this body
are

M=f T ( —g)dx,
P'= f T '( —g)d x,
W'= f e' xt'T «( —g)d x,

(1 la)

(1 lb)

(1 lc)

M= T —g x, P = T' —g x,
W = f e' x~[T"«(—g)] g'x .

By combining with the local law of energy-momentum
conservation

1 (Tl' v' g),+I "„T—" =0T|M,v
v' —g

or equivalently,

[ T"'( —g)], = I "t3T +2(qT—" ),

and removing negligible time derivatives, vanishing sur-
face integrals, and other terms that are negligible, we
bring these equations into the form

M= f (g, —A, )T 'd'x, (12a)

P = f [(g' —A )T +e', t, T 'H +g'T'~]d x, (12b)

= f E', x'[(g" A)T +—e T ~H«]d x . (12c)

The g'T', term in Eq. (12b) is not discarded because the
g'T integral, which one might have thought to be dom-
inant, gives as its formally leading piece 8",W', which
vanishes in our mass-centered coordinates (W'=0).

The physical meanings are rather clear here. Take M

where T"' is the energy-momentum tensor for the body
alone, and g is the determinant of the metric for the exter-
nal universe alone. The factor ( —g) co'uld equally well be
( —g)" for any n of order unity; by changing the power of
( —g) one changes M, P', and W' by amounts of order
their uncertainties [Eqs. (5)]. As in Sec. II our calculation
is performed in a coordinate system that is as nearly
Lorentz and mass centered as possible, and in which the
body is momentarily (at t=0) at rest: P'=0 and W'
= (mass dipole moment) =0 at t =0.

By taking the time derivatives of Eqs. (11) and using
the fact that T" =0 outside the body, we obtain
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as an example. In the Newtonian limit, T '=pU', Eq.
(12a) reduces to

M= f (g, —A, )pv'd x = f F,v'd x,
where F, =p(ga —A, ) is the gravitational force per unit
volume exerted on the body by the external universe.
Thus in the Newtonian limit, the total mass-energy of an
object changes because the external universe does "Fv"
work on various parts of it. This is just what we would

naively expect. We can understand P ' and W ' in a simi-
lar fashion.

~ i ~ g

In order to express the M, P, and W of Eqs. (12) in
terms of the multipole moments of the body and the
universe, we can express g;, 3;, and H; in terms of the
external universe's moments [Eqs. (8) and (10)] and then
perform the integrations using the definitions of the
body's multipole moments

pp 3
STF

T xa xa xad x
STF

Eapqx T XaXa ' Xad X
I a &pq a2 a3 QI

Here (. . . )
"means take the symmetric, trace-free part.

The result is the laws of motion (2) and (4). Because the
actual calculation is not so straightforward as in the last
section, we give a few of its details in an appendix.
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APPENDIX

In this appendix we will carry out the calculations lead-

ing to Eqs. (4) from Eqs. (12). First we define a few quan-
tities that will be used later:

I,—= f T x„,dx,
Ja

I

E'—: T x dx
AI

=

(Ala)

(A lb)

(A lc)

where xz =x, x, . x, . From these definitions, theal Q2 QI'

finiteness of the body, and the law of energy-momentum
conservation T ~

——0 (with gravitational effects here

neglected), we can find a few very useful relations:

(A2a)

Jabc & I + 2 J[ab]c+ 2 J[ac]b
3 3 3 (A2b)

~ CCQ ~ QCCK"'=J ——,J (A2c)

Here square brackets denote antisymmetrization, and in-
dices are raised and lowered with the three-dimensional
flat metric (Kronecker delta).

Using Eqs. (Al) and (A2) we can rewrite Eqs. (12) as
follows:
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In writing these three equations in terms of multipole moments, we notice that
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Using these relations, we can further simplify Eqs. (12) into
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(A3a)

z Epq 8 'pbW Epq&

(A3b)

(A3c)

The last three terms in Eq. (A3b) are part of the next-higher-order contributions [-(ML /A T)(1/M or 1/W)] and
thus can be dropped. After this, Eqs. (A3) are the same as Eqs. (4).
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